Skip to main content

Advertisement

Log in

Activation of S1P1 Receptor Regulates PI3K/Akt/FoxO3a Pathway in Response to Oxidative Stress in PC12 Cells

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

FTY720 (fingolimod) is a sphingosine analogue that, when phosphorylated, becomes a prototypical sphingosine-1-phosphate (S1P) receptor modulator. It can enter the CNS and act on S1PRs expressed by most neural lineages. Recently, FTY720 neuroprotective and regenerative actions in the CNS have been demonstrated. In the present study, we have investigated whether the PI3K–Akt–FoxO3a axis is downstream to the S1P1 receptor modulation and involved in the cytoprotective effect of FTY720 in PC12 cells exposed to hydrogen peroxide (H2O2). The data showed that oxidative stress induces cell death in parallel with a significant decrease in PI3K, Akt and Akt target, and FoxO3a phosphorylation. FTY720 pretreatment increased cell survival which can be attributed to enhanced levels of inactive phosphorylated FoxO3a, a transcription factor playing critical role in oxidative stress-induced cell death. FTY720-phosphate (p-FTY720), a pan agonist of S1P receptors, as well as SEW2871, a selective S1P1 receptor agonist, similarly exerted cytoprotective effects. W123, a S1P1 receptor antagonist, abolished the effects of all three drugs, and concomitant application of DMS, a sphingosine kinase inhibitor, prevented the protective effects of FTY720. The data suggests that S1P1 receptor activation in the context of oxidative stress maintains PI3K/Akt signaling to prevent activation of FoxO3a, thereby promoting PC12 cell survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aebi, H (1974) Catalase. Methods of enzymatic analysis. New York Academic Press. 674–684

  • Aktas O, Küry P, Kieseier B et al (2010) Fingolimod is a potential novel therapy for multiple sclerosis. Nat Rev Neurol 6:373–382

    Article  CAS  PubMed  Google Scholar 

  • Albert R, Hinterding K, Brinkmann V et al (2005) Novel immunomodulator FTY720 is phosphorylated in rats and humans to form a single stereoisomer. Identification, chemical proof, and biological characterization of the biologically active species and its enantiomer. J Med Chem 48:5373–5377

    Article  CAS  PubMed  Google Scholar 

  • Asle-Rousta M, Kolahdooz Z, Oryan S et al (2013a) FTY720 (fingolimod) attenuates beta-amyloid peptide (Aβ42)-induced impairment of spatial learning and memory in rats. J Mol Neurosci 50:524–532

    Article  CAS  PubMed  Google Scholar 

  • Asle-Rousta M, Oryan S, Ahmadiani A, et al. (2013) Activation of sphingosine 1-phosphate receptor-1 by SEW2871 improves cognitive function in Alzheimer’s disease model rats

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brinkmann V, Pinschewer DD, Feng L et al (2001) FTY720: altered lymphocyte traffic results in allograft protection. Transplantation 72:764–769

    Article  CAS  PubMed  Google Scholar 

  • Brinkmann V, Davis MD, Heise CE et al (2002) The immune modulator FTY720 targets sphingosine 1-phosphate receptors. J Biol Chem 277:21453–21457

    Article  CAS  PubMed  Google Scholar 

  • Brunet A, Bonni A, Zigmond MJ et al (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96:857–868

    Article  CAS  PubMed  Google Scholar 

  • Brunet A, Datta SR, Greenberg ME (2001) Transcription-dependent and-independent control of neuronal survival by the PI3K–Akt signaling pathway. Curr Opin Neurobiol 11:297–305

    Article  CAS  PubMed  Google Scholar 

  • Brunet A, Sweeney LB, Sturgill JF et al (2004) Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303:2011–2015

    Article  CAS  PubMed  Google Scholar 

  • Chan PH (2001) Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab 21:2–14

    Article  CAS  PubMed  Google Scholar 

  • Cheng X, Zhang L, Hu J et al (2007) Neuroprotective effects of tetramethylpyrazine on hydrogen peroxide-induced apoptosis in PC12 cells. Cell Biol Int 31:438–443

    Article  CAS  PubMed  Google Scholar 

  • Chi XX, Nicol GD (2010) The sphingosine 1-phosphate receptor, S1PR1, plays a prominent but not exclusive role in enhancing the excitability of sensory neurons. J Neurophysiol 104:2741–2748

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chong ZZ, Li F, Maiese K (2005) Oxidative stress in the brain: novel cellular targets that govern survival during neurodegenerative disease. Prog Neurobiol 75:207–246

