Skip to main content
Top
Published in: NeuroMolecular Medicine 1/2021

01-03-2021 | Huntington's Disease | Review Paper

Bile Acids: A Communication Channel in the Gut-Brain Axis

Authors: Vera F. Monteiro-Cardoso, Maria Corlianò, Roshni R. Singaraja

Published in: NeuroMolecular Medicine | Issue 1/2021

Login to get access

Abstract

Bile acids are signalling hormones involved in the regulation of several metabolic pathways. The ability of bile acids to bind and signal through their receptors is modulated by the gut microbiome, since the microbiome contributes to the regulation and synthesis of bile acids as well to their physiochemical properties. From the gut, bacteria have been shown to send signals to the central nervous system via their metabolites, thus affecting the behaviour and brain function of the host organism. In the last years it has become increasingly evident that bile acids affect brain function, during normal physiological and pathological conditions. Although bile acids may be synthesized locally in the brain, the majority of brain bile acids are taken up from the systemic circulation. Since the composition of the brain bile acid pool may be regulated by the action of intestinal bacteria, it is possible that bile acids function as a communication bridge between the gut microbiome and the brain. However, little is known about the molecular mechanisms and the physiological roles of bile acids in the central nervous system. The possibility that bile acids may be a direct link between the intestinal microbiome and the brain is also an understudied subject. Here we review the influence of gut bacteria on the bile acid pool composition and properties, as well as striking evidence showing the role of bile acids as neuroactive molecules.
Literature
go back to reference Adada, M., Canals, D., Hannun, Y. A., & Obeid, L. M. (2013). Sphingosine-1-phosphate receptor 2. FEBS Journal, 280(24), 6354–6366.CrossRefPubMed Adada, M., Canals, D., Hannun, Y. A., & Obeid, L. M. (2013). Sphingosine-1-phosphate receptor 2. FEBS Journal, 280(24), 6354–6366.CrossRefPubMed
go back to reference Akahoshi, N., Ishizaki, Y., Yasuda, H., Murashima, Y. L., Shinba, T., Goto, K., et al. (2011). Frequent spontaneous seizures followed by spatial working memory/anxiety deficits in mice lacking Sphingosine 1-phosphate receptor 2. Epilepsy & Behavior, 22(4), 659–665.CrossRef Akahoshi, N., Ishizaki, Y., Yasuda, H., Murashima, Y. L., Shinba, T., Goto, K., et al. (2011). Frequent spontaneous seizures followed by spatial working memory/anxiety deficits in mice lacking Sphingosine 1-phosphate receptor 2. Epilepsy & Behavior, 22(4), 659–665.CrossRef
go back to reference Amador, M. M., Masingue, M., Debs, R., Lamari, F., Perlbarg, V., Roze, E., et al. (2018). Treatment with chenodeoxycholic acid in Cerebrotendinous Xanthomatosis: Clinical, neurophysiological, and quantitative brain structural outcomes. Journal of Inherited Metabolic Disease, 41(5), 799–807.PubMedCrossRef Amador, M. M., Masingue, M., Debs, R., Lamari, F., Perlbarg, V., Roze, E., et al. (2018). Treatment with chenodeoxycholic acid in Cerebrotendinous Xanthomatosis: Clinical, neurophysiological, and quantitative brain structural outcomes. Journal of Inherited Metabolic Disease, 41(5), 799–807.PubMedCrossRef
go back to reference Angelin, B., Björkhem, I., Einarsson, K., & Ewerth, S. (1982). Hepatic uptake of bile acids in man. Fasting and postprandial concentrations of individual bile acids in portal venous and systemic blood serum. The Journal of Clinical Investigation, 70(4), 724–731.PubMedPubMedCentralCrossRef Angelin, B., Björkhem, I., Einarsson, K., & Ewerth, S. (1982). Hepatic uptake of bile acids in man. Fasting and postprandial concentrations of individual bile acids in portal venous and systemic blood serum. The Journal of Clinical Investigation, 70(4), 724–731.PubMedPubMedCentralCrossRef
go back to reference Bates, G. P., Dorsey, R., Gusella, J. F., Hayden, M. R., Kay, C., Leavitt, B. R., et al. (2015). Huntington disease. Nature Reviews Disease Primers, 1(1), 15005.PubMedCrossRef Bates, G. P., Dorsey, R., Gusella, J. F., Hayden, M. R., Kay, C., Leavitt, B. R., et al. (2015). Huntington disease. Nature Reviews Disease Primers, 1(1), 15005.PubMedCrossRef
go back to reference Bazzari, F. H., Abdallah, D. M., & El-Abhar, H. S. (2019). Chenodeoxycholic acid ameliorates AlCl3-induced Alzheimer’s disease neurotoxicity and cognitive deterioration via enhanced insulin signaling in rats. Molecules, 24(10), 192.CrossRef Bazzari, F. H., Abdallah, D. M., & El-Abhar, H. S. (2019). Chenodeoxycholic acid ameliorates AlCl3-induced Alzheimer’s disease neurotoxicity and cognitive deterioration via enhanced insulin signaling in rats. Molecules, 24(10), 192.CrossRef
go back to reference Begley, M., Hill, C., & Gahan, C. G. M. (2006). Bile Salt Hydrolase activity in probiotics. Applied and Environmental Microbiology, 72(3), 1729–1738.PubMedPubMedCentralCrossRef Begley, M., Hill, C., & Gahan, C. G. M. (2006). Bile Salt Hydrolase activity in probiotics. Applied and Environmental Microbiology, 72(3), 1729–1738.PubMedPubMedCentralCrossRef
go back to reference Bengmark, S. (2013). Gut microbiota, immune development and function. Pharmacological Research, 69(1), 87–113.PubMedCrossRef Bengmark, S. (2013). Gut microbiota, immune development and function. Pharmacological Research, 69(1), 87–113.PubMedCrossRef
go back to reference Bian, K. Y., Jin, H. F., Sun, W., & Sun, Y. J. (2019). DCA can improve the ACI-induced neurological impairment through negative regulation of Nrf2 signaling pathway. European Review for Medical and Pharmacological Sciences, 23(1), 343–351.PubMed Bian, K. Y., Jin, H. F., Sun, W., & Sun, Y. J. (2019). DCA can improve the ACI-induced neurological impairment through negative regulation of Nrf2 signaling pathway. European Review for Medical and Pharmacological Sciences, 23(1), 343–351.PubMed
go back to reference Boussicault, L., Alves, S., Lamazière, A., Planques, A., Heck, N., Moumné, L., et al. (2016). CYP46A1, the rate-limiting enzyme for cholesterol degradation, is neuroprotective in Huntington’s disease. Brain, 139(Pt 3), 953–970.PubMedPubMedCentralCrossRef Boussicault, L., Alves, S., Lamazière, A., Planques, A., Heck, N., Moumné, L., et al. (2016). CYP46A1, the rate-limiting enzyme for cholesterol degradation, is neuroprotective in Huntington’s disease. Brain, 139(Pt 3), 953–970.PubMedPubMedCentralCrossRef
go back to reference Bravo, J. A., Forsythe, P., Chew, M. V., Escaravage, E., Savignac, H. M., Dinan, T. G., et al. (2011). Ingestion of lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proceedings of the National Academy of Sciences, 108(38), 16050–16055.CrossRef Bravo, J. A., Forsythe, P., Chew, M. V., Escaravage, E., Savignac, H. M., Dinan, T. G., et al. (2011). Ingestion of lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proceedings of the National Academy of Sciences, 108(38), 16050–16055.CrossRef
go back to reference Cali, J. J., Hsieh, C. L., Francke, U., & Russell, D. W. (1991). Mutations in the bile acid biosynthetic enzyme sterol 27-hydroxylase underlie Cerebrotendinous Xanthomatosis. Journal of Biological Chemistry, 266(12), 7778–7783. Cali, J. J., Hsieh, C. L., Francke, U., & Russell, D. W. (1991). Mutations in the bile acid biosynthetic enzyme sterol 27-hydroxylase underlie Cerebrotendinous Xanthomatosis. Journal of Biological Chemistry, 266(12), 7778–7783.
go back to reference Carvajal, F. J., Mattison, H. A., & Cerpa, W. (2016). Role of NMDA receptor-mediated glutamatergic signaling in chronic and acute neuropathologies. Neural Plasticity, 2016, 2701526.PubMedPubMedCentralCrossRef Carvajal, F. J., Mattison, H. A., & Cerpa, W. (2016). Role of NMDA receptor-mediated glutamatergic signaling in chronic and acute neuropathologies. Neural Plasticity, 2016, 2701526.PubMedPubMedCentralCrossRef
go back to reference Castro-Caldas, M., Carvalho, A. N., Rodrigues, E., Henderson, C. J., Wolf, C. R., Rodrigues, C. M. P., et al. (2012). Tauroursodeoxycholic acid prevents MPTP-induced dopaminergic cell death in a mouse model of Parkinson’s disease. Molecular Neurobiology, 46(2), 475–486.PubMedCrossRef Castro-Caldas, M., Carvalho, A. N., Rodrigues, E., Henderson, C. J., Wolf, C. R., Rodrigues, C. M. P., et al. (2012). Tauroursodeoxycholic acid prevents MPTP-induced dopaminergic cell death in a mouse model of Parkinson’s disease. Molecular Neurobiology, 46(2), 475–486.PubMedCrossRef
go back to reference Chandler, C. E., Ernst, R. K. (2017). Bacterial lipids: Powerful modifiers of the innate immune response. F1000Research 6. Chandler, C. E., Ernst, R. K. (2017). Bacterial lipids: Powerful modifiers of the innate immune response. F1000Research 6.
