Skip to main content
Top
Published in: Acta Neuropathologica Communications 1/2014

Open Access 01-12-2014 | Research

Reduced sphingosine kinase-1 and enhanced sphingosine 1-phosphate lyase expression demonstrate deregulated sphingosine 1-phosphate signaling in Alzheimer’s disease

Authors: Johnatan Ceccom, Najat Loukh, Valérie Lauwers-Cances, Christian Touriol, Yvan Nicaise, Catherine Gentil, Emmanuelle Uro-Coste, Stuart Pitson, Claude Alain Maurage, Charles Duyckaerts, Olivier Cuvillier, Marie-Bernadette Delisle

Published in: Acta Neuropathologica Communications | Issue 1/2014

Login to get access

Abstract

Background

The accumulation of beta amyloid (Aβ) peptides, a hallmark of Alzheimer’s disease (AD) is related to mechanisms leading to neurodegeneration. Among its pleiotropic cellular effects, Aβ accumulation has been associated with a deregulation of sphingolipid metabolism. Sphingosine 1-phosphate (S1P) derived from sphingosine is emerging as a critical lipid mediator regulating various biological activities including cell proliferation, survival, migration, inflammation, or angiogenesis. S1P tissue level is low and kept under control through equilibrium between its synthesis mostly governed by sphingosine kinase-1 (SphK1) and its degradation by sphingosine 1-phosphate lyase (SPL). We have previously reported that Aβ peptides were able to decrease the activity of SphK1 in cell culture models, an effect that could be blocked by the prosurvival IGF-1/IGF-1R signaling.

Results

Herein, we report for the first time the expression of both SphK1 and SPL by immunohistochemistry in frontal and entorhinal cortices from 56 human AD brains. Immunohistochemical analysis revealed a decreased expression of SphK1 and an increased expression of SPL both correlated to amyloid deposits in the entorhinal cortex. Otherwise, analysis of brain tissue extracts showed a decrease of SphK1 expression in AD brains whereas SPL expression was increased. The content of IGF-1R, an activator of SphK1, was found decreased in AD brains as well as S1P1, the major receptor for S1P.