    Article  CAS  PubMed  Google Scholar 

  • Coelho RP, Payne SG, Bittman R et al (2007) The immunomodulator FTY720 has a direct cytoprotective effect in oligodendrocyte progenitors. J Pharmacol Exp Ther 323:626–635

    Article  CAS  PubMed  Google Scholar 

  • Cusack KP, Stoffel RH (2010) S1P (1) receptor agonists: assessment of selectivity and current clinical activity. Curr Opin Drug Disc Dev 13:481–488

    CAS  Google Scholar 

  • Cutler RG, Pedersen WA, Camandola S et al (2002) Evidence that accumulation of ceramides and cholesterol esters mediates oxidative stress–induced death of motor neurons in amyotrophic lateral sclerosis. Ann Neurol 52:448–457

    Article  CAS  PubMed  Google Scholar 

  • Deogracias R, Yazdani M, Dekkers MP et al (2012) Fingolimod, a sphingosine-1 phosphate receptor modulator, increases BDNF levels and improves symptoms of a mouse model of Rett syndrome. Proc Natl Acad Sci 109:14230–14235

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Di Pardo A, Amico E, Favellato M et al (2014) FTY720 (fingolimod) is a neuroprotective and disease-modifying agent in cellular and mouse models of Huntington disease. Hum Mol Genet 23:2251–2265

    Article  PubMed  Google Scholar 

  • Doi Y, Takeuchi H, Horiuchi H et al (2013) Fingolimod phosphate attenuates oligomeric amyloid β-induced neurotoxicity via increased brain-derived neurotrophic factor expression in neurons. PLoS One 8:e61988

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Edsall LC, Van Brocklyn JR, Cuvillier O et al (1998) N,N-Dimethylsphingosine is a potent competitive inhibitor of sphingosine kinase but not of protein kinase C: modulation of cellular levels of sphingosine 1-phosphate and ceramide. Biochemistry 37:12892–12898

    Article  CAS  PubMed  Google Scholar 

  • Fu Z, Tindall D (2008) FOXOs, cancer and regulation of apoptosis. Oncogene 27:2312–2319

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fujita T, Inoue K, Yamamoto S et al (1994) Fungal metabolites. Part 11. A potent immunosuppressive activity found in Isaria sinclairii metabolite. J Antibiot 47:208–215

    Article  CAS  PubMed  Google Scholar 

  • Fujita Y, Izawa Y, Ali N et al (2006) Pramipexole protects against H2O2-induced PC12 cell death. Naunyn Schmiedeberg's Arch Pharmacol 372:257–266

    Article  CAS  Google Scholar 

  • Fukunaga K, Ishigami T, Kawano T (2005) Transcriptional regulation of neuronal genes and its effect on neural functions: expression and function of forkhead transcription factors in neurons. J Pharmacol Sci 98:205–211

    Article  CAS  PubMed  Google Scholar 

  • Furuyama T, NAKAZAWA T, NAKANO I et al (2000) Identification of the differential distribution patterns of mRNAs and consensus binding sequences for mouse DAF-16 homologues. Biochem J 349:629–634

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gilley J, Coffer PJ, Ham J (2003) FOXO transcription factors directly activate bim gene expression and promote apoptosis in sympathetic neurons. J Cell Biol 162:613–622

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hasegawa Y, Suzuki H, Sozen T et al (2010) Activation of sphingosine 1-phosphate receptor-1 by FTY720 is neuroprotective after ischemic stroke in rats. Stroke 41:368–374

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Haughey NJ, Bandaru VV, Bae M et al (2010) Roles for dysfunctional sphingolipid metabolism in Alzheimer’s disease neuropathogenesis. Biochimica et Biophysica Acta (BBA)-Mol Cell Biol Lipids 1801:878–886

    Article  CAS  Google Scholar 

  • Hemmati F, Dargahi L, Nasoohi S et al (2013) Neurorestorative effect of FTY720 in a rat model of Alzheimer’s disease: comparison with memantine. Behav Brain Res 252:415–421

    Article  CAS  PubMed  Google Scholar 

  • Iwata E, Miyazaki I, Asanuma M et al (1998) Protective effects of nicergoline against hydrogen peroxide toxicity in rat neuronal cell line. Neurosci Lett 251:49–52

    Article  CAS  PubMed  Google Scholar 

  • Jackson GR, Apffel L, Werrbach-Perez K et al (1990) Role of nerve growth factor in oxidant-antioxidant balance and neuronal injury. I. Stimulation of hydrogen peroxide resistance. J Neurosci Res 25:360–368

