Skip to main content
Top
Published in: NeuroMolecular Medicine 1/2021

01-03-2021 | Stroke | Review Paper

Preclinical and Clinical Evidence for the Involvement of Sphingosine 1-Phosphate Signaling in the Pathophysiology of Vascular Cognitive Impairment

Authors: Xin Ying Chua, Leona T. Y. Ho, Ping Xiang, Wee Siong Chew, Brenda Wan Shing Lam, Christopher P. Chen, Wei-Yi Ong, Mitchell K. P. Lai, Deron R. Herr

Published in: NeuroMolecular Medicine | Issue 1/2021

Login to get access

Abstract

Sphingosine 1-phosphates (S1Ps) are bioactive lipids that mediate a diverse range of effects through the activation of cognate receptors, S1P1–S1P5. Scrutiny of S1P-regulated pathways over the past three decades has identified important and occasionally counteracting functions in the brain and cerebrovascular system. For example, while S1P1 and S1P3 mediate proinflammatory effects on glial cells and directly promote endothelial cell barrier integrity, S1P2 is anti-inflammatory but disrupts barrier integrity. Cumulatively, there is significant preclinical evidence implicating critical roles for this pathway in regulating processes that drive cerebrovascular disease and vascular dementia, both being part of the continuum of vascular cognitive impairment (VCI). This is supported by clinical studies that have identified correlations between alterations of S1P and cognitive deficits. We review studies which proposed and evaluated potential mechanisms by which such alterations contribute to pathological S1P signaling that leads to VCI-associated chronic neuroinflammation and neurodegeneration. Notably, S1P receptors have divergent but overlapping expression patterns and demonstrate complex interactions. Therefore, the net effect produced by S1P represents the cumulative contributions of S1P receptors acting additively, synergistically, or antagonistically on the neural, vascular, and immune cells of the brain. Ultimately, an optimized therapeutic strategy that targets S1P signaling will have to consider these complex interactions.
Literature
go back to reference Allende, M. L., Yamashita, T., & Proia, R. L. (2003). G-protein-coupled receptor S1P1 acts within endothelial cells to regulate vascular maturation. Blood, 102(10), 3665–3667. (Epub 2003 Jul 3617).CrossRefPubMed Allende, M. L., Yamashita, T., & Proia, R. L. (2003). G-protein-coupled receptor S1P1 acts within endothelial cells to regulate vascular maturation. Blood, 102(10), 3665–3667. (Epub 2003 Jul 3617).CrossRefPubMed
go back to reference Choi, J. W., Gardell, S. E., Herr, D. R., Rivera, R., Lee, C. W., Noguchi, K., et al. (2011). FTY720 (fingolimod) efficacy in an animal model of multiple sclerosis requires astrocyte sphingosine 1-phosphate receptor 1 (S1P1) modulation. Proceedings of the National Academy of Science USA, 108(2), 751–756. https://doi.org/10.1073/pnas.1014154108CrossRef Choi, J. W., Gardell, S. E., Herr, D. R., Rivera, R., Lee, C. W., Noguchi, K., et al. (2011). FTY720 (fingolimod) efficacy in an animal model of multiple sclerosis requires astrocyte sphingosine 1-phosphate receptor 1 (S1P1) modulation. Proceedings of the National Academy of Science USA, 108(2), 751–756. https://​doi.​org/​10.​1073/​pnas.​1014154108CrossRef