go back to reference Chen, Z., Jalabi, W., Shpargel, K. B., Farabaugh, K. T., Dutta, R., Yin, X., et al. (2012). Lipopolysaccharide-induced microglial activation and neuroprotection against experimental brain injury is independent of hematogenous TLR4. The Journal of Neuroscience, 32(34), 11706–11715.PubMedPubMedCentralCrossRef Chen, Z., Jalabi, W., Shpargel, K. B., Farabaugh, K. T., Dutta, R., Yin, X., et al. (2012). Lipopolysaccharide-induced microglial activation and neuroprotection against experimental brain injury is independent of hematogenous TLR4. The Journal of Neuroscience, 32(34), 11706–11715.PubMedPubMedCentralCrossRef
go back to reference Choudhuri, S., Cherrington, N. J., Li, N., & Klaassen, C. D. (2003). Constitutive expression of various xenobiotic and endobiotic transporter mRNAs in the choroid plexus of rats. Drug Metabolism and Disposition, 31(11), 13371345.CrossRef Choudhuri, S., Cherrington, N. J., Li, N., & Klaassen, C. D. (2003). Constitutive expression of various xenobiotic and endobiotic transporter mRNAs in the choroid plexus of rats. Drug Metabolism and Disposition, 31(11), 13371345.CrossRef
go back to reference Collins, S. M., Surette, M., & Bercik, P. (2012). The interplay between the intestinal microbiota and the brain. Nature Reviews. Microbiology, 10(11), 735–742.PubMedCrossRef Collins, S. M., Surette, M., & Bercik, P. (2012). The interplay between the intestinal microbiota and the brain. Nature Reviews. Microbiology, 10(11), 735–742.PubMedCrossRef
go back to reference Dantzer, R., O’Connor, J. C., Freund, G. G., Johnson, R. W., & Kelley, K. W. (2008). From inflammation to sickness and depression: When the immune system subjugates the brain. Nature Reviews. Neuroscience, 9(1), 46–56.PubMedPubMedCentralCrossRef Dantzer, R., O’Connor, J. C., Freund, G. G., Johnson, R. W., & Kelley, K. W. (2008). From inflammation to sickness and depression: When the immune system subjugates the brain. Nature Reviews. Neuroscience, 9(1), 46–56.PubMedPubMedCentralCrossRef
go back to reference Dawson, P. A. (2010). Bile secretion and the enterohepatic circulation. Gastrointetinal and Liver Disease, 1, 1075–1088. Dawson, P. A. (2010). Bile secretion and the enterohepatic circulation. Gastrointetinal and Liver Disease, 1, 1075–1088.
go back to reference De Giorgio, F., Maduro, C., Fisher, E.M.C., Acevedo-Arozena, A. (2019). Transgenic and physiological mouse models give insights into different aspects of Amyotrophic Lateral Sclerosis. Disease Models and Mechanisms 12(1):dmm037424. De Giorgio, F., Maduro, C., Fisher, E.M.C., Acevedo-Arozena, A. (2019). Transgenic and physiological mouse models give insights into different aspects of Amyotrophic Lateral Sclerosis. Disease Models and Mechanisms 12(1):dmm037424.
go back to reference Dinan, T. G., Stilling, R. M., Stanton, C., & Cryan, J. F. (2015). Collective unconscious: How gut microbes shape human behavior. Journal of Psychiatric Research, 63, 1–9.PubMedCrossRef Dinan, T. G., Stilling, R. M., Stanton, C., & Cryan, J. F. (2015). Collective unconscious: How gut microbes shape human behavior. Journal of Psychiatric Research, 63, 1–9.PubMedCrossRef
go back to reference Ding, L., Yang, L., Wang, Z., & Huang, W. (2015). Bile acid nuclear receptor FXR and digestive system diseases. Acta Pharmaceutica Sinica B, 5(2), 135–144.PubMedPubMedCentralCrossRef Ding, L., Yang, L., Wang, Z., & Huang, W. (2015). Bile acid nuclear receptor FXR and digestive system diseases. Acta Pharmaceutica Sinica B, 5(2), 135–144.PubMedPubMedCentralCrossRef
go back to reference Dionísio, P. A., Amaral, J. D., Ribeiro, M. F., Lo, A. C., D’Hooge, R., & Rodrigues, C. M. P. (2015). Amyloid-β pathology is attenuated by tauroursodeoxycholic acid treatment in APP/PS1 mice after disease onset. Neurobiology of Aging, 36(1), 228–240.PubMedCrossRef Dionísio, P. A., Amaral, J. D., Ribeiro, M. F., Lo, A. C., D’Hooge, R., & Rodrigues, C. M. P. (2015). Amyloid-β pathology is attenuated by tauroursodeoxycholic acid treatment in APP/PS1 mice after disease onset. Neurobiology of Aging, 36(1), 228–240.PubMedCrossRef
go back to reference Donnan, G. A., Fisher, M., Macleod, M., & Davis, S. M. (2008). Stroke. Lancet, 371(9624), 1612–1623.PubMedCrossRef Donnan, G. A., Fisher, M., Macleod, M., & Davis, S. M. (2008). Stroke. Lancet, 371(9624), 1612–1623.PubMedCrossRef
go back to reference El Aidy, S., Dinan, T. G., & Cryan, J. F. (2014). Immune modulation of the brain-gut-microbe axis. Frontiers in Microbiology, 5, 146.PubMedPubMedCentral El Aidy, S., Dinan, T. G., & Cryan, J. F. (2014). Immune modulation of the brain-gut-microbe axis. Frontiers in Microbiology, 5, 146.PubMedPubMedCentral
go back to reference Elia, A. E., Lalli, S., Monsurrò, M. R., Sagnelli, A., Taiello, A. C., Reggiori, B., et al. (2016). Tauroursodeoxycholic acid in the treatment of patients with amyotrophic lateral sclerosis. European Journal of Neurology, 23(1), 45–52.PubMedCrossRef Elia, A. E., Lalli, S., Monsurrò, M. R., Sagnelli, A., Taiello, A. C., Reggiori, B., et al. (2016). Tauroursodeoxycholic acid in the treatment of patients with amyotrophic lateral sclerosis. European Journal of Neurology, 23(1), 45–52.PubMedCrossRef
go back to reference Erny, D., de Angelis, A. L. H., Jaitin, D., Wieghofer, P., Staszewski, O., & David, E. (2015). Host microbiota constantly control maturation and function of microglia in the CNS. Nature Neuroscience, 18(7), 965–977.PubMedPubMedCentralCrossRef Erny, D., de Angelis, A. L. H., Jaitin, D., Wieghofer, P., Staszewski, O., & David, E. (2015). Host microbiota constantly control maturation and function of microglia in the CNS. Nature Neuroscience, 18(7), 965–977.PubMedPubMedCentralCrossRef
go back to reference Eyles, D. W., Smith, S., Kinobe, R., Hewison, M., & McGrath, J. J. (2005). Distribution of the vitamin D receptor and 1 alpha-hydroxylase in human brain. Journal of Chemical Neuroanatomy, 29(1), 21–30.PubMedCrossRef Eyles, D. W., Smith, S., Kinobe, R., Hewison, M., & McGrath, J. J. (2005). Distribution of the vitamin D receptor and 1 alpha-hydroxylase in human brain. Journal of Chemical Neuroanatomy, 29(1), 21–30.PubMedCrossRef
go back to reference Fiorucci, S., Mencarelli, A., Palladino, G., & Cipriani, S. (2009). Bile-acid-activated receptors: Targeting TGR5 and farnesoid-X-receptor in lipid and glucose disorders. Trends in Pharmacological Sciences, 30(11), 570–580.PubMedCrossRef Fiorucci, S., Mencarelli, A., Palladino, G., & Cipriani, S. (2009). Bile-acid-activated receptors: Targeting TGR5 and farnesoid-X-receptor in lipid and glucose disorders. Trends in Pharmacological Sciences, 30(11), 570–580.PubMedCrossRef
go back to reference Fuchikami, M., Yamamoto, S., Morinobu, S., Okada, S., Yamawaki, Y., & Yamawaki, S. (2016). The potential use of histone deacetylase inhibitors in the treatment of depression. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 64, 320–324.CrossRef Fuchikami, M., Yamamoto, S., Morinobu, S., Okada, S., Yamawaki, Y., & Yamawaki, S. (2016). The potential use of histone deacetylase inhibitors in the treatment of depression. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 64, 320–324.CrossRef
go back to reference Fülling, C., Dinan, T. G., & Cryan, J. F. (2019). Gut microbe to brain signaling: What happens in vagus…. Neuron, 101(6), 998–1002.PubMedCrossRef Fülling, C., Dinan, T. G., & Cryan, J. F. (2019). Gut microbe to brain signaling: What happens in vagus…. Neuron, 101(6), 998–1002.PubMedCrossRef
go back to reference Fung, T. C., Vuong, H. E., Luna, C. D. G., Pronovost, G. N., Aleksandrova, A. A., Riley, N. G., et al. (2019). Intestinal serotonin and fluoxitine exposure modulate bacterial colonization in the gut. Nature Microbiology, 4, 2064–2073.PubMedPubMedCentralCrossRef Fung, T. C., Vuong, H. E., Luna, C. D. G., Pronovost, G. N., Aleksandrova, A. A., Riley, N. G., et al. (2019). Intestinal serotonin and fluoxitine exposure modulate bacterial colonization in the gut. Nature Microbiology, 4, 2064–2073.PubMedPubMedCentralCrossRef
go back to reference Graham, S. F., Rey, N. L., Ugur, Z., Yilmaz, A., Sherman, E., Maddens, M., et al. (2018). Metabolomic profiling of bile acids in an experimental model of prodromal Parkinson’s disease. Metabolites, 8(4), 71.PubMedCentralCrossRef Graham, S. F., Rey, N. L., Ugur, Z., Yilmaz, A., Sherman, E., Maddens, M., et al. (2018). Metabolomic profiling of bile acids in an experimental model of prodromal Parkinson’s disease. Metabolites, 8(4), 71.PubMedCentralCrossRef