Conclusions

Collectively, these results highlight the importance of S1P in AD suggesting the existence of a global deregulation of S1P signaling in this disease from its synthesis by SphK1 and degradation by SPL to its signaling by the S1P1 receptor.
Appendix
Available only for authorised users
Literature
1.
go back to reference Duyckaerts C, Delatour B, Potier MC: Classification and basic pathology of Alzheimer disease. Acta Neuropathol 2009, 118: 5–36.CrossRefPubMed Duyckaerts C, Delatour B, Potier MC: Classification and basic pathology of Alzheimer disease. Acta Neuropathol 2009, 118: 5–36.CrossRefPubMed
2.
go back to reference Nelson PT, Alafuzoff I, Bigio EH, et al.: Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J Neuropathol Exp Neurol 2012, 71: 362–381.CrossRefPubMedPubMedCentral Nelson PT, Alafuzoff I, Bigio EH, et al.: Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J Neuropathol Exp Neurol 2012, 71: 362–381.CrossRefPubMedPubMedCentral
3.
go back to reference Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K: Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 2006, 112: 389–404.CrossRefPubMedPubMedCentral Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K: Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 2006, 112: 389–404.CrossRefPubMedPubMedCentral
4.
go back to reference Braak H, Braak E: Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 1991, 82: 239–259.CrossRefPubMed Braak H, Braak E: Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 1991, 82: 239–259.CrossRefPubMed
5.
go back to reference Thal DR, Rub U, Orantes M, Braak H: Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology 2002, 58: 1791–1800.CrossRefPubMed Thal DR, Rub U, Orantes M, Braak H: Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology 2002, 58: 1791–1800.CrossRefPubMed
6.
go back to reference Farooqui AA, Horrocks LA, Farooqui T: Interactions between neural membrane glycerophospholipid and sphingolipid mediators: a recipe for neural cell survival or suicide. J Neurosci Res 2007, 85: 1834–1850.CrossRefPubMed Farooqui AA, Horrocks LA, Farooqui T: Interactions between neural membrane glycerophospholipid and sphingolipid mediators: a recipe for neural cell survival or suicide. J Neurosci Res 2007, 85: 1834–1850.CrossRefPubMed
7.
go back to reference Hartmann T, Kuchenbecker J, Grimm MO: Alzheimer’s disease: the lipid connection. J Neurochem 2007, 103(Suppl 1):159–170.CrossRefPubMed Hartmann T, Kuchenbecker J, Grimm MO: Alzheimer’s disease: the lipid connection. J Neurochem 2007, 103(Suppl 1):159–170.CrossRefPubMed
8.
go back to reference Marquer C, Devauges V, Cossec JC: Local cholesterol increase triggers amyloid precursor protein-Bace1 clustering in lipid rafts and rapid endocytosis. FASEB J 2011, 25: 1295–1305.CrossRefPubMed Marquer C, Devauges V, Cossec JC: Local cholesterol increase triggers amyloid precursor protein-Bace1 clustering in lipid rafts and rapid endocytosis. FASEB J 2011, 25: 1295–1305.CrossRefPubMed
10.
go back to reference Hannun YA, Obeid LM: Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 2008, 9: 139–150.CrossRefPubMed Hannun YA, Obeid LM: Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 2008, 9: 139–150.CrossRefPubMed
11.
go back to reference Spiegel S, Milstien S: Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat Rev Mol Cell Biol 2003, 4: 397–407.CrossRefPubMed Spiegel S, Milstien S: Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat Rev Mol Cell Biol 2003, 4: 397–407.CrossRefPubMed
12.
13.
go back to reference Pitson SM: Regulation of sphingosine kinase and sphingolipid signaling. Trends Biochem Sci 2011, 36: 97–107.CrossRefPubMed Pitson SM: Regulation of sphingosine kinase and sphingolipid signaling. Trends Biochem Sci 2011, 36: 97–107.CrossRefPubMed
14.
go back to reference Spiegel S, Cuvillier O, Edsall LC: Sphingosine-1-phosphate in cell growth and cell death. Ann N Y Acad Sci 1998, 845: 11–18.CrossRefPubMed Spiegel S, Cuvillier O, Edsall LC: Sphingosine-1-phosphate in cell growth and cell death. Ann N Y Acad Sci 1998, 845: 11–18.CrossRefPubMed
15.
