Skip to main content
Top
Published in: Japanese Journal of Radiology 4/2020

01-04-2020 | Magnetic Resonance Imaging | Invited Review

PET and SPECT imaging of the brain: a review on the current status of nuclear medicine in Japan

Author: Tomohiro Kaneta

Published in: Japanese Journal of Radiology | Issue 4/2020

Login to get access

Abstract

Radiolabeled tracers allow visualization of not only perfusion, but receptors, function, and metabolism as well. Although spatial resolution is lower than that of computed tomography and magnetic resonance imaging, positron emission tomography (PET) and single photon emission computed tomography (SPECT) have great potential for target-specific imaging. In this review, we discuss several SPECT and PET tracers used in brain imaging, specifically focusing on tracers currently available, or developed, in Japan. Several important and sophisticated methods exist for analysis of brain PET and SPECT images. Two of them, quantitative cerebral blood flow measurement and voxel-based statistical analysis are discussed in this review. The former method, which employs acetazolamide loading, is useful for evaluation of the brain perfusion reserve for ischemic brain diseases. The latter is useful in diagnosing dementing diseases. Additionally, great strides have been made in the development of the technology used in the scanners. New SPECT systems based on cadmium–zinc–telluride, PET/MRI, and semiconductor PET/CT may provide higher spatial resolution with an acquisition time shorter than ever before. Such developments of both tracers and scanners can be integrated for unprecedented imagery of the brain, providing valuable insight into underlying causes of some fatal brain disorders.
Literature
1.
go back to reference Tikofsky RS, Trembath LA, Voslar AM. Radiopharmaceuticals for brain imaging: the technologist’s perspective. J Nucl Med Technol. 1993;21(2):57–60. Tikofsky RS, Trembath LA, Voslar AM. Radiopharmaceuticals for brain imaging: the technologist’s perspective. J Nucl Med Technol. 1993;21(2):57–60.
2.
go back to reference Menzel C, Steidele S, Grünwald F, Hufnagel A, Pavics L, Elger CE, et al. Evaluation of technetium-99m-ECD in childhood epilepsy. J Nucl Med. 1996;37(7):1106–12.PubMed Menzel C, Steidele S, Grünwald F, Hufnagel A, Pavics L, Elger CE, et al. Evaluation of technetium-99m-ECD in childhood epilepsy. J Nucl Med. 1996;37(7):1106–12.PubMed
3.
go back to reference Iida H, Akutsu T, Endo K, Fukuda H, Inoue T, Ito H, et al. A multicenter validation of regional cerebral blood flow quantitation using [123I]iodoamphetamine and single photon emission computed tomography. J Cereb Blood Flow Metab. 1996;16(5):781–93.PubMedCrossRef Iida H, Akutsu T, Endo K, Fukuda H, Inoue T, Ito H, et al. A multicenter validation of regional cerebral blood flow quantitation using [123I]iodoamphetamine and single photon emission computed tomography. J Cereb Blood Flow Metab. 1996;16(5):781–93.PubMedCrossRef
4.
go back to reference Greenberg JH, Kushner M, Rango M, Alavi A, Reivich M. Validation studies of iodine-123-iodoamphetamine as a cerebral blood flow tracer using emission tomography. J Nucl Med. 1990;31(8):1364–9.PubMed Greenberg JH, Kushner M, Rango M, Alavi A, Reivich M. Validation studies of iodine-123-iodoamphetamine as a cerebral blood flow tracer using emission tomography. J Nucl Med. 1990;31(8):1364–9.PubMed
5.
go back to reference Kuhl DE, Barrio JR, Huang SC, Selin C, Ackermann RF, Lear JL, et al. Quantifying local cerebral blood flow by N-isopropyl-p[I-123]iodo amphetamine (IMP) tomography. J Nucl Med. 1982;23:196–203.PubMed Kuhl DE, Barrio JR, Huang SC, Selin C, Ackermann RF, Lear JL, et al. Quantifying local cerebral blood flow by N-isopropyl-p[I-123]iodo amphetamine (IMP) tomography. J Nucl Med. 1982;23:196–203.PubMed
6.