go back to reference Haberland, M., Montgomery, R. L., & Olson, E. N. (2009). The many roles of histone deacetylases in development and physiology: Implications for disease and therapy. Nature Reviews. Genetics, 10(1), 32–42.PubMedPubMedCentralCrossRef Haberland, M., Montgomery, R. L., & Olson, E. N. (2009). The many roles of histone deacetylases in development and physiology: Implications for disease and therapy. Nature Reviews. Genetics, 10(1), 32–42.PubMedPubMedCentralCrossRef
go back to reference Han, S., Li, T., Ellis, E., Strom, S., & Chiang, J. Y. L. (2010). A novel bile acid-activated Vitamin D receptor signaling in human hepatocytes. Molecular Endocrinology, 24(6), 1151–1164.PubMedPubMedCentralCrossRef Han, S., Li, T., Ellis, E., Strom, S., & Chiang, J. Y. L. (2010). A novel bile acid-activated Vitamin D receptor signaling in human hepatocytes. Molecular Endocrinology, 24(6), 1151–1164.PubMedPubMedCentralCrossRef
go back to reference Harrison, F., Roberts, A. E. L., Gabrilska, R., Rumbaugh, K. P., Lee, C., & Diggle, S. P. (2015). A 1,000-year-old antimicrobial remedy with antistaphylococcal activity. MBio, 6(4), e01129.PubMedPubMedCentralCrossRef Harrison, F., Roberts, A. E. L., Gabrilska, R., Rumbaugh, K. P., Lee, C., & Diggle, S. P. (2015). A 1,000-year-old antimicrobial remedy with antistaphylococcal activity. MBio, 6(4), e01129.PubMedPubMedCentralCrossRef
go back to reference Harrison, I. F., & Dexter, D. T. (2013). Epigenetic targeting of histone deacetylase: Therapeutic potential in Parkinson’s Disease? Pharmacology & Therapeutics, 140(1), 34–52.CrossRef Harrison, I. F., & Dexter, D. T. (2013). Epigenetic targeting of histone deacetylase: Therapeutic potential in Parkinson’s Disease? Pharmacology & Therapeutics, 140(1), 34–52.CrossRef
go back to reference Hartmann, P., Hochrath, K., Horvath, A., Chen, P., Seebauer, C. T., & Llorente, C. (2018). Modulation of the intestinal bile acid/farnesoid X receptor/fibroblast growth factor 15 axis improves alcoholic liver disease in mice. Hepatology, 67(6), 2150–2166.PubMedCrossRef Hartmann, P., Hochrath, K., Horvath, A., Chen, P., Seebauer, C. T., & Llorente, C. (2018). Modulation of the intestinal bile acid/farnesoid X receptor/fibroblast growth factor 15 axis improves alcoholic liver disease in mice. Hepatology, 67(6), 2150–2166.PubMedCrossRef
go back to reference Hasuike, Y., Endo, T., Koroyasu, M., Matsui, M., Mori, C., Yamadera, M., et al. (2020). Bile acid abnormality induced by intestinal dysbiosis might explain lipid metabolism in Parkinson’s disease. Medical Hypotheses, 134, 109436.PubMedCrossRef Hasuike, Y., Endo, T., Koroyasu, M., Matsui, M., Mori, C., Yamadera, M., et al. (2020). Bile acid abnormality induced by intestinal dysbiosis might explain lipid metabolism in Parkinson’s disease. Medical Hypotheses, 134, 109436.PubMedCrossRef
go back to reference Hata, T., Asano, Y., Yoshihara, K., Kimura-Todani, T., Miyata, N., Zhang, X.-T., et al. (2017). Regulation of gut lumial serotonin by commensal microbiota in mice. PLoS ONE, 12(7), e0180745.PubMedPubMedCentralCrossRef Hata, T., Asano, Y., Yoshihara, K., Kimura-Todani, T., Miyata, N., Zhang, X.-T., et al. (2017). Regulation of gut lumial serotonin by commensal microbiota in mice. PLoS ONE, 12(7), e0180745.PubMedPubMedCentralCrossRef
go back to reference Heubi, J. E., Setchell, K. D. R., & Bove, K. E. (2007). Inborn errors of bile acid metabolism. Seminars in Liver Disease, 27(3), 282–294.PubMedCrossRef Heubi, J. E., Setchell, K. D. R., & Bove, K. E. (2007). Inborn errors of bile acid metabolism. Seminars in Liver Disease, 27(3), 282–294.PubMedCrossRef
go back to reference Higashi, T., Watanabe, S., Tomaru, K., Yamazaki, W., Yoshizawa, K., Ogawa, S., et al. (2017). Unconjugated bile acids in rat brain: Analytical method based on LC/ESI-MS/MS with chemical derivatization and estimation of their origin by comparison to serum levels. Steroids, 125, 107–113.PubMedCrossRef Higashi, T., Watanabe, S., Tomaru, K., Yamazaki, W., Yoshizawa, K., Ogawa, S., et al. (2017). Unconjugated bile acids in rat brain: Analytical method based on LC/ESI-MS/MS with chemical derivatization and estimation of their origin by comparison to serum levels. Steroids, 125, 107–113.PubMedCrossRef
go back to reference Hilton, D., Stephens, M., Kirk, L., Edwards, P., Potter, R., Zajicek, J., et al. (2014). Accumulation of α-synuclein in the bowel of patients in the pre-clinical phase of Parkinson’s disease. Acta Neuropathologica, 127(2), 235–241.PubMedCrossRef Hilton, D., Stephens, M., Kirk, L., Edwards, P., Potter, R., Zajicek, J., et al. (2014). Accumulation of α-synuclein in the bowel of patients in the pre-clinical phase of Parkinson’s disease. Acta Neuropathologica, 127(2), 235–241.PubMedCrossRef
go back to reference Hölscher, C. (2020). Brain insulin resistance: Role in neurodegenerative disease and potential for targeting. Expert Opinion on Investigational Drugs, 29(4), 333–348.PubMedCrossRef Hölscher, C. (2020). Brain insulin resistance: Role in neurodegenerative disease and potential for targeting. Expert Opinion on Investigational Drugs, 29(4), 333–348.PubMedCrossRef
go back to reference Huang, C., Wang, J., Hu, W., Wang, C., Lu, X., Tong, L., et al. (2016). Identification of functional farnesoid X receptors in brain neurons. FEBS Letters, 590(18), 3233–3242.PubMedCrossRef Huang, C., Wang, J., Hu, W., Wang, C., Lu, X., Tong, L., et al. (2016). Identification of functional farnesoid X receptors in brain neurons. FEBS Letters, 590(18), 3233–3242.PubMedCrossRef
go back to reference Huang, F., Wang, T., Lan, Y., Yang, L., Pan, W., Zhu, Y., et al. (2015). Deletion of mouse FXR gene disturbs multiple neurotransmitter systems and alters neurobehavior. Frontiers in Behavioral Neuroscience, 9, 70.PubMedPubMedCentral Huang, F., Wang, T., Lan, Y., Yang, L., Pan, W., Zhu, Y., et al. (2015). Deletion of mouse FXR gene disturbs multiple neurotransmitter systems and alters neurobehavior. Frontiers in Behavioral Neuroscience, 9, 70.PubMedPubMedCentral
go back to reference Inagaki, T., Moschetta, A., Lee, Y. K., Peng, Li., Zhao, G., Downes, M., et al. (2006). Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proceedings of the National Academy of Sciences of the United States of America, 103(10), 3920–3925.PubMedPubMedCentralCrossRef Inagaki, T., Moschetta, A., Lee, Y. K., Peng, Li., Zhao, G., Downes, M., et al. (2006). Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proceedings of the National Academy of Sciences of the United States of America, 103(10), 3920–3925.PubMedPubMedCentralCrossRef
go back to reference Iusuf, D., De Steeg, E. V., & Schinkel, A. H. (2012). Functions of OATP1A and 1B transporters in vivo: Insights from mouse models. Trends in Pharmacological Sciences, 33(2), 100–108.PubMedCrossRef Iusuf, D., De Steeg, E. V., & Schinkel, A. H. (2012). Functions of OATP1A and 1B transporters in vivo: Insights from mouse models. Trends in Pharmacological Sciences, 33(2), 100–108.PubMedCrossRef
go back to reference Joyce, S. A., MacSharry, J., Casey, P. G., Kinsella, M., Murphy, E. F., Shanahan, F., et al. (2014). Regulation of host weight gain and lipid metabolism by bacterial bile acid modification in the gut. Proceedings of the National Academy of Sciences of the United States of America, 11(20), 7421–7426.CrossRef Joyce, S. A., MacSharry, J., Casey, P. G., Kinsella, M., Murphy, E. F., Shanahan, F., et al. (2014). Regulation of host weight gain and lipid metabolism by bacterial bile acid modification in the gut. Proceedings of the National Academy of Sciences of the United States of America, 11(20), 7421–7426.CrossRef
go back to reference Kaemmerer, W. F., Rodrigues, C. M., Steer, C. J., & Low, W. C. (2001). Creatine-supplemented diet extends Purkinje cell survival in Spinocerebellar Ataxia Type 1 transgenic mice but does not prevent the ataxic phenotype. Neuroscience, 103(3), 713–724.PubMedCrossRef Kaemmerer, W. F., Rodrigues, C. M., Steer, C. J., & Low, W. C. (2001). Creatine-supplemented diet extends Purkinje cell survival in Spinocerebellar Ataxia Type 1 transgenic mice but does not prevent the ataxic phenotype. Neuroscience, 103(3), 713–724.PubMedCrossRef
go back to reference Karran, E., Mercken, M., & De Strooper, B. (2011). The Amyloid cascade hypothesis for Alzheimer’s disease: An appraisal for the development of therapeutics. Nature Reviews Drug Discovery, 10(9), 698–712.PubMedCrossRef Karran, E., Mercken, M., & De Strooper, B. (2011). The Amyloid cascade hypothesis for Alzheimer’s disease: An appraisal for the development of therapeutics. Nature Reviews Drug Discovery, 10(9), 698–712.PubMedCrossRef