go back to reference Cuvillier O, Pirianov G, Kleuser B: Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature 1996, 381: 800–803.CrossRefPubMed Cuvillier O, Pirianov G, Kleuser B: Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature 1996, 381: 800–803.CrossRefPubMed
16.
go back to reference Rosen H, Gonzalez-Cabrera PJ, Sanna MG, Brown S: Sphingosine 1-phosphate receptor signaling. Annu Rev Biochem 2009, 78: 743–768.CrossRefPubMed Rosen H, Gonzalez-Cabrera PJ, Sanna MG, Brown S: Sphingosine 1-phosphate receptor signaling. Annu Rev Biochem 2009, 78: 743–768.CrossRefPubMed
17.
go back to reference Alvarez SE, Harikumar KB, Hait NC, et al.: Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2. Nature 2010, 465: 1084–1088.CrossRefPubMedPubMedCentral Alvarez SE, Harikumar KB, Hait NC, et al.: Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2. Nature 2010, 465: 1084–1088.CrossRefPubMedPubMedCentral
18.
19.
go back to reference Cuvillier O: Downregulating sphingosine kinase-1 for cancer therapy. Expert Opin Ther Targets 2008, 12: 1009–1020.CrossRefPubMed Cuvillier O: Downregulating sphingosine kinase-1 for cancer therapy. Expert Opin Ther Targets 2008, 12: 1009–1020.CrossRefPubMed
20.
go back to reference Aguilar A, Saba JD: Truth and consequences of sphingosine-1-phosphate lyase. Adv Biol Regul 2012, 52: 17–30.CrossRefPubMed Aguilar A, Saba JD: Truth and consequences of sphingosine-1-phosphate lyase. Adv Biol Regul 2012, 52: 17–30.CrossRefPubMed
21.
go back to reference Brizuela L, Ader I, Mazerolles C, Bocquet M, Malavaud B, Cuvillier O: First evidence of sphingosine 1-phosphate lyase protein expression and activity downregulation in human neoplasm: implication for resistance to therapeutics in prostate cancer. Mol Cancer Ther 2012, 11: 1841–1851.CrossRefPubMed Brizuela L, Ader I, Mazerolles C, Bocquet M, Malavaud B, Cuvillier O: First evidence of sphingosine 1-phosphate lyase protein expression and activity downregulation in human neoplasm: implication for resistance to therapeutics in prostate cancer. Mol Cancer Ther 2012, 11: 1841–1851.CrossRefPubMed
22.
go back to reference He X, Huang Y, Li B, Gong CX, Schuchman EH: Deregulation of sphingolipid metabolism in Alzheimer’s disease. Neurobiol Aging 2010, 31: 398–408.CrossRefPubMed He X, Huang Y, Li B, Gong CX, Schuchman EH: Deregulation of sphingolipid metabolism in Alzheimer’s disease. Neurobiol Aging 2010, 31: 398–408.CrossRefPubMed
23.
go back to reference Rivera EJ, Goldin A, Fulmer N, Tavares R, Wands JR, de la Monte SM: Insulin and insulin-like growth factor expression and function deteriorate with progression of Alzheimer’s disease: link to brain reductions in acetylcholine. J Alzheimers Dis 2005, 8: 247–268.PubMed Rivera EJ, Goldin A, Fulmer N, Tavares R, Wands JR, de la Monte SM: Insulin and insulin-like growth factor expression and function deteriorate with progression of Alzheimer’s disease: link to brain reductions in acetylcholine. J Alzheimers Dis 2005, 8: 247–268.PubMed
24.
go back to reference Mielke MM, Lyketsos CG: Alterations of the sphingolipid pathway in Alzheimer’s disease: new biomarkers and treatment targets? Neuromolecular Med 2010, 12: 331–340.CrossRefPubMedPubMedCentral Mielke MM, Lyketsos CG: Alterations of the sphingolipid pathway in Alzheimer’s disease: new biomarkers and treatment targets? Neuromolecular Med 2010, 12: 331–340.CrossRefPubMedPubMedCentral
25.
go back to reference Bandaru VV, Troncoso J, Det W: ApoE4 disrupts sterol and sphingolipid metabolism in Alzheimer’s but not normal brain. Neurobiol Aging 2009, 30: 591–599.CrossRefPubMed Bandaru VV, Troncoso J, Det W: ApoE4 disrupts sterol and sphingolipid metabolism in Alzheimer’s but not normal brain. Neurobiol Aging 2009, 30: 591–599.CrossRefPubMed
26.
go back to reference Cutler RG, Kelly J, Storie K: Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. Proc Natl Acad Sci USA 2004, 101: 2070–2075.CrossRefPubMedPubMedCentral Cutler RG, Kelly J, Storie K: Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. Proc Natl Acad Sci USA 2004, 101: 2070–2075.CrossRefPubMedPubMedCentral
27.
