Skip to main content
Top
Published in: NeuroMolecular Medicine 1/2021

01-03-2021 | S.I : Translational aspects of Lipid Biology in the Brain

Docosahexaenoic Acid (DHA) Supplementation Alters Phospholipid Species and Lipid Peroxidation Products in Adult Mouse Brain, Heart, and Plasma

Authors: Grace Y. Sun, Michael K. Appenteng, Runting Li, Taeseon Woo, Bo Yang, Chao Qin, Meixia Pan, Magdalena Cieślik, Jiankun Cui, Kevin L. Fritsche, Zezong Gu, Matthew Will, David Beversdorf, Agata Adamczyk, Xianlin Han, C. Michael Greenlief

Published in: NeuroMolecular Medicine | Issue 1/2021

Login to get access

Abstract

The abundance of docosahexaenoic acid (DHA) in phospholipids in the brain and retina has generated interest to search for its role in mediating neurological functions. Besides the source of many oxylipins with pro-resolving properties, DHA also undergoes peroxidation, producing 4-hydroxyhexenal (4-HHE), although its function remains elusive. Despite wide dietary consumption, whether supplementation of DHA may alter the peroxidation products and their relationship to phospholipid species in brain and other body organs have not been explored sufficiently. In this study, adult mice were administered a control or DHA-enriched diet for 3 weeks, and phospholipid species and peroxidation products were examined in brain, heart, and plasma. Results demonstrated that this dietary regimen increased (n-3) and decreased (n-6) species to different extent in all major phospholipid classes (PC, dPE, PE-pl, PI and PS) examined. Besides changes in phospholipid species, DHA-enriched diet also showed substantial increases in 4-HHE in brain, heart, and plasma. Among different brain regions, the hippocampus responded to the DHA-enriched diet showing significant increase in 4-HHE. Considering the pro- and anti-inflammatory pathways mediated by the (n-6) and (n-3) polyunsaturated fatty acids, unveiling the ability for DHA-enriched diet to alter phospholipid species and lipid peroxidation products in the brain and in different body organs may be an important step forward towards understanding the mechanism(s) for this (n-3) fatty acid on health and diseases.
Appendix
Available only for authorised users
Literature
go back to reference Geng, X., Yang, B., Li, R., Teng, T., Ladu, M. J., Sun, G. Y., et al. (2020). Effects of docosahexaenoic acid and its peroxidation product on amyloid-beta peptide-stimulated microglia. Molecular Neurobiology, 57(2), 1085–1098.CrossRef Geng, X., Yang, B., Li, R., Teng, T., Ladu, M. J., Sun, G. Y., et al. (2020). Effects of docosahexaenoic acid and its peroxidation product on amyloid-beta peptide-stimulated microglia. Molecular Neurobiology, 57(2), 1085–1098.CrossRef
go back to reference Granger, M. W., Liu, H., Fowler, C. F., Blanchard, A. P., Taylor, M., Sherman, S. P. M., et al. (2019). Distinct disruptions in Land's cycle remodeling of glycerophosphocholines in murine cortex mark symptomatic onset and progression in two Alzheimer's Disease mouse models. Journal of Neurochemistry, 149, 499–517. https://doi.org/10.1111/jnc.14560.CrossRefPubMed Granger, M. W., Liu, H., Fowler, C. F., Blanchard, A. P., Taylor, M., Sherman, S. P. M., et al. (2019). Distinct disruptions in Land's cycle remodeling of glycerophosphocholines in murine cortex mark symptomatic onset and progression in two Alzheimer's Disease mouse models. Journal of Neurochemistry, 149, 499–517. https://​doi.​org/​10.​1111/​jnc.​14560.CrossRefPubMed