go back to reference Kawamata, Y., Fujii, R., Hosoya, M., Harada, M., Yoshida, H., Miwa, M., et al. (2003). A G protein-coupled receptor responsive to bile acids. Journal of Biological Chemistry, 278(11), 9435–9440.CrossRefPubMed Kawamata, Y., Fujii, R., Hosoya, M., Harada, M., Yoshida, H., Miwa, M., et al. (2003). A G protein-coupled receptor responsive to bile acids. Journal of Biological Chemistry, 278(11), 9435–9440.CrossRefPubMed
go back to reference Keene, C. D., Rodrigues, C. M. P., Eich, T., Chhabra, M. S., Steer, C. J., & Low, W. C. (2002). Tauroursodeoxycholic acid, a bile acid, is neuroprotective in a transgenic animal model of Huntington’s disease. Proceedings of the National Academy of Sciences, 99(16), 10671–10676.CrossRef Keene, C. D., Rodrigues, C. M. P., Eich, T., Chhabra, M. S., Steer, C. J., & Low, W. C. (2002). Tauroursodeoxycholic acid, a bile acid, is neuroprotective in a transgenic animal model of Huntington’s disease. Proceedings of the National Academy of Sciences, 99(16), 10671–10676.CrossRef
go back to reference Keitel, V., Donner, M., Winandy, S., Kubitz, R., & Haussinger, D. (2008). Expression and function of the bile acid receptor TGR5 in kupffer cells. Biochemical and Biophysical Research Communications, 372(1), 78–84.PubMedCrossRef Keitel, V., Donner, M., Winandy, S., Kubitz, R., & Haussinger, D. (2008). Expression and function of the bile acid receptor TGR5 in kupffer cells. Biochemical and Biophysical Research Communications, 372(1), 78–84.PubMedCrossRef
go back to reference Keitel, V., Görg, B., Bidmon, H. J., Zemtsova, I., Spomer, L., Zilles, K., et al. (2010). The bile acid receptor TGR5 (Gpbar-1) acts as a neurosteroid receptor in brain. GLIA, 58(15), 1794–1805.PubMedCrossRef Keitel, V., Görg, B., Bidmon, H. J., Zemtsova, I., Spomer, L., Zilles, K., et al. (2010). The bile acid receptor TGR5 (Gpbar-1) acts as a neurosteroid receptor in brain. GLIA, 58(15), 1794–1805.PubMedCrossRef
go back to reference Kempf, A., Tews, B., Arzt, M. E., Weinmann, O., Obermair, F. J., Pernet, V., et al. (2014). The sphingolipid receptor S1PR2 is a receptor for Nogo-a repressing synaptic plasticity. PLoS Biology, 12(1), e1001763.PubMedPubMedCentralCrossRef Kempf, A., Tews, B., Arzt, M. E., Weinmann, O., Obermair, F. J., Pernet, V., et al. (2014). The sphingolipid receptor S1PR2 is a receptor for Nogo-a repressing synaptic plasticity. PLoS Biology, 12(1), e1001763.PubMedPubMedCentralCrossRef
go back to reference Kim, G. S., Yang, L., Zhang, G., Zhao, H., Selim, M., McCullough, L. D., et al. (2015). Critical role of sphingosine-1-phosphate receptor-2 in the disruption of cerebrovascular integrity in experimental stroke. Nature Communications, 6, 7893.PubMedPubMedCentralCrossRef Kim, G. S., Yang, L., Zhang, G., Zhao, H., Selim, M., McCullough, L. D., et al. (2015). Critical role of sphingosine-1-phosphate receptor-2 in the disruption of cerebrovascular integrity in experimental stroke. Nature Communications, 6, 7893.PubMedPubMedCentralCrossRef
go back to reference Kim, K.-S., Seeley, R. J., & Sandoval, D. A. (2018). Signalling from the periphery to the brain that regulates energy homeostasis. Nature Reviews. Neuroscience, 19(4), 185–196.PubMedCrossRef Kim, K.-S., Seeley, R. J., & Sandoval, D. A. (2018). Signalling from the periphery to the brain that regulates energy homeostasis. Nature Reviews. Neuroscience, 19(4), 185–196.PubMedCrossRef
go back to reference Koch, A., Bonus, M., Gohlke, H., & Klocker, N. (2019). Isoform-specific inhibition of N-methyl-D-aspartate receptors by bile salts. Scientific Reports, 9(1), 10068.PubMedPubMedCentralCrossRef Koch, A., Bonus, M., Gohlke, H., & Klocker, N. (2019). Isoform-specific inhibition of N-methyl-D-aspartate receptors by bile salts. Scientific Reports, 9(1), 10068.PubMedPubMedCentralCrossRef
go back to reference Kotti, T. J., Ramirez, D. M. O., Pfeiffer, B. E., Huber, K. M., & Russell, D. W. (2006). Brain cholesterol turnover required for geranylgeraniol production and learning in mice. Proceedings of the National Academy of Sciences of the United States of America, 103(10), 3869–3874.PubMedPubMedCentralCrossRef Kotti, T. J., Ramirez, D. M. O., Pfeiffer, B. E., Huber, K. M., & Russell, D. W. (2006). Brain cholesterol turnover required for geranylgeraniol production and learning in mice. Proceedings of the National Academy of Sciences of the United States of America, 103(10), 3869–3874.PubMedPubMedCentralCrossRef
go back to reference Kurdi, P., Kawanishi, K., Mizutani, K., & Yokota, A. (2006). Mechanism of growth inhibition by free bile acids in Lactobacilli and Bifidobacteria. Journal of Bacteriology, 188(5), 1979–1986.PubMedPubMedCentralCrossRef Kurdi, P., Kawanishi, K., Mizutani, K., & Yokota, A. (2006). Mechanism of growth inhibition by free bile acids in Lactobacilli and Bifidobacteria. Journal of Bacteriology, 188(5), 1979–1986.PubMedPubMedCentralCrossRef
go back to reference Labbadia, J., & Morimoto, R. I. (2013). Huntington’s disease: Underlying molecular mechanisms and emerging concepts. Trends in Biochemical Sciences, 38(8), 378–385.PubMedPubMedCentralCrossRef Labbadia, J., & Morimoto, R. I. (2013). Huntington’s disease: Underlying molecular mechanisms and emerging concepts. Trends in Biochemical Sciences, 38(8), 378–385.PubMedPubMedCentralCrossRef
go back to reference Lamba, V., Yasuda, K., Lamba, J. K., Assem, M., Davila, J., Strom, S., et al. (2004). PXR (NR1I2): Splice variants in human tissues, including brain, and identification of neurosteroids and nicotine as PXR activators. Toxicology and Applied Pharmacology, 199(3), 251–265.PubMedCrossRef Lamba, V., Yasuda, K., Lamba, J. K., Assem, M., Davila, J., Strom, S., et al. (2004). PXR (NR1I2): Splice variants in human tissues, including brain, and identification of neurosteroids and nicotine as PXR activators. Toxicology and Applied Pharmacology, 199(3), 251–265.PubMedCrossRef
go back to reference Lawson, M. A., Parrott, J. M., McCusker, R. H., Dantzer, R., Kelley, K. W., & O’Connor, J. C. (2013). Intracerebroventricular administration of lipopolysaccharide induces Indoleamine-2,3-dioxygenase-dependent depression-like behaviors. Journal of Neuroinflammation, 10, 87.PubMedPubMedCentral Lawson, M. A., Parrott, J. M., McCusker, R. H., Dantzer, R., Kelley, K. W., & O’Connor, J. C. (2013). Intracerebroventricular administration of lipopolysaccharide induces Indoleamine-2,3-dioxygenase-dependent depression-like behaviors. Journal of Neuroinflammation, 10, 87.PubMedPubMedCentral
go back to reference Li, L., Liu, C., Mao, W., Tumen, B., & Li, P. (2019). Taurochenodeoxycholic acid inhibited AP-1 activation via stimulating glucocorticoid receptor. Molecules, 24(24), 4513.PubMedCentralCrossRef Li, L., Liu, C., Mao, W., Tumen, B., & Li, P. (2019). Taurochenodeoxycholic acid inhibited AP-1 activation via stimulating glucocorticoid receptor. Molecules, 24(24), 4513.PubMedCentralCrossRef
go back to reference Liu, S., Marcelin, G., Blouet, C., Jeong, J. H., Jo, Y.-H., Schwartz, G. J., et al. (2018). A gut-brain axis regulating glucose metabolism mediated by bile acids and competitive fibroblast growth factor actions at the hypothalamus. Molecular Metabolism, 8, 37–50.PubMedCrossRef Liu, S., Marcelin, G., Blouet, C., Jeong, J. H., Jo, Y.-H., Schwartz, G. J., et al. (2018). A gut-brain axis regulating glucose metabolism mediated by bile acids and competitive fibroblast growth factor actions at the hypothalamus. Molecular Metabolism, 8, 37–50.PubMedCrossRef
go back to reference Lo, A. C., Callaerts-Vegh, Z., Nunes, A. F., Rodrigues, C. M. P., & D’Hooge, R. (2013). Tauroursodeoxycholic acid (TUDCA) supplementation prevents cognitive impairment and amyloid deposition in APP/PS1 mice. Neurobiology of Disease, 50, 21–29.PubMedCrossRef Lo, A. C., Callaerts-Vegh, Z., Nunes, A. F., Rodrigues, C. M. P., & D’Hooge, R. (2013). Tauroursodeoxycholic acid (TUDCA) supplementation prevents cognitive impairment and amyloid deposition in APP/PS1 mice. Neurobiology of Disease, 50, 21–29.PubMedCrossRef
go back to reference Lorbek, G., Lewinska, M., & Rozman, D. (2012). Cytochrome P450s in the synthesis of cholesterol and bile acids: From mouse models to human diseases. FEBS Journal, 279(9), 1516–1533.CrossRefPubMed Lorbek, G., Lewinska, M., & Rozman, D. (2012). Cytochrome P450s in the synthesis of cholesterol and bile acids: From mouse models to human diseases. FEBS Journal, 279(9), 1516–1533.CrossRefPubMed