go back to reference Han X, MH D, McKeel DW Jr, Kelley J, Morris JC: Substantial sulfatide deficiency and ceramide elevation in very early Alzheimer’s disease: potential role in disease pathogenesis. J Neurochem 2002, 82: 809–818.CrossRefPubMed Han X, MH D, McKeel DW Jr, Kelley J, Morris JC: Substantial sulfatide deficiency and ceramide elevation in very early Alzheimer’s disease: potential role in disease pathogenesis. J Neurochem 2002, 82: 809–818.CrossRefPubMed
28.
go back to reference Katsel P, Li C, Haroutunian V: Gene expression alterations in the sphingolipid metabolism pathways during progression of dementia and Alzheimer’s disease: a shift toward ceramide accumulation at the earliest recognizable stages of Alzheimer’s disease? Neurochem Res 2007, 32: 845–856.CrossRefPubMed Katsel P, Li C, Haroutunian V: Gene expression alterations in the sphingolipid metabolism pathways during progression of dementia and Alzheimer’s disease: a shift toward ceramide accumulation at the earliest recognizable stages of Alzheimer’s disease? Neurochem Res 2007, 32: 845–856.CrossRefPubMed
29.
go back to reference Pettegrew JW, Panchalingam K, Hamilton RL, McClure RJ: Brain membrane phospholipid alterations in Alzheimer’s disease. Neurochem Res 2001, 26: 771–782.CrossRefPubMed Pettegrew JW, Panchalingam K, Hamilton RL, McClure RJ: Brain membrane phospholipid alterations in Alzheimer’s disease. Neurochem Res 2001, 26: 771–782.CrossRefPubMed
30.
go back to reference Satoi H, Tomimoto H, Ohtani R, et al.: Astroglial expression of ceramide in Alzheimer’s disease brains: a role during neuronal apoptosis. Neuroscience 2005, 130: 657–666.CrossRefPubMed Satoi H, Tomimoto H, Ohtani R, et al.: Astroglial expression of ceramide in Alzheimer’s disease brains: a role during neuronal apoptosis. Neuroscience 2005, 130: 657–666.CrossRefPubMed
31.
go back to reference Mielke MM, Bandaru VVR, Haughey NJ, Rabins PV, Lyketsos CG, Carlson MC: Serum sphingomyelins and ceramides are early predictors of memory impairment. Neurobiol Aging 2010, 31: 17–24.CrossRefPubMed Mielke MM, Bandaru VVR, Haughey NJ, Rabins PV, Lyketsos CG, Carlson MC: Serum sphingomyelins and ceramides are early predictors of memory impairment. Neurobiol Aging 2010, 31: 17–24.CrossRefPubMed
32.
go back to reference Mielke MM, Haughey NJ, Bandaru VVR, et al.: Plasma ceramides are altered in mild cognitive impairment and predict cognitive decline and hippocampal volume loss. Alzheimers & Dementia 2010, 6: 378–385.CrossRef Mielke MM, Haughey NJ, Bandaru VVR, et al.: Plasma ceramides are altered in mild cognitive impairment and predict cognitive decline and hippocampal volume loss. Alzheimers & Dementia 2010, 6: 378–385.CrossRef
33.
go back to reference Gomez-Brouchet A, Pchejetski D, Let B: Critical role for sphingosine kinase-1 in regulating survival of neuroblastoma cells exposed to amyloid-beta peptide. Mol Pharmacol 2007, 72: 341–349.CrossRefPubMed Gomez-Brouchet A, Pchejetski D, Let B: Critical role for sphingosine kinase-1 in regulating survival of neuroblastoma cells exposed to amyloid-beta peptide. Mol Pharmacol 2007, 72: 341–349.CrossRefPubMed
34.
go back to reference Lee JT, Xu J, Lee JM, et al.: Amyloid-beta peptide induces oligodendrocyte death by activating the neutral sphingomyelinase-ceramide pathway. J Cell Biol 2004, 164: 123–131.CrossRefPubMedPubMedCentral Lee JT, Xu J, Lee JM, et al.: Amyloid-beta peptide induces oligodendrocyte death by activating the neutral sphingomyelinase-ceramide pathway. J Cell Biol 2004, 164: 123–131.CrossRefPubMedPubMedCentral
35.
go back to reference Puglielli L, Ellis BC, Saunders AJ, Kovacs DM: Ceramide stabilizes beta-site amyloid precursor protein-cleaving enzyme 1 and promotes amyloid beta-peptide biogenesis. J Biol Chem 2003, 278: 19777–19783.CrossRefPubMed Puglielli L, Ellis BC, Saunders AJ, Kovacs DM: Ceramide stabilizes beta-site amyloid precursor protein-cleaving enzyme 1 and promotes amyloid beta-peptide biogenesis. J Biol Chem 2003, 278: 19777–19783.CrossRefPubMed
36.