go back to reference Hatazawa J, Iida H, Shimosegawa E, Sato T, Murakami M, Miura Y. Regional cerebral blood flow measurement with iodine-123-IMP autoradiography: normal values, reproducibility and sensitivity to hypoperfusion. J Nucl Med. 1997;38(7):1102–8.PubMed Hatazawa J, Iida H, Shimosegawa E, Sato T, Murakami M, Miura Y. Regional cerebral blood flow measurement with iodine-123-IMP autoradiography: normal values, reproducibility and sensitivity to hypoperfusion. J Nucl Med. 1997;38(7):1102–8.PubMed
7.
go back to reference Matsuda H, Yagishita A, Tsuji S, Hisada K. A quantitative approach to technetium-99m ethyl cysteinate dimer: a comparison with technetium-99m hexamethylpropylene amine oxime. Eur J Nucl Med. 1995;22(7):633–7.PubMedCrossRef Matsuda H, Yagishita A, Tsuji S, Hisada K. A quantitative approach to technetium-99m ethyl cysteinate dimer: a comparison with technetium-99m hexamethylpropylene amine oxime. Eur J Nucl Med. 1995;22(7):633–7.PubMedCrossRef
8.
go back to reference Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab. 1983;3(1):1–7.PubMedCrossRef Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab. 1983;3(1):1–7.PubMedCrossRef
9.
go back to reference Piao R, Oku N, Kitagawa K, Imaizumi M, Matsushita K, Yoshikawa T, et al. Cerebral hemodynamics and metabolism in adult moyamoya disease: comparison of angiographic collateral circulation. Ann Nucl Med. 2004;18(2):115–21.PubMedCrossRef Piao R, Oku N, Kitagawa K, Imaizumi M, Matsushita K, Yoshikawa T, et al. Cerebral hemodynamics and metabolism in adult moyamoya disease: comparison of angiographic collateral circulation. Ann Nucl Med. 2004;18(2):115–21.PubMedCrossRef
10.
go back to reference Kim JS, Moon DH, Kim GE, Cho YP, Kim JS, Ryu JS, et al. Acetazolamide stress brain-perfusion SPECT predicts the need for carotid shunting during carotid endarterectomy. J Nucl Med. 2000;41(11):1836–41.PubMed Kim JS, Moon DH, Kim GE, Cho YP, Kim JS, Ryu JS, et al. Acetazolamide stress brain-perfusion SPECT predicts the need for carotid shunting during carotid endarterectomy. J Nucl Med. 2000;41(11):1836–41.PubMed
11.
go back to reference Hirai Y, Fujimoto S, Toyoda K, Inoue T, Uwatoko T, Makihara N, et al. Superficial temporal artery duplex ultrasonography for improved cerebral hemodynamics after extracranial-intracranial bypass surgery. Cerebrovasc Dis. 2005;20(6):463–9.PubMedCrossRef Hirai Y, Fujimoto S, Toyoda K, Inoue T, Uwatoko T, Makihara N, et al. Superficial temporal artery duplex ultrasonography for improved cerebral hemodynamics after extracranial-intracranial bypass surgery. Cerebrovasc Dis. 2005;20(6):463–9.PubMedCrossRef
12.
go back to reference Jinnouchi J, Toyoda K, Inoue T, Fujimoto S, Gotoh S, Yasumori K, et al. Changes in brain volume 2 years after extracranial-intracranial bypass surgery: a preliminary subanalysis of the Japanese EC-IC trial. Cerebrovasc Dis. 2006;22(2–3):177–82.PubMedCrossRef Jinnouchi J, Toyoda K, Inoue T, Fujimoto S, Gotoh S, Yasumori K, et al. Changes in brain volume 2 years after extracranial-intracranial bypass surgery: a preliminary subanalysis of the Japanese EC-IC trial. Cerebrovasc Dis. 2006;22(2–3):177–82.PubMedCrossRef
13.