go back to reference Christoffersen, C., Obinata, H., Kumaraswamy, S. B., Galvani, S., Ahnstrom, J., Sevvana, M., et al. (2011). Endothelium-protective sphingosine-1-phosphate provided by HDL-associated apolipoprotein M. Proceedings of the National Academy of Science USA, 108(23), 9613–9618. https://doi.org/10.1073/pnas.1103187108CrossRef Christoffersen, C., Obinata, H., Kumaraswamy, S. B., Galvani, S., Ahnstrom, J., Sevvana, M., et al. (2011). Endothelium-protective sphingosine-1-phosphate provided by HDL-associated apolipoprotein M. Proceedings of the National Academy of Science USA, 108(23), 9613–9618. https://​doi.​org/​10.​1073/​pnas.​1103187108CrossRef
go back to reference Chun, J., Goetzl, E. J., Hla, T., Igarashi, Y., Lynch, K. R., Moolenaar, W., et al. (2002). International Union of Pharmacology XXXIV. Lysophospholipid receptor nomenclature. Pharmacological Reviews, 54(2), 265–269.CrossRefPubMed Chun, J., Goetzl, E. J., Hla, T., Igarashi, Y., Lynch, K. R., Moolenaar, W., et al. (2002). International Union of Pharmacology XXXIV. Lysophospholipid receptor nomenclature. Pharmacological Reviews, 54(2), 265–269.CrossRefPubMed
go back to reference Czech, B., Pfeilschifter, W., Mazaheri-Omrani, N., Strobel, M. A., Kahles, T., Neumann-Haefelin, T., et al. (2009). The immunomodulatory sphingosine 1-phosphate analog FTY720 reduces lesion size and improves neurological outcome in a mouse model of cerebral ischemia. Biochemical and Biophysical Research Communications, 389(2), 251–256. https://doi.org/10.1016/j.bbrc.2009.08.142CrossRefPubMed Czech, B., Pfeilschifter, W., Mazaheri-Omrani, N., Strobel, M. A., Kahles, T., Neumann-Haefelin, T., et al. (2009). The immunomodulatory sphingosine 1-phosphate analog FTY720 reduces lesion size and improves neurological outcome in a mouse model of cerebral ischemia. Biochemical and Biophysical Research Communications, 389(2), 251–256. https://​doi.​org/​10.​1016/​j.​bbrc.​2009.​08.​142CrossRefPubMed
go back to reference Gonzalez-Diez, M., Rodriguez, C., Badimon, L., & Martinez-Gonzalez, J. (2008). Prostacyclin induction by high-density lipoprotein (HDL) in vascular smooth muscle cells depends on sphingosine 1-phosphate receptors: Effect of simvastatin. Thrombosis and Haemostasis, 100(1), 119–126. https://doi.org/10.1160/TH07-11-0675CrossRefPubMed Gonzalez-Diez, M., Rodriguez, C., Badimon, L., & Martinez-Gonzalez, J. (2008). Prostacyclin induction by high-density lipoprotein (HDL) in vascular smooth muscle cells depends on sphingosine 1-phosphate receptors: Effect of simvastatin. Thrombosis and Haemostasis, 100(1), 119–126. https://​doi.​org/​10.​1160/​TH07-11-0675CrossRefPubMed
go back to reference Herr, D. R., & Chun, J. (2007). Effects of LPA and S1P on the nervous system and implications for their involvement in disease. Current Drug Targets, 8(1), 155–167.CrossRefPubMed Herr, D. R., & Chun, J. (2007). Effects of LPA and S1P on the nervous system and implications for their involvement in disease. Current Drug Targets, 8(1), 155–167.CrossRefPubMed
go back to reference Herr, D. R., Reolo, M. J., Peh, Y. X., Wang, W., Lee, C. W., Rivera, R., et al. (2016). Sphingosine 1-phosphate receptor 2 (S1P2) attenuates reactive oxygen species formation and inhibits cell death: Implications for otoprotective therapy. Science Report, 6, 24541. https://doi.org/10.1038/srep24541CrossRef Herr, D. R., Reolo, M. J., Peh, Y. X., Wang, W., Lee, C. W., Rivera, R., et al. (2016). Sphingosine 1-phosphate receptor 2 (S1P2) attenuates reactive oxygen species formation and inhibits cell death: Implications for otoprotective therapy. Science Report, 6, 24541. https://​doi.​org/​10.​1038/​srep24541CrossRef