go back to reference Han, X., Yang, K., & Gross, R. W. (2008). Microfluidics-based electrospray ionization enhances the intrasource separation of lipid classes and extends identification of individual molecular species through multi-dimensional mass spectrometry: development of an automated high-throughput platform for shotgun lipidomics. Rapid Communications in Mass Spectrometry, 22(13), 2115–2124. https://doi.org/10.1002/rcm.3595.CrossRefPubMed Han, X., Yang, K., & Gross, R. W. (2008). Microfluidics-based electrospray ionization enhances the intrasource separation of lipid classes and extends identification of individual molecular species through multi-dimensional mass spectrometry: development of an automated high-throughput platform for shotgun lipidomics. Rapid Communications in Mass Spectrometry, 22(13), 2115–2124. https://​doi.​org/​10.​1002/​rcm.​3595.CrossRefPubMed
go back to reference Ishikado, A., Nishio, Y., Morino, K., Ugi, S., Kondo, H., Makino, T., et al. (2010). Low concentration of 4-hydroxy hexenal increases heme oxygenase-1 expression through activation of Nrf2 and antioxidative activity in vascular endothelial cells. Biochemical and Biophysical Research Communications, 402(1), 99–104.CrossRef Ishikado, A., Nishio, Y., Morino, K., Ugi, S., Kondo, H., Makino, T., et al. (2010). Low concentration of 4-hydroxy hexenal increases heme oxygenase-1 expression through activation of Nrf2 and antioxidative activity in vascular endothelial cells. Biochemical and Biophysical Research Communications, 402(1), 99–104.CrossRef
go back to reference Lin, T. A., Zhang, J. P., & Sun, G. Y. (1993). Metabolism of inositol 1,4,5-trisphosphate in mouse brain due to decapitation ischemic insult: Effects of acute lithium administration and temporal relationship to diacylglycerols, free fatty acids and energy metabolites. Brain Research, 606(2), 200–206. https://doi.org/10.1016/0006-8993(93)90985-v.CrossRefPubMed Lin, T. A., Zhang, J. P., & Sun, G. Y. (1993). Metabolism of inositol 1,4,5-trisphosphate in mouse brain due to decapitation ischemic insult: Effects of acute lithium administration and temporal relationship to diacylglycerols, free fatty acids and energy metabolites. Brain Research, 606(2), 200–206. https://​doi.​org/​10.​1016/​0006-8993(93)90985-v.CrossRefPubMed
go back to reference Mita, T., Mayanagi, T., Ichijo, H., Fukumoto, K., Otsuka, K., Sakai, A., et al. (2016). Docosahexaenoic acid promotes axon outgrowth by translational regulation of tau and collapsin response mediator protein 2 expression. Journal of Biological Chemistry, 291(10), 4955–4965. https://doi.org/10.1074/jbc.M115.693499.CrossRef Mita, T., Mayanagi, T., Ichijo, H., Fukumoto, K., Otsuka, K., Sakai, A., et al. (2016). Docosahexaenoic acid promotes axon outgrowth by translational regulation of tau and collapsin response mediator protein 2 expression. Journal of Biological Chemistry, 291(10), 4955–4965. https://​doi.​org/​10.​1074/​jbc.​M115.​693499.CrossRef
go back to reference Oppedisano, F., Macrì, R., Gliozzi, M., Musolino, V., Carresi, C., Maiuolo, J., et al. (2020). The anti-inflammatory and antioxidant properties of n-3 PUFAs: Their role in cardiovascular protection. Biomedicines, 8(9), 306.CrossRef Oppedisano, F., Macrì, R., Gliozzi, M., Musolino, V., Carresi, C., Maiuolo, J., et al. (2020). The anti-inflammatory and antioxidant properties of n-3 PUFAs: Their role in cardiovascular protection. Biomedicines, 8(9), 306.CrossRef