go back to reference Minoshima S, Frey KA, Koeppe RA, Foster NL, Kuhl DE. A diagnostic approach in Alzheimer's disease using three-dimensional stereotactic surface projections of fluorine-18-FDG PET. J Nucl Med. 1995;36(7):1238–48.PubMed Minoshima S, Frey KA, Koeppe RA, Foster NL, Kuhl DE. A diagnostic approach in Alzheimer's disease using three-dimensional stereotactic surface projections of fluorine-18-FDG PET. J Nucl Med. 1995;36(7):1238–48.PubMed
14.
go back to reference Friston KJ, Frith CD, Fletcher P, Liddle PF, Frackowiak RS. Functional topography: multidimensional scaling and functional connectivity in the brain. Cereb Cortex. 1996;6(2):156–64.PubMedCrossRef Friston KJ, Frith CD, Fletcher P, Liddle PF, Frackowiak RS. Functional topography: multidimensional scaling and functional connectivity in the brain. Cereb Cortex. 1996;6(2):156–64.PubMedCrossRef
15.
go back to reference Matsuda H, Mizumura S, Nagao T, Ota T, Iizuka T, Nemoto K, et al. Automated discrimination between very early Alzheimer disease and controls using an easy Z score imaging system for multicenter brain perfusion single-photon emission tomography. Am J Neuroradiol. 2007;28(4):731–6.PubMedPubMedCentral Matsuda H, Mizumura S, Nagao T, Ota T, Iizuka T, Nemoto K, et al. Automated discrimination between very early Alzheimer disease and controls using an easy Z score imaging system for multicenter brain perfusion single-photon emission tomography. Am J Neuroradiol. 2007;28(4):731–6.PubMedPubMedCentral
16.
go back to reference Minoshima S, Foster NL, Kuhl DE. Posterior cingulate cortex in Alzheimer's disease. Lancet. 1994;344(8926):895.PubMedCrossRef Minoshima S, Foster NL, Kuhl DE. Posterior cingulate cortex in Alzheimer's disease. Lancet. 1994;344(8926):895.PubMedCrossRef
17.
go back to reference Ishii K, Ito K, Nakanishi A, Kitamura S, Terashima A. Computer-assisted system for diagnosing degenerative dementia using cerebral blood flow SPECT and 3D-SSP: a multicenter study. Jpn J Radiol. 2014;32(7):383–90.PubMedCrossRef Ishii K, Ito K, Nakanishi A, Kitamura S, Terashima A. Computer-assisted system for diagnosing degenerative dementia using cerebral blood flow SPECT and 3D-SSP: a multicenter study. Jpn J Radiol. 2014;32(7):383–90.PubMedCrossRef
18.
go back to reference Kaneta T, Nakatsuka M, Nakamura K, Seki T, Yamaguchi S, Tsuboi M, et al. Improved diagnostic accuracy of SPECT through statistical analysis and the detection of hot spots at the primary sensorimotor area for the diagnosis of Alzheimer disease in a community-based study: "The Osaki-Tajiri Project". Clin Nucl Med. 2016;41(1):e1–6.PubMedCrossRef Kaneta T, Nakatsuka M, Nakamura K, Seki T, Yamaguchi S, Tsuboi M, et al. Improved diagnostic accuracy of SPECT through statistical analysis and the detection of hot spots at the primary sensorimotor area for the diagnosis of Alzheimer disease in a community-based study: "The Osaki-Tajiri Project". Clin Nucl Med. 2016;41(1):e1–6.PubMedCrossRef
19.
go back to reference Beer HF, Bläuenstein PA, Hasler PH, Delaloye B, Riccabona G, Bangerl I, et al. In vitro and in vivo evaluation of iodine-123-Ro 16-0154: a new imaging agent for SPECT investigations of benzodiazepine receptors. J Nucl Med. 1990;31(6):1007–144.PubMed Beer HF, Bläuenstein PA, Hasler PH, Delaloye B, Riccabona G, Bangerl I, et al. In vitro and in vivo evaluation of iodine-123-Ro 16-0154: a new imaging agent for SPECT investigations of benzodiazepine receptors. J Nucl Med. 1990;31(6):1007–144.PubMed
20.