go back to reference Hla, T., & Maciag, T. (1990). An abundant transcript induced in differentiating human endothelial cells encodes a polypeptide with structural similarities to G-protein-coupled receptors. Journal of Biological Chemistry, 265(16), 9308–9313.CrossRefPubMed Hla, T., & Maciag, T. (1990). An abundant transcript induced in differentiating human endothelial cells encodes a polypeptide with structural similarities to G-protein-coupled receptors. Journal of Biological Chemistry, 265(16), 9308–9313.CrossRefPubMed
go back to reference Ishii, I., Ye, X., Friedman, B., Kawamura, S., Contos, J. J., Kingsbury, M. A., et al. (2002). Marked perinatal lethality and cellular signaling deficits in mice null for the two sphingosine 1-phosphate (S1P) receptors, S1P(2)/LP(B2)/EDG-5 and S1P(3)/LP(B3)/EDG-3. Journal of Biological Chemistry, 277(28), 25152–25159. https://doi.org/10.1074/jbc.M200137200CrossRefPubMed Ishii, I., Ye, X., Friedman, B., Kawamura, S., Contos, J. J., Kingsbury, M. A., et al. (2002). Marked perinatal lethality and cellular signaling deficits in mice null for the two sphingosine 1-phosphate (S1P) receptors, S1P(2)/LP(B2)/EDG-5 and S1P(3)/LP(B3)/EDG-3. Journal of Biological Chemistry, 277(28), 25152–25159. https://​doi.​org/​10.​1074/​jbc.​M200137200CrossRefPubMed
go back to reference Katsel, P., Li, C., & Haroutunian, V. (2007). Gene expression alterations in the sphingolipid metabolism pathways during progression of dementia and Alzheimer’s disease: A shift toward ceramide accumulation at the earliest recognizable stages of Alzheimer’s disease? Neurochemical Research, 32(4–5), 845–856. https://doi.org/10.1007/s11064-007-9297-xCrossRefPubMed Katsel, P., Li, C., & Haroutunian, V. (2007). Gene expression alterations in the sphingolipid metabolism pathways during progression of dementia and Alzheimer’s disease: A shift toward ceramide accumulation at the earliest recognizable stages of Alzheimer’s disease? Neurochemical Research, 32(4–5), 845–856. https://​doi.​org/​10.​1007/​s11064-007-9297-xCrossRefPubMed
go back to reference Keul, P., Polzin, A., Kaiser, K., Graler, M., Dannenberg, L., Daum, G., et al. (2019). Potent anti-inflammatory properties of HDL in vascular smooth muscle cells mediated by HDL-S1P and their impairment in coronary artery disease due to lower HDL-S1P: A new aspect of HDL dysfunction and its therapy. The FASEB Journal, 33(1), 1482–1495. https://doi.org/10.1096/fj.201801245RCrossRefPubMed Keul, P., Polzin, A., Kaiser, K., Graler, M., Dannenberg, L., Daum, G., et al. (2019). Potent anti-inflammatory properties of HDL in vascular smooth muscle cells mediated by HDL-S1P and their impairment in coronary artery disease due to lower HDL-S1P: A new aspect of HDL dysfunction and its therapy. The FASEB Journal, 33(1), 1482–1495. https://​doi.​org/​10.​1096/​fj.​201801245RCrossRefPubMed