go back to reference Edsall LC, Cuvillier O, Twitty S, Spiegel S, Milstien S: Sphingosine kinase expression regulates apoptosis and caspase activation in PC12 cells. J Neurochem 2001, 76: 1573–1584.CrossRefPubMed Edsall LC, Cuvillier O, Twitty S, Spiegel S, Milstien S: Sphingosine kinase expression regulates apoptosis and caspase activation in PC12 cells. J Neurochem 2001, 76: 1573–1584.CrossRefPubMed
37.
go back to reference Carro E, Torres-Aleman I: The role of insulin and insulin-like growth factor I in the molecular and cellular mechanisms underlying the pathology of Alzheimer’s disease. Eur J Pharmacol 2004, 490: 127–133.CrossRefPubMed Carro E, Torres-Aleman I: The role of insulin and insulin-like growth factor I in the molecular and cellular mechanisms underlying the pathology of Alzheimer’s disease. Eur J Pharmacol 2004, 490: 127–133.CrossRefPubMed
38.
go back to reference Flanders KC, Ren RF, Lippa CF: Transforming growth factor-betas in neurodegenerative disease. Prog Neurobiol 1998, 54: 71–85.CrossRefPubMed Flanders KC, Ren RF, Lippa CF: Transforming growth factor-betas in neurodegenerative disease. Prog Neurobiol 1998, 54: 71–85.CrossRefPubMed
39.
go back to reference Tesseur I, Zou K, Esposito L, et al.: Deficiency in neuronal TGF-beta signaling promotes neurodegeneration and Alzheimer’s pathology. J Clin Invest 2006, 116: 3060–3069.CrossRefPubMedPubMedCentral Tesseur I, Zou K, Esposito L, et al.: Deficiency in neuronal TGF-beta signaling promotes neurodegeneration and Alzheimer’s pathology. J Clin Invest 2006, 116: 3060–3069.CrossRefPubMedPubMedCentral
40.
go back to reference Hemmati F, Dargahi L, Nasoohi S, et al.: Neurorestorative effect of FTY720 in a rat model of Alzheimer’s disease: comparison with memantine. Behav Brain Res 2013, 252C: 415–421.CrossRef Hemmati F, Dargahi L, Nasoohi S, et al.: Neurorestorative effect of FTY720 in a rat model of Alzheimer’s disease: comparison with memantine. Behav Brain Res 2013, 252C: 415–421.CrossRef
41.
go back to reference Montine TJ, Phelps CH, Beach TG, et al.: National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach. Acta Neuropathol 2012, 123: 1–11. 10.1007/s00401–011–0910–3CrossRefPubMed Montine TJ, Phelps CH, Beach TG, et al.: National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach. Acta Neuropathol 2012, 123: 1–11. 10.1007/s00401–011–0910–3CrossRefPubMed
42.
43.
go back to reference Duyckaerts C, Hauw JJ, Bastenaire F: Laminar distribution of neocortical senile plaques in senile dementia of the Alzheimer type. Acta Neuropathol 1986, 70: 249–256.CrossRefPubMed Duyckaerts C, Hauw JJ, Bastenaire F: Laminar distribution of neocortical senile plaques in senile dementia of the Alzheimer type. Acta Neuropathol 1986, 70: 249–256.CrossRefPubMed
44.
go back to reference Tu YK, Gilthorpe MS: Revisiting the relation between change and initial value: a review and evaluation. Stat Med 2007, 26: 443–457. 10.1002/sim.2538CrossRefPubMed Tu YK, Gilthorpe MS: Revisiting the relation between change and initial value: a review and evaluation. Stat Med 2007, 26: 443–457. 10.1002/sim.2538CrossRefPubMed
45.
go back to reference Musicco M, Adorni F, Di Santo S, et al.: Inverse occurrence of cancer and Alzheimer disease: a population-based incidence study. Neurology 2013, 81: 322–328.CrossRefPubMed Musicco M, Adorni F, Di Santo S, et al.: Inverse occurrence of cancer and Alzheimer disease: a population-based incidence study. Neurology 2013, 81: 322–328.CrossRefPubMed
46.
go back to reference Malaplate-Armand C, Florent-Bechard S, Youssef I, et al.: Soluble oligomers of amyloid-beta peptide induce neuronal apoptosis by activating a cPLA2-dependent sphingomyelinase-ceramide pathway. Neurobiol Dis 2006, 23: 178–189.CrossRefPubMed Malaplate-Armand C, Florent-Bechard S, Youssef I, et al.: Soluble oligomers of amyloid-beta peptide induce neuronal apoptosis by activating a cPLA2-dependent sphingomyelinase-ceramide pathway. Neurobiol Dis 2006, 23: 178–189.CrossRefPubMed
47.
48.
go back to reference Gomez-Isla T, Price JL, McKeel DW Jr, Morris JC, Growdon JH, Hyman BT: Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease. J Neurosci 1996, 16: 4491–4500.PubMed Gomez-Isla T, Price JL, McKeel DW Jr, Morris JC, Growdon JH, Hyman BT: Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease. J Neurosci 1996, 16: 4491–4500.PubMed