21.
go back to reference Chuang SH, Reddy DS. Genetic and molecular regulation of extrasynaptic GABA-A receptors in the brain: therapeutic insights for epilepsy. J Pharmacol Exp Ther. 2018;364(2):180–97.PubMedPubMedCentralCrossRef Chuang SH, Reddy DS. Genetic and molecular regulation of extrasynaptic GABA-A receptors in the brain: therapeutic insights for epilepsy. J Pharmacol Exp Ther. 2018;364(2):180–97.PubMedPubMedCentralCrossRef
22.
go back to reference Lamusuo S, Ruottinen HM, Knuuti J, Härkönen R, Ruotsalainen U, Bergman J, et al. Comparison of [18F]FDG-PET, [99mTc]-HMPAO-SPECT, and [123I]-iomazenil-SPECT in localising the epileptogenic cortex. J Neurol Neurosurg Psychiatry. 1997;63(6):743–8.PubMedPubMedCentralCrossRef Lamusuo S, Ruottinen HM, Knuuti J, Härkönen R, Ruotsalainen U, Bergman J, et al. Comparison of [18F]FDG-PET, [99mTc]-HMPAO-SPECT, and [123I]-iomazenil-SPECT in localising the epileptogenic cortex. J Neurol Neurosurg Psychiatry. 1997;63(6):743–8.PubMedPubMedCentralCrossRef
23.
go back to reference Abiko K, Ikoma K, Shiga T, Katoh C, Hirata K, Kuge Y, et al. I-123 iomazenil single photon emission computed tomography for detecting loss of neuronal integrity in patients with traumatic brain injury. EJNMMI Res. 2017;7(1):28.PubMedPubMedCentralCrossRef Abiko K, Ikoma K, Shiga T, Katoh C, Hirata K, Kuge Y, et al. I-123 iomazenil single photon emission computed tomography for detecting loss of neuronal integrity in patients with traumatic brain injury. EJNMMI Res. 2017;7(1):28.PubMedPubMedCentralCrossRef
24.
go back to reference Beaulieu JM, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev. 2011;63(1):182–21717.PubMedCrossRef Beaulieu JM, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev. 2011;63(1):182–21717.PubMedCrossRef
25.
go back to reference Booij J, Hemelaar TG, Speelman JD, de Bruin K, Janssen AG, van Royen EA. One-day protocol for imaging of the nigrostriatal dopaminergic pathway in Parkinson's disease by [123I]FPCIT SPECT. J Nucl Med. 1999;40(5):753–61.PubMed Booij J, Hemelaar TG, Speelman JD, de Bruin K, Janssen AG, van Royen EA. One-day protocol for imaging of the nigrostriatal dopaminergic pathway in Parkinson's disease by [123I]FPCIT SPECT. J Nucl Med. 1999;40(5):753–61.PubMed
26.
go back to reference Grosset DG, Tatsch K, Oertel WH, Tolosa E, Bajaj N, Kupsch A, et al. Safety analysis of 10 clinical trials and for 13 years after first approval of ioflupane 123I injection (DaTscan). J Nucl Med. 2014;55(8):1281–7.PubMedCrossRef Grosset DG, Tatsch K, Oertel WH, Tolosa E, Bajaj N, Kupsch A, et al. Safety analysis of 10 clinical trials and for 13 years after first approval of ioflupane 123I injection (DaTscan). J Nucl Med. 2014;55(8):1281–7.PubMedCrossRef
27.
go back to reference Benamer TS, Patterson J, Grosset DG, Booij J, de Bruin K, van Royen E, et al. Accurate differentiation of parkinsonism and essential tremor using visual assessment of [123I]-FP-CIT SPECT imaging: the [123I]-FP-CIT study group. Mov Disord. 2000;15(3):503–10.PubMedCrossRef Benamer TS, Patterson J, Grosset DG, Booij J, de Bruin K, van Royen E, et al. Accurate differentiation of parkinsonism and essential tremor using visual assessment of [123I]-FP-CIT SPECT imaging: the [123I]-FP-CIT study group. Mov Disord. 2000;15(3):503–10.PubMedCrossRef
28.