go back to reference Liu, Y., Wada, R., Yamashita, T., Mi, Y., Deng, C. X., Hobson, J. P., et al. (2000). Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. Journal of Clinical Investigation, 106(8), 951–961.CrossRefPubMedPubMedCentral Liu, Y., Wada, R., Yamashita, T., Mi, Y., Deng, C. X., Hobson, J. P., et al. (2000). Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. Journal of Clinical Investigation, 106(8), 951–961.CrossRefPubMedPubMedCentral
go back to reference MacLennan, A. J., Carney, P. R., Zhu, W. J., Chaves, A. H., Garcia, J., Grimes, J. R., et al. (2001). An essential role for the H218/AGR16/Edg-5/LP(B2) sphingosine 1-phosphate receptor in neuronal excitability. European Journal of Neuroscience, 14(2), 203–209.CrossRefPubMed MacLennan, A. J., Carney, P. R., Zhu, W. J., Chaves, A. H., Garcia, J., Grimes, J. R., et al. (2001). An essential role for the H218/AGR16/Edg-5/LP(B2) sphingosine 1-phosphate receptor in neuronal excitability. European Journal of Neuroscience, 14(2), 203–209.CrossRefPubMed
go back to reference Murata, N., Sato, K., Kon, J., Tomura, H., Yanagita, M., Kuwabara, A., et al. (2000). Interaction of sphingosine 1-phosphate with plasma components, including lipoproteins, regulates the lipid receptor-mediated actions. The Biochemical Journal, 352(Pt 3), 809–815.CrossRefPubMedPubMedCentral Murata, N., Sato, K., Kon, J., Tomura, H., Yanagita, M., Kuwabara, A., et al. (2000). Interaction of sphingosine 1-phosphate with plasma components, including lipoproteins, regulates the lipid receptor-mediated actions. The Biochemical Journal, 352(Pt 3), 809–815.CrossRefPubMedPubMedCentral
go back to reference Ohmori, T., Yatomi, Y., Osada, M., Kazama, F., Takafuta, T., Ikeda, H., et al. (2003). Sphingosine 1-phosphate induces contraction of coronary artery smooth muscle cells via S1P2. Cardiovascular Research, 58(1), 170–177.CrossRefPubMed Ohmori, T., Yatomi, Y., Osada, M., Kazama, F., Takafuta, T., Ikeda, H., et al. (2003). Sphingosine 1-phosphate induces contraction of coronary artery smooth muscle cells via S1P2. Cardiovascular Research, 58(1), 170–177.CrossRefPubMed
go back to reference Olivera, A., & Spiegel, S. (1993). Sphingosine-1-phosphate as second messenger in cell proliferation induced by PDGF and FCS mitogens. Nature, 365(6446), 557–560.CrossRefPubMed Olivera, A., & Spiegel, S. (1993). Sphingosine-1-phosphate as second messenger in cell proliferation induced by PDGF and FCS mitogens. Nature, 365(6446), 557–560.CrossRefPubMed
go back to reference Oo, M. L., Thangada, S., Wu, M. T., Liu, C. H., Macdonald, T. L., Lynch, K. R., et al. (2007). Immunosuppressive and anti-angiogenic sphingosine 1-phosphate receptor-1 agonists induce ubiquitinylation and proteasomal degradation of the receptor. Journal of Biological Chemistry, 282(12), 9082–9089. https://doi.org/10.1074/jbc.M610318200CrossRefPubMed Oo, M. L., Thangada, S., Wu, M. T., Liu, C. H., Macdonald, T. L., Lynch, K. R., et al. (2007). Immunosuppressive and anti-angiogenic sphingosine 1-phosphate receptor-1 agonists induce ubiquitinylation and proteasomal degradation of the receptor. Journal of Biological Chemistry, 282(12), 9082–9089. https://​doi.​org/​10.​1074/​jbc.​M610318200CrossRefPubMed