49.
go back to reference Colie S, Codogno P, Levade T, Andrieu-Abadie N: Regulation of cell death by sphingosine 1-phosphate lyase. Autophagy 2010, 6: 426–427.CrossRefPubMed Colie S, Codogno P, Levade T, Andrieu-Abadie N: Regulation of cell death by sphingosine 1-phosphate lyase. Autophagy 2010, 6: 426–427.CrossRefPubMed
50.
go back to reference Morgan AR, Turic D, Jehu L, et al.: Association studies of 23 positional/functional candidate genes on chromosome 10 in late-onset Alzheimer’s disease. Am J Med Genet B Neuropsych Genet 2007, 144B: 762–770.CrossRef Morgan AR, Turic D, Jehu L, et al.: Association studies of 23 positional/functional candidate genes on chromosome 10 in late-onset Alzheimer’s disease. Am J Med Genet B Neuropsych Genet 2007, 144B: 762–770.CrossRef
51.
go back to reference Kumar A, Byun HS, Bittman R, Saba JD: The sphingolipid degradation product trans-2-hexadecenal induces cytoskeletal reorganization and apoptosis in a JNK-dependent manner. Cell Signal 2011, 23: 1144–1152.CrossRefPubMedPubMedCentral Kumar A, Byun HS, Bittman R, Saba JD: The sphingolipid degradation product trans-2-hexadecenal induces cytoskeletal reorganization and apoptosis in a JNK-dependent manner. Cell Signal 2011, 23: 1144–1152.CrossRefPubMedPubMedCentral
52.
go back to reference Alvarez SE, Milstien S, Spiegel S: Autocrine and paracrine roles of sphingosine-1-phosphate. Trends Endocrinol Metab 2007, 18: 300–307.CrossRefPubMed Alvarez SE, Milstien S, Spiegel S: Autocrine and paracrine roles of sphingosine-1-phosphate. Trends Endocrinol Metab 2007, 18: 300–307.CrossRefPubMed
53.
go back to reference Carro E, Trejo JL, Gerber A: Therapeutic actions of insulin-like growth factor I on APP/PS2 mice with severe brain amyloidosis. Neurobiol Aging 2006, 27: 1250–1257.CrossRefPubMed Carro E, Trejo JL, Gerber A: Therapeutic actions of insulin-like growth factor I on APP/PS2 mice with severe brain amyloidosis. Neurobiol Aging 2006, 27: 1250–1257.CrossRefPubMed
54.
go back to reference Carro E, Trejo JL, Spuch C, Bohl D, Heard JM, Torres-Aleman I: Blockade of the insulin-like growth factor I receptor in the choroid plexus originates Alzheimer’s-like neuropathology in rodents: new cues into the human disease? Neurobiol Aging 2006, 27: 1618–1631.CrossRefPubMed Carro E, Trejo JL, Spuch C, Bohl D, Heard JM, Torres-Aleman I: Blockade of the insulin-like growth factor I receptor in the choroid plexus originates Alzheimer’s-like neuropathology in rodents: new cues into the human disease? Neurobiol Aging 2006, 27: 1618–1631.CrossRefPubMed
55.
go back to reference Zhao WQ, Lacor PN, Chen H, et al.: Insulin receptor dysfunction impairs cellular clearance of neurotoxic oligomeric a{beta}. J Biol Chem 2009, 284: 18742–18753.CrossRefPubMedPubMedCentral Zhao WQ, Lacor PN, Chen H, et al.: Insulin receptor dysfunction impairs cellular clearance of neurotoxic oligomeric a{beta}. J Biol Chem 2009, 284: 18742–18753.CrossRefPubMedPubMedCentral
56.
go back to reference Brinkmann V: Sphingosine 1-phosphate receptors in health and disease: mechanistic insights from gene deletion studies and reverse pharmacology. Pharmacol Ther 2007, 115: 84–105.CrossRefPubMed Brinkmann V: Sphingosine 1-phosphate receptors in health and disease: mechanistic insights from gene deletion studies and reverse pharmacology. Pharmacol Ther 2007, 115: 84–105.CrossRefPubMed
Metadata
Title
Reduced sphingosine kinase-1 and enhanced sphingosine 1-phosphate lyase expression demonstrate deregulated sphingosine 1-phosphate signaling in Alzheimer’s disease
Authors
Johnatan Ceccom
Najat Loukh
Valérie Lauwers-Cances
Christian Touriol
Yvan Nicaise
Catherine Gentil
Emmanuelle Uro-Coste
Stuart Pitson
Claude Alain Maurage
Charles Duyckaerts
Olivier Cuvillier
Marie-Bernadette Delisle
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Acta Neuropathologica Communications / Issue 1/2014
Electronic ISSN: 2051-5960
DOI
https://doi.org/10.1186/2051-5960-2-12

Other articles of this Issue 1/2014

Acta Neuropathologica Communications 1/2014 Go to the issue