go back to reference Jennings DL, Seibyl JP, Oakes D, Eberly S, Murphy J, Marek K. (123I) beta-CIT and single-photon emission computed tomographic imaging vs clinical evaluation in Parkinsonian syndrome: unmasking an early diagnosis. Arch Neurol. 2004;61(8):1224–9.PubMedCrossRef Jennings DL, Seibyl JP, Oakes D, Eberly S, Murphy J, Marek K. (123I) beta-CIT and single-photon emission computed tomographic imaging vs clinical evaluation in Parkinsonian syndrome: unmasking an early diagnosis. Arch Neurol. 2004;61(8):1224–9.PubMedCrossRef
29.
go back to reference Maekawa T, Sato N, Ota M, Sugiyama A, Sone D, Enokizono M, et al. Correlations between dopamine transporter density measured by 123I-FP-CIT SPECT and regional gray matter volume in Parkinson's disease. Jpn J Radiol. 2017;35(12):755–9.PubMedCrossRef Maekawa T, Sato N, Ota M, Sugiyama A, Sone D, Enokizono M, et al. Correlations between dopamine transporter density measured by 123I-FP-CIT SPECT and regional gray matter volume in Parkinson's disease. Jpn J Radiol. 2017;35(12):755–9.PubMedCrossRef
30.
go back to reference Chung M, Park YS, Kim JS, Kim YJ, Ma HI, Jang SJ, et al. Correlating Parkinson's disease motor symptoms with three-dimensional [(18)F]FP-CIT PET. Jpn J Radiol. 2015;33(10):609–18.PubMedCrossRef Chung M, Park YS, Kim JS, Kim YJ, Ma HI, Jang SJ, et al. Correlating Parkinson's disease motor symptoms with three-dimensional [(18)F]FP-CIT PET. Jpn J Radiol. 2015;33(10):609–18.PubMedCrossRef
31.
go back to reference McKeith IG, Boeve BF, Dickson DW, Halliday G, Taylor JP, Weintraub D, et al. Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB Consortium. Neurology. 2017;89(1):88–100.PubMedPubMedCentralCrossRef McKeith IG, Boeve BF, Dickson DW, Halliday G, Taylor JP, Weintraub D, et al. Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB Consortium. Neurology. 2017;89(1):88–100.PubMedPubMedCentralCrossRef
32.
go back to reference Tossici-Bolt L, Hoffmann SM, Kemp PM, Mehta RL, Fleming JS. Quantification of [123I]FP-CIT SPECT brain images: an accurate technique for measurement of the specific binding ratio. Eur J Nucl Med Mol Imaging. 2006;33(12):1491–9.PubMedCrossRef Tossici-Bolt L, Hoffmann SM, Kemp PM, Mehta RL, Fleming JS. Quantification of [123I]FP-CIT SPECT brain images: an accurate technique for measurement of the specific binding ratio. Eur J Nucl Med Mol Imaging. 2006;33(12):1491–9.PubMedCrossRef
33.
go back to reference Djang DS, Janssen MJ, Bohnen N, Booij J, Henderson TA, Herholz K, et al. SNM practice guideline for dopamine transporter imaging with 123I-ioflupane SPECT 1.0. J Nucl Med. 2012;53(1):154–63.PubMedCrossRef Djang DS, Janssen MJ, Bohnen N, Booij J, Henderson TA, Herholz K, et al. SNM practice guideline for dopamine transporter imaging with 123I-ioflupane SPECT 1.0. J Nucl Med. 2012;53(1):154–63.PubMedCrossRef
34.
go back to reference Benamer HT, Patterson J, Wyper DJ, Hadley DM, Macphee GJ, Grosset DG. Correlation of Parkinson’s disease severity and duration with 123I-FP-CIT SPECT striatal uptake. Mov Disord. 2000;15(4):692–8.PubMedCrossRef Benamer HT, Patterson J, Wyper DJ, Hadley DM, Macphee GJ, Grosset DG. Correlation of Parkinson’s disease severity and duration with 123I-FP-CIT SPECT striatal uptake. Mov Disord. 2000;15(4):692–8.PubMedCrossRef
35.