    Article  CAS  PubMed  Google Scholar 

  • Jiang H, Zhang J, Zhu H et al (2007) Nerve growth factor prevents the apoptosis-associated increase in acetylcholinesterase activity after hydrogen peroxide treatment by activating Akt. Acta Biochim Biophys Sin 39:46–56

    CAS  PubMed  Google Scholar 

  • Jung C-G, Kim H, Miron V et al (2007) Functional consequences of S1P receptor modulation in rat oligodendroglial lineage cells. Glia 55:1656–1667

    Article  CAS  PubMed  Google Scholar 

  • Kakkar P, Das B, Viswanathan P (1984) A modified spectrophotometric assay of superoxide dismutase. Indian J Biochem Biophys 21:130–132

    CAS  PubMed  Google Scholar 

  • Kanno T, Nishizaki T, Proia R et al (2010) Regulation of synaptic strength by sphingosine 1-phosphate in the hippocampus. Neuroscience 171:973–980

    Article  CAS  PubMed  Google Scholar 

  • Kappos L, Antel J, Comi G et al (2006) Oral fingolimod (FTY720) for relapsing multiple sclerosis. N Engl J Med 355:1124–1140

    Article  CAS  PubMed  Google Scholar 

  • Lehtinen MK, Yuan Z, Boag PR et al (2006) A conserved MST-FOXO signaling pathway mediates oxidative-stress responses and extends life span. Cell 125:987–1001

    Article  CAS  PubMed  Google Scholar 

  • Lewen A, Matz P, CHAN PH (2000) Free radical pathways in CNS injury. J Neurotrauma 17:871–890

    Article  CAS  PubMed  Google Scholar 

  • Li D, Qu Y, Mao M et al (2009) Involvement of the PTEN–AKT–FOXO3a pathway in neuronal apoptosis in developing rat brain after hypoxia–ischemia. J Cereb Blood Flow Metab 29:1903–1913

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mielke MM, Bandaru VVR, McArthur JC et al (2010) Disturbance in cerebral spinal fluid sphingolipid content is associated with memory impairment in subjects infected with the human immunodeficiency virus. J Neurovirol 16:445–456

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Miller TM, Tansey MG, Johnson EM et al (1997) Inhibition of phosphatidylinositol 3-kinase activity blocks depolarization-and insulin-like growth factor I-mediated survival of cerebellar granule cells. J Biol Chem 272:9847–9853

    Article  CAS  PubMed  Google Scholar 

  • Mole SE, Williams RE, Goebel HH (2005) Correlations between genotype, ultrastructural morphology and clinical phenotype in the neuronal ceroid lipofuscinoses. Neurogenetics 6:107–126

    Article  PubMed  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

  • Nakahara T, Iwase A, Nakamura T et al (2012) Sphingosine-1-phosphate inhibits H < sub > 2</sub > O < sub > 2</sub > −induced granulosa cell apoptosis via the PI3K/Akt signaling pathway. Fertil Steril 98:1001–1008. e1001

    Article  CAS  PubMed  Google Scholar 

  • Namikawa K, Honma M, Abe K et al (2000) Akt/protein kinase B prevents injury-induced motoneuron death and accelerates axonal regeneration. J Neurosc 20:2875–2886

    CAS  Google Scholar 

  • Noda H, Takeuchi H, Mizuno T et al (2013) Fingolimod phosphate promotes the neuroprotective effects of microglia. J Neuroimmunol 256:13–18

    Article  CAS  PubMed  Google Scholar 

  • O’Connor P, Comi G, Montalban X et al (2009) Oral fingolimod (FTY720) in multiple sclerosis Two-year results of a phase II extension study. Neurology 72:73–79

    Article  PubMed  Google Scholar 

  • Payne SG, Oskeritzian CA, Griffiths R et al (2007) The immunosuppressant drug FTY720 inhibits cytosolic phospholipase A2 independently of sphingosine-1-phosphate receptors. Blood 109:1077–1085

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36

    Article  PubMed Central  PubMed  Google Scholar 

  • Rosen H, Gonzalez-Cabrera PJ, Sanna MG et al (2009) Sphingosine 1-phosphate receptor signaling. Annu Rev Biochem 78:743–768