go back to reference Paik, J. H., Chae, S., Lee, M. J., Thangada, S., & Hla, T. (2001). Sphingosine 1-phosphate-induced endothelial cell migration requires the expression of EDG-1 and EDG-3 receptors and Rho-dependent activation of alpha vbeta3- and beta1-containing integrins. Journal of Biological Chemistry, 276(15), 11830–11837. https://doi.org/10.1074/jbc.M009422200CrossRefPubMed Paik, J. H., Chae, S., Lee, M. J., Thangada, S., & Hla, T. (2001). Sphingosine 1-phosphate-induced endothelial cell migration requires the expression of EDG-1 and EDG-3 receptors and Rho-dependent activation of alpha vbeta3- and beta1-containing integrins. Journal of Biological Chemistry, 276(15), 11830–11837. https://​doi.​org/​10.​1074/​jbc.​M009422200CrossRefPubMed
go back to reference Pfeilschifter, W., Czech-Zechmeister, B., Sujak, M., Foerch, C., Wichelhaus, T. A., & Pfeilschifter, J. (2011). Treatment with the immunomodulator FTY720 does not promote spontaneous bacterial infections after experimental stroke in mice. Experimental & Translational Stroke Medicine, 3, 2. https://doi.org/10.1186/2040-7378-3-2CrossRef Pfeilschifter, W., Czech-Zechmeister, B., Sujak, M., Foerch, C., Wichelhaus, T. A., & Pfeilschifter, J. (2011). Treatment with the immunomodulator FTY720 does not promote spontaneous bacterial infections after experimental stroke in mice. Experimental & Translational Stroke Medicine, 3, 2. https://​doi.​org/​10.​1186/​2040-7378-3-2CrossRef
go back to reference Romanic, A. M., White, R. F., Arleth, A. J., Ohlstein, E. H., & Barone, F. C. (1998). Matrix metalloproteinase expression increases after cerebral focal ischemia in rats: Inhibition of matrix metalloproteinase-9 reduces infarct size. Stroke, 29(5), 1020–1030.CrossRefPubMed Romanic, A. M., White, R. F., Arleth, A. J., Ohlstein, E. H., & Barone, F. C. (1998). Matrix metalloproteinase expression increases after cerebral focal ischemia in rats: Inhibition of matrix metalloproteinase-9 reduces infarct size. Stroke, 29(5), 1020–1030.CrossRefPubMed
go back to reference Salomone, S., Potts, E. M., Tyndall, S., Ip, P. C., Chun, J., Brinkmann, V., et al. (2008). Analysis of sphingosine 1-phosphate receptors involved in constriction of isolated cerebral arteries with receptor null mice and pharmacological tools. British Journal of Pharmacology, 153(1), 140–147. https://doi.org/10.1038/sj.bjp.0707581CrossRefPubMed Salomone, S., Potts, E. M., Tyndall, S., Ip, P. C., Chun, J., Brinkmann, V., et al. (2008). Analysis of sphingosine 1-phosphate receptors involved in constriction of isolated cerebral arteries with receptor null mice and pharmacological tools. British Journal of Pharmacology, 153(1), 140–147. https://​doi.​org/​10.​1038/​sj.​bjp.​0707581CrossRefPubMed
go back to reference Salomone, S., Yoshimura, S., Reuter, U., Foley, M., Thomas, S. S., Moskowitz, M. A., et al. (2003). S1P3 receptors mediate the potent constriction of cerebral arteries by sphingosine-1-phosphate. European Journal of Pharmacology, 469(1–3), 125–134.CrossRefPubMed Salomone, S., Yoshimura, S., Reuter, U., Foley, M., Thomas, S. S., Moskowitz, M. A., et al. (2003). S1P3 receptors mediate the potent constriction of cerebral arteries by sphingosine-1-phosphate. European Journal of Pharmacology, 469(1–3), 125–134.CrossRefPubMed
go back to reference Toledo, J. B., Caims, N. J., Da, X., Chen, K., Carter, D., Fleisher, A., et al. (2013). Clinical and multimodal biomarker correlates of ADNI neuropathological findings. Acta Neuropathologica Communications, 1, 65.CrossRefPubMedPubMedCentral Toledo, J. B., Caims, N. J., Da, X., Chen, K., Carter, D., Fleisher, A., et al. (2013). Clinical and multimodal biomarker correlates of ADNI neuropathological findings. Acta Neuropathologica Communications, 1, 65.CrossRefPubMedPubMedCentral