go back to reference Lorenzo-Zúñiga, V., Bartolí, R., Planas, R., Hofmann, A. F., Viñado, B., Hagey, L. R., et al. (2003). Oral bile acids reduce bacterial overgrowth, bacterial translocation, and endotoxemia in cirrhotic rats. Hepatology, 37(3), 551–557.PubMedCrossRef Lorenzo-Zúñiga, V., Bartolí, R., Planas, R., Hofmann, A. F., Viñado, B., Hagey, L. R., et al. (2003). Oral bile acids reduce bacterial overgrowth, bacterial translocation, and endotoxemia in cirrhotic rats. Hepatology, 37(3), 551–557.PubMedCrossRef
go back to reference MacLennan, A. J., Carney, P. R., Zhu, W. J., Chaves, A. H., Garcia, J., Grimes, J. R., et al. (2001). An essential role for the H218/AGR16/Edg-5/LP(B2) sphingosine 1-phosphate receptor in neuronal excitability. The European Journal of Neuroscience, 14(2), 203–209.PubMedCrossRef MacLennan, A. J., Carney, P. R., Zhu, W. J., Chaves, A. H., Garcia, J., Grimes, J. R., et al. (2001). An essential role for the H218/AGR16/Edg-5/LP(B2) sphingosine 1-phosphate receptor in neuronal excitability. The European Journal of Neuroscience, 14(2), 203–209.PubMedCrossRef
go back to reference MahmoudianDehkordi, S., Arnold, M., Nho, K., Ahmad, S., Jia, W., Xie, G., et al. (2019). Altered bile acid profile associates with cognitive impairment in Alzheimer’s disease—An emerging role for gut microbiome. Alzheimer’s & Dementia, 15(1), 76–92.CrossRef MahmoudianDehkordi, S., Arnold, M., Nho, K., Ahmad, S., Jia, W., Xie, G., et al. (2019). Altered bile acid profile associates with cognitive impairment in Alzheimer’s disease—An emerging role for gut microbiome. Alzheimer’s & Dementia, 15(1), 76–92.CrossRef
go back to reference Mancuso, R., & Navarro, X. (2015). Amyotrophic lateral sclerosis: Current perspectives from basic research to the clinic. Progress in Neurobiology, 133, 1–126.PubMedCrossRef Mancuso, R., & Navarro, X. (2015). Amyotrophic lateral sclerosis: Current perspectives from basic research to the clinic. Progress in Neurobiology, 133, 1–126.PubMedCrossRef
go back to reference Mandia, D., Chaussenot, A., Besson, G., Lamari, I. F., Castelnovo, G., Curot, J., et al. (2019). Cholic acid as a treatment for cerebrotendinous xanthomatosis in adults. Journal of Neurology, 266(8), 2043–2050.PubMedCrossRef Mandia, D., Chaussenot, A., Besson, G., Lamari, I. F., Castelnovo, G., Curot, J., et al. (2019). Cholic acid as a treatment for cerebrotendinous xanthomatosis in adults. Journal of Neurology, 266(8), 2043–2050.PubMedCrossRef
go back to reference Mano, N., Goto, T., Uchida, M., Nishimura, K., Ando, M., Kobayashi, N., et al. (2004). Presence of protein-bound unconjugated bile acids in the cytoplasmic fraction of rat brain. Journal of Lipid Research, 45(2), 295–300.PubMedCrossRef Mano, N., Goto, T., Uchida, M., Nishimura, K., Ando, M., Kobayashi, N., et al. (2004). Presence of protein-bound unconjugated bile acids in the cytoplasmic fraction of rat brain. Journal of Lipid Research, 45(2), 295–300.PubMedCrossRef
go back to reference Mano, N., Sato, Y., Nagata, M., Goto, T., & Goto, J. (2004). Bioconversion of 3beta-hydroxy-5-cholenoic acid into chenodeoxycholic acid by rat brain enzyme systems. Journal of Lipid Research, 45(9), 1741–1748.PubMedCrossRef Mano, N., Sato, Y., Nagata, M., Goto, T., & Goto, J. (2004). Bioconversion of 3beta-hydroxy-5-cholenoic acid into chenodeoxycholic acid by rat brain enzyme systems. Journal of Lipid Research, 45(9), 1741–1748.PubMedCrossRef
go back to reference Maruyama, T., Miyamoto, Y., Nakamura, T., Tamai, Y., Okada, H., Sugiyama, E., et al. (2002). Identification of membrane-type receptor for bile acids (M-BAR). Biochemical and Biophysical Research Communications, 298(5), 714–719.PubMedCrossRef Maruyama, T., Miyamoto, Y., Nakamura, T., Tamai, Y., Okada, H., Sugiyama, E., et al. (2002). Identification of membrane-type receptor for bile acids (M-BAR). Biochemical and Biophysical Research Communications, 298(5), 714–719.PubMedCrossRef
go back to reference McMillin, M., Frampton, G., Grant, S., Khan, S., Diocares, J., Petrescu, A., et al. (2017). Bile acid-mediated sphingosine-1-phosphate receptor 2 signaling promotes neuroinflammation during hepatic encephalopathy in mice. Frontiers in Cellular Neuroscience, 11, 191.PubMedPubMedCentralCrossRef McMillin, M., Frampton, G., Grant, S., Khan, S., Diocares, J., Petrescu, A., et al. (2017). Bile acid-mediated sphingosine-1-phosphate receptor 2 signaling promotes neuroinflammation during hepatic encephalopathy in mice. Frontiers in Cellular Neuroscience, 11, 191.PubMedPubMedCentralCrossRef
go back to reference McMillin, M., Frampton, G., Quinn, M., Ashfaq, S., De Los Santos, M., Grant, S., et al. (2016). Bile acid signaling is involved in the neurological decline in a murine model of acute liver failure. American Journal of Pathology, 186(2), 312–323.CrossRefPubMedPubMedCentral McMillin, M., Frampton, G., Quinn, M., Ashfaq, S., De Los Santos, M., Grant, S., et al. (2016). Bile acid signaling is involved in the neurological decline in a murine model of acute liver failure. American Journal of Pathology, 186(2), 312–323.CrossRefPubMedPubMedCentral
go back to reference McMillin, M., Frampton, G., Quinn, M., Divan, A., Grant, S., Patel, N., et al. (2015). Suppression of the HPA axis during cholestasis can be attributed to hypothalamic bile acid signaling. Molecular Endocrinology, 29(12), 1720–1730.PubMedPubMedCentralCrossRef McMillin, M., Frampton, G., Quinn, M., Divan, A., Grant, S., Patel, N., et al. (2015). Suppression of the HPA axis during cholestasis can be attributed to hypothalamic bile acid signaling. Molecular Endocrinology, 29(12), 1720–1730.PubMedPubMedCentralCrossRef
go back to reference McMillin, M., Frampton, G., Tobin, R., Dusio, G., Smith, J., Shin, H., et al. (2015). TGR5 signaling reduces neuroinflammation during hepatic encephalopathy. Journal of Neurochemistry, 135(3), 565–576.PubMedPubMedCentralCrossRef McMillin, M., Frampton, G., Tobin, R., Dusio, G., Smith, J., Shin, H., et al. (2015). TGR5 signaling reduces neuroinflammation during hepatic encephalopathy. Journal of Neurochemistry, 135(3), 565–576.PubMedPubMedCentralCrossRef
go back to reference Merritt, M. E., & Donaldson, J. R. (2009). Effect of bile salts on the DNA and membrane integrity of enteric bacteria. Journal of Medical Microbiology, 58(pt12), 1533–1541.PubMedCrossRef Merritt, M. E., & Donaldson, J. R. (2009). Effect of bile salts on the DNA and membrane integrity of enteric bacteria. Journal of Medical Microbiology, 58(pt12), 1533–1541.PubMedCrossRef
go back to reference Mertens, K. L., Kalsbeek, A., Soeters, M. R., & Eggink, H. M. (2017). Bile acid signalling pathways from the enterohepatic circulation to the central nervous system. Froniers in Neuroscience, 11, 617.CrossRef Mertens, K. L., Kalsbeek, A., Soeters, M. R., & Eggink, H. M. (2017). Bile acid signalling pathways from the enterohepatic circulation to the central nervous system. Froniers in Neuroscience, 11, 617.CrossRef
go back to reference Milnerwood, A. J., & Raymond, L. A. (2010). Early synaptic pathophysiology in neurodegeneration: Insights from Huntington’s disease. Trends in Neurosciences, 33(11), 513–523.PubMedCrossRef Milnerwood, A. J., & Raymond, L. A. (2010). Early synaptic pathophysiology in neurodegeneration: Insights from Huntington’s disease. Trends in Neurosciences, 33(11), 513–523.PubMedCrossRef
go back to reference Min, J.-H., Hong, Y.-H., Sung, J.-J., Kim, S.-M., Lee, J. B., & Lee, K.-W. (2012). Oral solubilized ursodeoxycholic acid therapy in amyotrophic lateral sclerosis: A randomized cross-over trial. Journal of Korean Medical Science, 27(2), 200–206.PubMedPubMedCentralCrossRef Min, J.-H., Hong, Y.-H., Sung, J.-J., Kim, S.-M., Lee, J. B., & Lee, K.-W. (2012). Oral solubilized ursodeoxycholic acid therapy in amyotrophic lateral sclerosis: A randomized cross-over trial. Journal of Korean Medical Science, 27(2), 200–206.PubMedPubMedCentralCrossRef
go back to reference Molinero, N., Ruiz, L., Sánchez, B., Margolles, A., & Delgado, S. (2019). Intestinal bacteria interplay with bile and cholesterol metabolism: Implications on host physiology. Frontiers in Physiology, 10, 185.PubMedPubMedCentralCrossRef Molinero, N., Ruiz, L., Sánchez, B., Margolles, A., & Delgado, S. (2019). Intestinal bacteria interplay with bile and cholesterol metabolism: Implications on host physiology. Frontiers in Physiology, 10, 185.PubMedPubMedCentralCrossRef
go back to reference Monte, M. J., Marin, J. J. G., Antelo, A., & Vazquez-Tato, J. (2009). Bile acids: Chemistry, physiology, and pathophysiology. World Journal of Gastroenterology, 15(7), 804–816.PubMedPubMedCentralCrossRef Monte, M. J., Marin, J. J. G., Antelo, A., & Vazquez-Tato, J. (2009). Bile acids: Chemistry, physiology, and pathophysiology. World Journal of Gastroenterology, 15(7), 804–816.PubMedPubMedCentralCrossRef