go back to reference Rosenberger, T. A., Oki, J., Purdon, A. D., Rapoport, S. I., & Murphy, E. J. (2002). Rapid synthesis and turnover of brain microsomal ether phospholipids in the adult rat. Journal of Lipid Research, 43(1), 59–68.CrossRef Rosenberger, T. A., Oki, J., Purdon, A. D., Rapoport, S. I., & Murphy, E. J. (2002). Rapid synthesis and turnover of brain microsomal ether phospholipids in the adult rat. Journal of Lipid Research, 43(1), 59–68.CrossRef
go back to reference Sullivan, E. M., Pennington, E. R., Sparagna, G. C., Torres, M. J., Neufer, P. D., Harris, M., et al. (2018). Docosahexaenoic acid lowers cardiac mitochondrial enzyme activity by replacing linoleic acid in the phospholipidome. Journal of Biological Chemistry, 293(2), 466–483. https://doi.org/10.1074/jbc.M117.812834.CrossRef Sullivan, E. M., Pennington, E. R., Sparagna, G. C., Torres, M. J., Neufer, P. D., Harris, M., et al. (2018). Docosahexaenoic acid lowers cardiac mitochondrial enzyme activity by replacing linoleic acid in the phospholipidome. Journal of Biological Chemistry, 293(2), 466–483. https://​doi.​org/​10.​1074/​jbc.​M117.​812834.CrossRef
go back to reference Sun, G. Y., Huang, H. M., Kelleher, J. A., Stubbs, E. B., Jr., & Sun, A. Y. (1988). Marker enzymes, phospholipids and acyl group composition of a somal plasma membrane fraction isolated from rat cerebral cortex: A comparison with microsomes and synaptic plasma membranes. Neurochemistry International, 12(1), 69–77. https://doi.org/10.1016/0197-0186(88)90150-7.CrossRefPubMed Sun, G. Y., Huang, H. M., Kelleher, J. A., Stubbs, E. B., Jr., & Sun, A. Y. (1988). Marker enzymes, phospholipids and acyl group composition of a somal plasma membrane fraction isolated from rat cerebral cortex: A comparison with microsomes and synaptic plasma membranes. Neurochemistry International, 12(1), 69–77. https://​doi.​org/​10.​1016/​0197-0186(88)90150-7.CrossRefPubMed
go back to reference Sun, G. Y., Li, R., Yang, B., Fritsche, K. L., Beversdorf, D. Q., Lubahn, D. B., et al. (2019). Quercetin potentiates docosahexaenoic acid to suppress lipopolysaccharide-induced oxidative/inflammatory responses, alter lipid peroxidation products, and enhance the adaptive stress pathways in BV-2 microglial cells. International Journal of Molecular Sciences, 20, 932. https://doi.org/10.3390/ijms20040932.CrossRefPubMedCentral Sun, G. Y., Li, R., Yang, B., Fritsche, K. L., Beversdorf, D. Q., Lubahn, D. B., et al. (2019). Quercetin potentiates docosahexaenoic acid to suppress lipopolysaccharide-induced oxidative/inflammatory responses, alter lipid peroxidation products, and enhance the adaptive stress pathways in BV-2 microglial cells. International Journal of Molecular Sciences, 20, 932. https://​doi.​org/​10.​3390/​ijms20040932.CrossRefPubMedCentral
Metadata
Title
Docosahexaenoic Acid (DHA) Supplementation Alters Phospholipid Species and Lipid Peroxidation Products in Adult Mouse Brain, Heart, and Plasma
Authors
Grace Y. Sun
Michael K. Appenteng
Runting Li
Taeseon Woo
Bo Yang
Chao Qin
Meixia Pan
Magdalena Cieślik
Jiankun Cui
Kevin L. Fritsche
Zezong Gu
Matthew Will
David Beversdorf
Agata Adamczyk
Xianlin Han
C. Michael Greenlief
Publication date
01-03-2021
Publisher
Springer US
Published in
NeuroMolecular Medicine / Issue 1/2021
Print ISSN: 1535-1084
Electronic ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-020-08616-0

Other articles of this Issue 1/2021

NeuroMolecular Medicine 1/2021 Go to the issue