    Article  CAS  PubMed  Google Scholar 

  • Rouach N, Pébay A, Même W et al (2006) S1P inhibits gap junctions in astrocytes: involvement of Gi and Rho GTPase/ROCK. Eur J Neurosci 23:1453–1464

    Article  PubMed  Google Scholar 

  • Rutherford C, Childs S, Ohotski J et al (2013) Regulation of cell survival by sphingosine-1-phosphate receptor S1P1 via reciprocal ERK-dependent suppression of Bim and PI-3-kinase/protein kinase C-mediated upregulation of Mcl-1. Cell Death Dis 4:e927

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Salvemini D, Doyle T, Kress M et al (2013) Therapeutic targeting of the ceramide-to-sphingosine 1-phosphate pathway in pain. Trends Pharmacol Sci 34:110–118

    Article  CAS  PubMed  Google Scholar 

  • Sampayo J, Gill M, Lithgow G (2003) Oxidative stress and aging-the use of superoxide dismutase/catalase mimetics to extend lifespan. Biochem Soc Trans 31:1305–1307

    Article  CAS  PubMed  Google Scholar 

  • Sanphui P, Biswas S (2013) FoxO3a is activated and executes neuron death via Bim in response to β-amyloid. Cell Death Dis 4:e625

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schwalm S, Pfeilschifter J, Huwiler A (2014) Targeting the sphingosine kinase/sphingosine 1-phosphate pathway to treat chronic inflammatory kidney diseases. Basic Clin Pharmacol Toxicol 114:44–49

    Article  CAS  PubMed  Google Scholar 

  • St-Pierre J, Drori S, Uldry M et al (2006) Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127:397–408

    Article  CAS  PubMed  Google Scholar 

  • Sugawara T, Chan PH (2003) Reactive oxygen radicals and pathogenesis of neuronal death after cerebral ischemia. Antioxid Redox Signal 5:597–607

    Article  CAS  PubMed  Google Scholar 

  • Toman RE, Payne SG, Watterson KR et al (2004) Differential transactivation of sphingosine-1-phosphate receptors modulates NGF-induced neurite extension. J Cell Biol 166:381–392

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • van der Horst A, Burgering BM (2007) Stressing the role of FoxO proteins in lifespan and disease. Nat Rev Mol Cell Biol 8:440–450

    Article  PubMed  Google Scholar 

  • van Echten-Deckert G, Walter J (2012) Sphingolipids: critical players in Alzheimer’s disease. Prog Lipid Res 51:378–393

    Article  PubMed  Google Scholar 

  • Vessey DA, Li L, Kelley M et al (2008) Sphingosine can pre- and post-condition heart and utilizes a different mechanism from sphingosine 1-phosphate. J Biochem Mol Toxicol 22:113–118

    Article  CAS  PubMed  Google Scholar 

  • Wang Z-j, Liang C-l, Li G-m et al (2007) Stearic acid protects primary cultured cortical neurons against oxidative stress. Acta Pharmacol Sin 28:315–326

    Article  PubMed  Google Scholar 

  • Wei Y, Yemisci M, Kim HH et al (2011) Fingolimod provides long-term protection in rodent models of cerebral ischemia. Ann Neurol 69:119–129

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yagi H, Kamba R, Chiba K et al (2000) Immunosuppressant FTY720 inhibits thymocyte emigration. Eur J Immunol 30:1435–1444

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Sapolsky RM, Steinberg GK (2006) Phosphoinositide-3-kinase/Akt survival signal pathways are implicated in neuronal survival after stroke. Mol Neurobiol 34:249–269

    Article  CAS  PubMed  Google Scholar 

  • Zhu W, Bijur GN, Styles NA et al (2004) Regulation of FOXO3a by brain-derived neurotrophic factor in differentiated human SH-SY5Y neuroblastoma cells. Mol Brain Res 126:45–56

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported financially by the Neuroscience Research Center, Shahid Beheshti University of Medical Sciences. The authors thank Dr. Khodagholi F for valuable guidance on PC12 experiments and Dr. Talebi for effective discussion on the real-time PCR results presentation.

Conflict of Interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leila Dargahi.

Additional information

Fatemeh Safarian and Behzad Khallaghi, as co-first author, contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safarian, F., Khallaghi, B., Ahmadiani, A. et al. Activation of S1P1 Receptor Regulates PI3K/Akt/FoxO3a Pathway in Response to Oxidative Stress in PC12 Cells. J Mol Neurosci 56, 177–187 (2015). https://doi.org/10.1007/s12031-014-0478-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-014-0478-1

Keywords

Navigation