go back to reference Monteiro-Cardoso, V. F., Oliveira, M. M., Melo, T., Domingues, M. R. M., Moreira, P. I., Ferreiro, E., et al. (2014). Cardiolipin profile changes are associated to the early synaptic mitochondrial dysfunction in Alzheimer’s disease. Journal of Alzheimer’s Disease, 43(4), 1375–1392.CrossRef Monteiro-Cardoso, V. F., Oliveira, M. M., Melo, T., Domingues, M. R. M., Moreira, P. I., Ferreiro, E., et al. (2014). Cardiolipin profile changes are associated to the early synaptic mitochondrial dysfunction in Alzheimer’s disease. Journal of Alzheimer’s Disease, 43(4), 1375–1392.CrossRef
go back to reference Mortiboys, H., Aasly, J., & Bandmann, O. (2013). Ursocholanic acid rescues mitochondrial function in common forms of familial Parkinson’s disease. Brain, 136(Pt 10), 3038–3050.PubMedCrossRef Mortiboys, H., Aasly, J., & Bandmann, O. (2013). Ursocholanic acid rescues mitochondrial function in common forms of familial Parkinson’s disease. Brain, 136(Pt 10), 3038–3050.PubMedCrossRef
go back to reference Naqvi, S. H., Ramsey, R. B., & Nicholas, H. J. (1970). Detection of lithocholic acid in multiple sclerosis brain tissue. Lipids, 5(6), 578–580.PubMedCrossRef Naqvi, S. H., Ramsey, R. B., & Nicholas, H. J. (1970). Detection of lithocholic acid in multiple sclerosis brain tissue. Lipids, 5(6), 578–580.PubMedCrossRef
go back to reference Nebert, D. W., & Russell, D. W. (2002). Clinical importance of the cytochromes P450. The Lancet, 360(9340), 1155–1162.CrossRef Nebert, D. W., & Russell, D. W. (2002). Clinical importance of the cytochromes P450. The Lancet, 360(9340), 1155–1162.CrossRef
go back to reference Neufeld, K. M., Kang, N., Bienenstock, J., & Foster, J. A. (2011). Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterology and Motility, 23(3), 255–264.PubMedCrossRef Neufeld, K. M., Kang, N., Bienenstock, J., & Foster, J. A. (2011). Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterology and Motility, 23(3), 255–264.PubMedCrossRef
go back to reference Nickols, H. H., & Conn, P. J. (2014). Development of allosteric modulators of GPCRs for treatment of CNS disorders. Neurobiology of Disease, 61, 55–71.PubMedCrossRef Nickols, H. H., & Conn, P. J. (2014). Development of allosteric modulators of GPCRs for treatment of CNS disorders. Neurobiology of Disease, 61, 55–71.PubMedCrossRef
go back to reference Nie, S., Chen, G., Cao, X., & Zhang, Y. (2014). Cerebrotendinous Xanthomatosis: A comprehensive review of pathogenesis, clinical manifestations, diagnosis, and management. Orphanet Journal of Rare Diseases, 9, 179.PubMedPubMedCentralCrossRef Nie, S., Chen, G., Cao, X., & Zhang, Y. (2014). Cerebrotendinous Xanthomatosis: A comprehensive review of pathogenesis, clinical manifestations, diagnosis, and management. Orphanet Journal of Rare Diseases, 9, 179.PubMedPubMedCentralCrossRef
go back to reference Nishimura, M., Yaguti, H., Yoshitsugu, H., Naito, S., & Satoh, T. (2003). Tissue distribution of mRNA expression of human cytochrome P450 isoforms assessed by high-sensitivity real-time reverse transcription PCR. Yakugaku Zasshi, 123(5), 369–375.PubMedCrossRef Nishimura, M., Yaguti, H., Yoshitsugu, H., Naito, S., & Satoh, T. (2003). Tissue distribution of mRNA expression of human cytochrome P450 isoforms assessed by high-sensitivity real-time reverse transcription PCR. Yakugaku Zasshi, 123(5), 369–375.PubMedCrossRef
go back to reference Nunes, A. F., Amaral, J. D., Lo, A. C., Fonseca, M. B., Viana, R. J. S., Callaerts-Vegh, Z., et al. (2012). TUDCA, a bile acid, attenuates amyloid precursor protein processing and amyloid-β deposition in APP/PS1 mice. Molecular Neurobiology, 45(3), 440–454.PubMedCrossRef Nunes, A. F., Amaral, J. D., Lo, A. C., Fonseca, M. B., Viana, R. J. S., Callaerts-Vegh, Z., et al. (2012). TUDCA, a bile acid, attenuates amyloid precursor protein processing and amyloid-β deposition in APP/PS1 mice. Molecular Neurobiology, 45(3), 440–454.PubMedCrossRef
go back to reference Pan, X., Elliott, C. T., McGuinness, B., Passmore, P., Kehoe, P. G., Hölscher, C., et al. (2017). Metabolomic profiling of bile acids in clinical and experimental samples of Alzheimer’s disease. Metabolites, 17(2), 28.CrossRef Pan, X., Elliott, C. T., McGuinness, B., Passmore, P., Kehoe, P. G., Hölscher, C., et al. (2017). Metabolomic profiling of bile acids in clinical and experimental samples of Alzheimer’s disease. Metabolites, 17(2), 28.CrossRef
go back to reference Parry, G. J., Rodrigues, C. M. P., Aranha, M. M., Hilbert, S. J., Davey, C., Kelkar, P., et al. (2010). Safety, tolerability, and cerebrospinal fluid penetration of ursodeoxycholic acid in patients with amyotrophic lateral sclerosis. Clinical Neuropharmacology, 33(1), 17–21.PubMedCrossRef Parry, G. J., Rodrigues, C. M. P., Aranha, M. M., Hilbert, S. J., Davey, C., Kelkar, P., et al. (2010). Safety, tolerability, and cerebrospinal fluid penetration of ursodeoxycholic acid in patients with amyotrophic lateral sclerosis. Clinical Neuropharmacology, 33(1), 17–21.PubMedCrossRef
go back to reference Perl, D. P. (2010). Neuropathology of Alzheimer’s disease. Mount Sinai Journal of Medicine, 77(1), 32–42.PubMedCrossRef Perl, D. P. (2010). Neuropathology of Alzheimer’s disease. Mount Sinai Journal of Medicine, 77(1), 32–42.PubMedCrossRef
go back to reference Quinn, M., & DeMorrow, S. (2012). Bile in the brain? A role for bile acids in the central nervous system. Journal of Cell Science & Therapy, 3, 7.CrossRef Quinn, M., & DeMorrow, S. (2012). Bile in the brain? A role for bile acids in the central nervous system. Journal of Cell Science & Therapy, 3, 7.CrossRef
go back to reference Quinn, M., McMillin, M., Galindo, C., Frampton, G., Pae, H. Y., & DeMorrow, S. (2014). Bile acids permeabilize the blood brain barrier after bile duct ligation in rats via Rac1-dependent mechanisms. Digestive and Liver Disease, 46(6), 527–534.PubMedPubMedCentralCrossRef Quinn, M., McMillin, M., Galindo, C., Frampton, G., Pae, H. Y., & DeMorrow, S. (2014). Bile acids permeabilize the blood brain barrier after bile duct ligation in rats via Rac1-dependent mechanisms. Digestive and Liver Disease, 46(6), 527–534.PubMedPubMedCentralCrossRef
go back to reference Quinn, R. A., Melnik, A. V., Vrbanac, A., Fu, T., Patras, K. A., Christy, M. P., et al. (2020). Global chemical effects of the microbiome include new bile-acid conjugations. Nature, 579(7797), 123–129.PubMedPubMedCentralCrossRef Quinn, R. A., Melnik, A. V., Vrbanac, A., Fu, T., Patras, K. A., Christy, M. P., et al. (2020). Global chemical effects of the microbiome include new bile-acid conjugations. Nature, 579(7797), 123–129.PubMedPubMedCentralCrossRef
go back to reference Radu, B. M., Osculati, A. M. M., Suku, E., Banciu, A., Tsenov, G., Merigo, F., et al. (2017). All muscarinic acetylcholine receptors (M(1)-M(5)) are expressed in murine brain microvascular endothelium. Scientific Reports, 7(1), 5083.PubMedPubMedCentralCrossRef Radu, B. M., Osculati, A. M. M., Suku, E., Banciu, A., Tsenov, G., Merigo, F., et al. (2017). All muscarinic acetylcholine receptors (M(1)-M(5)) are expressed in murine brain microvascular endothelium. Scientific Reports, 7(1), 5083.PubMedPubMedCentralCrossRef
go back to reference Ramalho, R. M., Nunes, A. F., Dias, R. B., Amaral, J. D., Lo, A. C., D’Hooge, R., et al. (2013). Tauroursodeoxycholic acid suppresses amyloid β-induced synaptic toxicity in vitro and in APP/PS1 mice. Neurobiology of Aging, 34(2), 551–561.PubMedCrossRef Ramalho, R. M., Nunes, A. F., Dias, R. B., Amaral, J. D., Lo, A. C., D’Hooge, R., et al. (2013). Tauroursodeoxycholic acid suppresses amyloid β-induced synaptic toxicity in vitro and in APP/PS1 mice. Neurobiology of Aging, 34(2), 551–561.PubMedCrossRef
go back to reference Ramalho, R. M., Viana, R. J. S., Low, W. C., Steer, C. J., & Rodrigues, C. M. P. (2008). Bile acids and apoptosis modulation: An emerging role in experimental Alzheimer’s disease. Trends in Molecular Medicine, 14(2), 54–62.PubMedCrossRef Ramalho, R. M., Viana, R. J. S., Low, W. C., Steer, C. J., & Rodrigues, C. M. P. (2008). Bile acids and apoptosis modulation: An emerging role in experimental Alzheimer’s disease. Trends in Molecular Medicine, 14(2), 54–62.PubMedCrossRef