go back to reference Tosaka, M., Okajima, F., Hashiba, Y., Saito, N., Nagano, T., Watanabe, T., et al. (2001). Sphingosine 1-phosphate contracts canine basilar arteries in vitro and in vivo: Possible role in pathogenesis of cerebral vasospasm. Stroke, 32(12), 2913–2919.CrossRefPubMed Tosaka, M., Okajima, F., Hashiba, Y., Saito, N., Nagano, T., Watanabe, T., et al. (2001). Sphingosine 1-phosphate contracts canine basilar arteries in vitro and in vivo: Possible role in pathogenesis of cerebral vasospasm. Stroke, 32(12), 2913–2919.CrossRefPubMed
go back to reference Tran, C., Heng, B., Teo, J. D., Humphrey, S. J., Qi, Y., Couttas, T. A., et al. (2020). Sphingosine 1-phosphate but not Fingolimod protects neurons against excitotoxic cell death by inducing neurotrophic gene expression in astrocytes. Journal of Neurochemistry, 153(2), 173–188. https://doi.org/10.1111/jnc.14917CrossRefPubMed Tran, C., Heng, B., Teo, J. D., Humphrey, S. J., Qi, Y., Couttas, T. A., et al. (2020). Sphingosine 1-phosphate but not Fingolimod protects neurons against excitotoxic cell death by inducing neurotrophic gene expression in astrocytes. Journal of Neurochemistry, 153(2), 173–188. https://​doi.​org/​10.​1111/​jnc.​14917CrossRefPubMed
go back to reference Waeber, C. (2013). Sphingosine 1-Phosphate (S1P) Signaling and the Vasculature. In Lysophospholipid Receptors (pp. 313–347): John Wiley & Sons, Inc. Waeber, C. (2013). Sphingosine 1-Phosphate (S1P) Signaling and the Vasculature. In Lysophospholipid Receptors (pp. 313–347): John Wiley & Sons, Inc.
go back to reference Wilkerson, B. A., Grass, G. D., Wing, S. B., Argraves, W. S., & Argraves, K. M. (2012). Sphingosine 1-phosphate (S1P) carrier-dependent regulation of endothelial barrier: High density lipoprotein (HDL)-S1P prolongs endothelial barrier enhancement as compared with albumin-S1P via effects on levels, trafficking, and signaling of S1P1. Journal of Biological Chemistry, 287(53), 44645–44653. https://doi.org/10.1074/jbc.M112.423426CrossRefPubMedPubMedCentral Wilkerson, B. A., Grass, G. D., Wing, S. B., Argraves, W. S., & Argraves, K. M. (2012). Sphingosine 1-phosphate (S1P) carrier-dependent regulation of endothelial barrier: High density lipoprotein (HDL)-S1P prolongs endothelial barrier enhancement as compared with albumin-S1P via effects on levels, trafficking, and signaling of S1P1. Journal of Biological Chemistry, 287(53), 44645–44653. https://​doi.​org/​10.​1074/​jbc.​M112.​423426CrossRefPubMedPubMedCentral
Metadata
Title
Preclinical and Clinical Evidence for the Involvement of Sphingosine 1-Phosphate Signaling in the Pathophysiology of Vascular Cognitive Impairment
Authors
Xin Ying Chua
Leona T. Y. Ho
Ping Xiang
Wee Siong Chew
Brenda Wan Shing Lam
Christopher P. Chen
Wei-Yi Ong
Mitchell K. P. Lai
Deron R. Herr
Publication date
01-03-2021
Publisher
Springer US
Published in
NeuroMolecular Medicine / Issue 1/2021
Print ISSN: 1535-1084
Electronic ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-020-08632-0

Other articles of this Issue 1/2021

NeuroMolecular Medicine 1/2021 Go to the issue