go back to reference Raufman, J. P., Chen, Y., Cheng, K., Compadre, C., Compadre, L., & Zimniak, P. (2002). Selective interaction of bile acids with muscarinic receptors: A case of molecular mimicry. European Journal of Pharmacology, 457(2–3), 77–84.PubMedCrossRef Raufman, J. P., Chen, Y., Cheng, K., Compadre, C., Compadre, L., & Zimniak, P. (2002). Selective interaction of bile acids with muscarinic receptors: A case of molecular mimicry. European Journal of Pharmacology, 457(2–3), 77–84.PubMedCrossRef
go back to reference Renton, A. E., Chiò, A., & Traynor, B. J. (2014). State of play in amyotrophic lateral sclerosis genetics. Nature Neuroscience, 17(1), 17–23.PubMedCrossRef Renton, A. E., Chiò, A., & Traynor, B. J. (2014). State of play in amyotrophic lateral sclerosis genetics. Nature Neuroscience, 17(1), 17–23.PubMedCrossRef
go back to reference Ridlon, J. M., Kang, D.-J., & Hylemon, P. B. (2006). Bile salt biotransformations by human intestinal bacteria. Journal of Lipid Research, 47(2), 241–259.PubMedCrossRef Ridlon, J. M., Kang, D.-J., & Hylemon, P. B. (2006). Bile salt biotransformations by human intestinal bacteria. Journal of Lipid Research, 47(2), 241–259.PubMedCrossRef
go back to reference Rochellys, D. H., Wang, S., Anuar, F., Qian, Y., Björkholm, B., Samuelsson, A., et al. (2011). Normal gut microbiota modulates brain development and behavior. Proceedings of the National Academy of Sciences of the United States of America, 108(7), 3047–3052.CrossRef Rochellys, D. H., Wang, S., Anuar, F., Qian, Y., Björkholm, B., Samuelsson, A., et al. (2011). Normal gut microbiota modulates brain development and behavior. Proceedings of the National Academy of Sciences of the United States of America, 108(7), 3047–3052.CrossRef
go back to reference Rodrigues, C. M. P., Sola, S., Nan, Z., Castro, R. E., Ribeiro, P. S., Low, W. C., et al. (2003). Tauroursodeoxycholic acid reduces apoptosis and protects against neurological injury after acute hemorrhagic stroke in rats. Proceedings of the National Academy of Sciences of the United States of America, 100(10), 6087–6092.PubMedPubMedCentralCrossRef Rodrigues, C. M. P., Sola, S., Nan, Z., Castro, R. E., Ribeiro, P. S., Low, W. C., et al. (2003). Tauroursodeoxycholic acid reduces apoptosis and protects against neurological injury after acute hemorrhagic stroke in rats. Proceedings of the National Academy of Sciences of the United States of America, 100(10), 6087–6092.PubMedPubMedCentralCrossRef
go back to reference Rodrigues, C. M. P., Spellman, S. R., Solá, S., Grande, A. W., Linehan-Stieers, C., Low, W. C., et al. (2002). Neuroprotection by a bile acid in an acute stroke model in the rat. Journal of Cerebral Blood Flow and Metabolism, 22(4), 463–471.PubMedCrossRef Rodrigues, C. M. P., Spellman, S. R., Solá, S., Grande, A. W., Linehan-Stieers, C., Low, W. C., et al. (2002). Neuroprotection by a bile acid in an acute stroke model in the rat. Journal of Cerebral Blood Flow and Metabolism, 22(4), 463–471.PubMedCrossRef
go back to reference Rodrigues, C. M. P., Stieers, C. L., Keene, C. D., & Ma, X. (2000). Tauroursodeoxycholic acid partially prevents apoptosis induced by 3-nitropropionic acid: Evidence for a mitochondrial pathway independent of the permeability transition. Journal of Neurochemistry, 75(6), 2368–2379.PubMedCrossRef Rodrigues, C. M. P., Stieers, C. L., Keene, C. D., & Ma, X. (2000). Tauroursodeoxycholic acid partially prevents apoptosis induced by 3-nitropropionic acid: Evidence for a mitochondrial pathway independent of the permeability transition. Journal of Neurochemistry, 75(6), 2368–2379.PubMedCrossRef
go back to reference Rosa, A. I., Fonseca, I., Nunes, M. J., Moreira, S., Rodrigues, E., Carvalho, A. N., et al. (2017). Novel insights into the antioxidant role of tauroursodeoxycholic acid in experimental models of Parkinson’s disease. Biochimica et Biophysica Acta, 1863(9), 2171–2181.PubMedCrossRef Rosa, A. I., Fonseca, I., Nunes, M. J., Moreira, S., Rodrigues, E., Carvalho, A. N., et al. (2017). Novel insights into the antioxidant role of tauroursodeoxycholic acid in experimental models of Parkinson’s disease. Biochimica et Biophysica Acta, 1863(9), 2171–2181.PubMedCrossRef
go back to reference Russell, D. W. (2003). The enzymes, regulation, and genetics of bile acid synthesis. Annual Review of Biochemistry, 72, 137–174.PubMedCrossRef Russell, D. W. (2003). The enzymes, regulation, and genetics of bile acid synthesis. Annual Review of Biochemistry, 72, 137–174.PubMedCrossRef
go back to reference Sampson, T. R., Debelius, J. W., Thron, T., Janssen, S., Shastri, G. G., Ilhan, Z. E., et al. (2016). Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell, 167(6), 1469–1480.PubMedPubMedCentralCrossRef Sampson, T. R., Debelius, J. W., Thron, T., Janssen, S., Shastri, G. G., Ilhan, Z. E., et al. (2016). Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell, 167(6), 1469–1480.PubMedPubMedCentralCrossRef
go back to reference Sampson, T. R., & Mazmanian, S. K. (2015). Control of brain development, function, and behavior by the microbiome. Cell Host & Microbe, 17(5), 565–576.CrossRef Sampson, T. R., & Mazmanian, S. K. (2015). Control of brain development, function, and behavior by the microbiome. Cell Host & Microbe, 17(5), 565–576.CrossRef
go back to reference Sánchez, B., Ruiz, L., Gueimonde, M., Ruas-Madiedo, P., & Margolles, A. (2013). Adaptation of bifidobacteria to the gastrointestinal tract and functional consequences. Pharmacological Research, 69(1), 127–136.PubMedCrossRef Sánchez, B., Ruiz, L., Gueimonde, M., Ruas-Madiedo, P., & Margolles, A. (2013). Adaptation of bifidobacteria to the gastrointestinal tract and functional consequences. Pharmacological Research, 69(1), 127–136.PubMedCrossRef
go back to reference Sayin, S. I., Wahlström, A., Felin, J., Jäntti, S., Marschall, H. U., Bamberg, K., et al. (2013). Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metabolism, 17(2), 225–235.PubMedCrossRef Sayin, S. I., Wahlström, A., Felin, J., Jäntti, S., Marschall, H. U., Bamberg, K., et al. (2013). Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metabolism, 17(2), 225–235.PubMedCrossRef
go back to reference Schubring, S. R., Fleischer, W., Lin, J. S., Haas, H. L., & Sergeeva, O. A. (2012). The bile steroid chenodeoxycholate is a potent antagonist at NMDA and GABA A receptors. Neuroscience Letters, 506(2), 322–326.PubMedCrossRef Schubring, S. R., Fleischer, W., Lin, J. S., Haas, H. L., & Sergeeva, O. A. (2012). The bile steroid chenodeoxycholate is a potent antagonist at NMDA and GABA A receptors. Neuroscience Letters, 506(2), 322–326.PubMedCrossRef
go back to reference Shulman, J. M., De Jager, P. L., & Feany, M. B. (2011). Parkinson’s disease: Genetics and pathogenesis. Annual Review of Pathology, 6, 193–222.PubMedCrossRef Shulman, J. M., De Jager, P. L., & Feany, M. B. (2011). Parkinson’s disease: Genetics and pathogenesis. Annual Review of Pathology, 6, 193–222.PubMedCrossRef
go back to reference Sigel, E., & Steinmann, M. E. (2012). Structure, function, and modulation of GABA(A) receptors. The Journal of Biological Chemistry, 287(48), 40224–40231.PubMedPubMedCentralCrossRef Sigel, E., & Steinmann, M. E. (2012). Structure, function, and modulation of GABA(A) receptors. The Journal of Biological Chemistry, 287(48), 40224–40231.PubMedPubMedCentralCrossRef
go back to reference Sonne, D. P., van Nierop, F. S., Kulik, W., Soeters, M. R., Vilsbøll, T., & Knop, F. K. (2016). Postprandial plasma concentrations of individual bile acids and FGF-19 in patients with Type 2 diabetes. The Journal of Clinical Endocrinology and Metabolism, 101(8), 3002–3009.PubMedCrossRef Sonne, D. P., van Nierop, F. S., Kulik, W., Soeters, M. R., Vilsbøll, T., & Knop, F. K. (2016). Postprandial plasma concentrations of individual bile acids and FGF-19 in patients with Type 2 diabetes. The Journal of Clinical Endocrinology and Metabolism, 101(8), 3002–3009.PubMedCrossRef
go back to reference St-Pierre, M. V., Kullak-Ublick, G. A., Hagenbuch, B., & Meier, P. J. (2001). Transport of bile acids in hepatic and non-hepatic tissues. Journal of Experimental Biology, 204, 1673–1686.PubMed St-Pierre, M. V., Kullak-Ublick, G. A., Hagenbuch, B., & Meier, P. J. (2001). Transport of bile acids in hepatic and non-hepatic tissues. Journal of Experimental Biology, 204, 1673–1686.PubMed
go back to reference Staudinger, J. L., Goodwin, B., Jones, S. A., Hawkins-Brown, D., MacKenzie, K. I., LaTour, A., et al. (2001). The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity. Proceedings of the National Academy of Sciences, 98(6), 3369–3374.CrossRef Staudinger, J. L., Goodwin, B., Jones, S. A., Hawkins-Brown, D., MacKenzie, K. I., LaTour, A., et al. (2001). The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity. Proceedings of the National Academy of Sciences, 98(6), 3369–3374.CrossRef
go back to reference Stilling, R. M., Dinan, T. G., & Cryan, J. F. (2014). Microbial genes, brain & behaviour—Epigenetic regulation of the gut-brain axis. Genes, Brain, and Behavior, 13(1), 69–86.PubMedCrossRef Stilling, R. M., Dinan, T. G., & Cryan, J. F. (2014). Microbial genes, brain & behaviour—Epigenetic regulation of the gut-brain axis. Genes, Brain, and Behavior, 13(1), 69–86.PubMedCrossRef
go back to reference Studer, E., Zhou, X., Zhao, R., Wang, Y., Takabe, K., Nagahashi, M., et al. (2012). Conjugated bile acids activate the sphingosine-1-phosphate receptor 2 in primary rodent hepatocytes. Hepatology, 55(1), 267–276.PubMedCrossRef Studer, E., Zhou, X., Zhao, R., Wang, Y., Takabe, K., Nagahashi, M., et al. (2012). Conjugated bile acids activate the sphingosine-1-phosphate receptor 2 in primary rodent hepatocytes. Hepatology, 55(1), 267–276.PubMedCrossRef
go back to reference Takahashi, S., Fukami, T., Masuo, Y., Brocker, C. N., Xie, C., Krausz, K. W., et al. (2016). Cyp2c70 Is responsible for the species difference in bile acid metabolism between mice and humans. Journal of Lipid Research, 57(12), 2130–2137.PubMedPubMedCentralCrossRef Takahashi, S., Fukami, T., Masuo, Y., Brocker, C. N., Xie, C., Krausz, K. W., et al. (2016). Cyp2c70 Is responsible for the species difference in bile acid metabolism between mice and humans. Journal of Lipid Research, 57(12), 2130–2137.PubMedPubMedCentralCrossRef
go back to reference Takigawa, T., Miyazaki, H., Kinoshita, M., Kawarabayashi, N., Nishiyama, K., Hatsuse, K., et al. (2013). Glucocorticoid receptor-dependent immunomodulatory effect of ursodeoxycholic acid on liver lymphocytes in mice. American Journal of Physiology, 305(6), G427-438.PubMed Takigawa, T., Miyazaki, H., Kinoshita, M., Kawarabayashi, N., Nishiyama, K., Hatsuse, K., et al. (2013). Glucocorticoid receptor-dependent immunomodulatory effect of ursodeoxycholic acid on liver lymphocytes in mice. American Journal of Physiology, 305(6), G427-438.PubMed
go back to reference Tan, J., McKenzie, C., Potamitis, M., Thorburn, A. N., Mackay, C. R., & Macia, L. (2014). The role of short-chain fatty acids in health and disease. Advances in Immunology, 121, 91–119.PubMedCrossRef Tan, J., McKenzie, C., Potamitis, M., Thorburn, A. N., Mackay, C. R., & Macia, L. (2014). The role of short-chain fatty acids in health and disease. Advances in Immunology, 121, 91–119.PubMedCrossRef
go back to reference Teo, C. R. L., Wang, W., Hai, Y. L., Lee, C. G., & Chong, S. S. (2008). Single-step scalable-throughput molecular screening for Huntington disease. Clinical Chemistry, 54(6), 964–972.PubMedCrossRef Teo, C. R. L., Wang, W., Hai, Y. L., Lee, C. G., & Chong, S. S. (2008). Single-step scalable-throughput molecular screening for Huntington disease. Clinical Chemistry, 54(6), 964–972.PubMedCrossRef
go back to reference Thomas, C., Gioiello, A., Noriega, L., Strehle, A., Oury, L., Rizzo, G., et al. (2009). TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metabolism, 10(3), 167–177.PubMedPubMedCentralCrossRef Thomas, C., Gioiello, A., Noriega, L., Strehle, A., Oury, L., Rizzo, G., et al. (2009). TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metabolism, 10(3), 167–177.PubMedPubMedCentralCrossRef
go back to reference Vaz, A. R., Cunha, C., Gomes, C., Schmucki, N., Barbosa, M., & Brites, D. (2015). Glycoursodeoxycholic acid reduces matrix metalloproteinase-9 and caspase-9 activation in a cellular model of superoxide dismutase-1 neurodegeneration. Molecular Neurobiology, 51(3), 864–877.PubMedCrossRef Vaz, A. R., Cunha, C., Gomes, C., Schmucki, N., Barbosa, M., & Brites, D. (2015). Glycoursodeoxycholic acid reduces matrix metalloproteinase-9 and caspase-9 activation in a cellular model of superoxide dismutase-1 neurodegeneration. Molecular Neurobiology, 51(3), 864–877.PubMedCrossRef
go back to reference Wahlström, A., Sayin, S. I., Marschall, H. U., & Bäckhed, F. (2016). Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metabolism, 24(1), 41–50.PubMedCrossRef Wahlström, A., Sayin, S. I., Marschall, H. U., & Bäckhed, F. (2016). Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metabolism, 24(1), 41–50.PubMedCrossRef
go back to reference Wang, H., Chen, J., Hollister, K., Sowers, L. C., & Forman, B. M. (1999). Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Molecular Cell, 3(5), 543–553.PubMedCrossRef Wang, H., Chen, J., Hollister, K., Sowers, L. C., & Forman, B. M. (1999). Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Molecular Cell, 3(5), 543–553.PubMedCrossRef
go back to reference Watanabe, M., Houten, S. M., Mataki, C., Christoffolete, M. A., Kim, B. W., Sato, H., et al. (2006). Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature, 439(7075), 484–489.PubMedCrossRef Watanabe, M., Houten, S. M., Mataki, C., Christoffolete, M. A., Kim, B. W., Sato, H., et al. (2006). Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature, 439(7075), 484–489.PubMedCrossRef
go back to reference Weil, A. (1930). The effect of hemolytic toxins on nervous tissue. Archives of Pathology and Laboratory medicine, 9, 828. Weil, A. (1930). The effect of hemolytic toxins on nervous tissue. Archives of Pathology and Laboratory medicine, 9, 828.
go back to reference Wikoff, W. R., Anfora, A. T., Liu, J., Schultz, P. J., Lesley, S. A., Peters, E. C., et al. (2009). Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proceedings of the National Academy of Sciences of the United States of America, 106(10), 3698–3703.PubMedPubMedCentralCrossRef Wikoff, W. R., Anfora, A. T., Liu, J., Schultz, P. J., Lesley, S. A., Peters, E. C., et al. (2009). Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proceedings of the National Academy of Sciences of the United States of America, 106(10), 3698–3703.PubMedPubMedCentralCrossRef
go back to reference Wu, C., & Sun, D. (2015). GABA receptors in brain development, function, and injury. Metabolic Brain Disease, 30(2), 367–379.PubMedCrossRef Wu, C., & Sun, D. (2015). GABA receptors in brain development, function, and injury. Metabolic Brain Disease, 30(2), 367–379.PubMedCrossRef
go back to reference Xie, G., Wang, X., Jiang, R., Zhao, A., Yan, J., Zheng, X., et al. (2018). Dysregulated bile acid signaling contributes to the neurological impairment in murine models of acute and chronic liver failure. EBioMedicine, 37, 294–306.PubMedPubMedCentralCrossRef Xie, G., Wang, X., Jiang, R., Zhao, A., Yan, J., Zheng, X., et al. (2018). Dysregulated bile acid signaling contributes to the neurological impairment in murine models of acute and chronic liver failure. EBioMedicine, 37, 294–306.PubMedPubMedCentralCrossRef
go back to reference Yanguas-Casás, N., Barreda-Manso, M. A., Nieto-Sampedro, M., & Romero-Ramírez, L. (2014). Tauroursodeoxycholic acid reduces glial cell activation in an animal model of acute neuroinflammation. Journal of Neuroinflammation, 11, 50.PubMedPubMedCentralCrossRef Yanguas-Casás, N., Barreda-Manso, M. A., Nieto-Sampedro, M., & Romero-Ramírez, L. (2014). Tauroursodeoxycholic acid reduces glial cell activation in an animal model of acute neuroinflammation. Journal of Neuroinflammation, 11, 50.PubMedPubMedCentralCrossRef
go back to reference Yanguas-Casás, N., Barreda-Manso, M. A., Nieto-Sampedro, M., & Romero-Ramírez, L. (2017). TUDCA: An agonist of the bile acid receptor GPBAR1/TGR5 with anti-inflammatory effects in microglial cells. Journal of Cellular Physiology, 232(8), 2231–2245.PubMedCrossRef Yanguas-Casás, N., Barreda-Manso, M. A., Nieto-Sampedro, M., & Romero-Ramírez, L. (2017). TUDCA: An agonist of the bile acid receptor GPBAR1/TGR5 with anti-inflammatory effects in microglial cells. Journal of Cellular Physiology, 232(8), 2231–2245.PubMedCrossRef
go back to reference Zheng, X., Chen, T., Zhao, A., Wang, X., Xie, G., Huang, F., et al. (2016). The brain metabolome of male rats across the lifespan. Scientific Reports, 6, 24125.PubMedPubMedCentralCrossRef Zheng, X., Chen, T., Zhao, A., Wang, X., Xie, G., Huang, F., et al. (2016). The brain metabolome of male rats across the lifespan. Scientific Reports, 6, 24125.PubMedPubMedCentralCrossRef
Metadata
Title
Bile Acids: A Communication Channel in the Gut-Brain Axis
Authors
Vera F. Monteiro-Cardoso
Maria Corlianò
Roshni R. Singaraja
Publication date
01-03-2021
Publisher
Springer US
Published in
NeuroMolecular Medicine / Issue 1/2021
Print ISSN: 1535-1084
Electronic ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-020-08625-z

Other articles of this Issue 1/2021

NeuroMolecular Medicine 1/2021 Go to the issue