go back to reference Ziebell M, Andersen BB, Pinborg LH, Knudsen GM, Stokholm J, Thomsen G, et al. Striatal dopamine transporter binding does not correlate with clinical severity in dementia with Lewy bodies. J Nucl Med. 2013;54(7):1072–6.PubMedCrossRef Ziebell M, Andersen BB, Pinborg LH, Knudsen GM, Stokholm J, Thomsen G, et al. Striatal dopamine transporter binding does not correlate with clinical severity in dementia with Lewy bodies. J Nucl Med. 2013;54(7):1072–6.PubMedCrossRef
36.
go back to reference Shimizu S, Hirao K, Kanetaka H, Namioka N, Hatanaka H, Hirose D, et al. Utility of the combination of DAT SPECT and MIBG myocardial scintigraphy in differentiating dementia with Lewy bodies from Alzheimer's disease. Eur J Nucl Med Mol Imaging. 2016;43(1):184–92.PubMedCrossRef Shimizu S, Hirao K, Kanetaka H, Namioka N, Hatanaka H, Hirose D, et al. Utility of the combination of DAT SPECT and MIBG myocardial scintigraphy in differentiating dementia with Lewy bodies from Alzheimer's disease. Eur J Nucl Med Mol Imaging. 2016;43(1):184–92.PubMedCrossRef
37.
go back to reference Kobayashi S, Makino K, Hatakeyama S, Ishii T, Tateno M, Iwamoto T, et al. The usefulness of combined brain perfusion single-photon emission computed tomography, Dopamine-transporter single-photon emission computed tomography, and 123 I-metaiodobenzylguanidine myocardial scintigraphy for the diagnosis of dementia with Lewy bodies. Psychogeriatrics. 2017;17(4):247–55.PubMedCrossRef Kobayashi S, Makino K, Hatakeyama S, Ishii T, Tateno M, Iwamoto T, et al. The usefulness of combined brain perfusion single-photon emission computed tomography, Dopamine-transporter single-photon emission computed tomography, and 123 I-metaiodobenzylguanidine myocardial scintigraphy for the diagnosis of dementia with Lewy bodies. Psychogeriatrics. 2017;17(4):247–55.PubMedCrossRef
38.
go back to reference Kuwert T, Bartenstein P, Grünwald F, Herholz K, Larisch R, Sabri O, et al. Clinical value of positron emission tomography in neuromedicine. Position paper on results of an interdisciplinary consensus conference. Nervenarzt. 1989;69:1045–160.CrossRef Kuwert T, Bartenstein P, Grünwald F, Herholz K, Larisch R, Sabri O, et al. Clinical value of positron emission tomography in neuromedicine. Position paper on results of an interdisciplinary consensus conference. Nervenarzt. 1989;69:1045–160.CrossRef
39.
go back to reference Schelbert HR, Hoh CK, Royal HD, Brown M, Dahlbom MN, Dehdashti F, et al. Procedure guideline for tumor imaging using fluorine-18-FDG. Society of Nuclear Medicine. J Nucl Med. 1998;39(7):1302–5.PubMed Schelbert HR, Hoh CK, Royal HD, Brown M, Dahlbom MN, Dehdashti F, et al. Procedure guideline for tumor imaging using fluorine-18-FDG. Society of Nuclear Medicine. J Nucl Med. 1998;39(7):1302–5.PubMed
40.
go back to reference Messa C, Fazio F, Costa DC, Ell PJ. Clinical brain radionuclide imaging studies. Semin Nucl Med. 1995;25(2):111–43.PubMedCrossRef Messa C, Fazio F, Costa DC, Ell PJ. Clinical brain radionuclide imaging studies. Semin Nucl Med. 1995;25(2):111–43.PubMedCrossRef
41.
go back to reference Herholz K, Salmon E, Perani D, Baron JC, Holthoff V, Frölich L, et al. Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET. Neuroimage. 2002;17(1):302–16.PubMedCrossRef Herholz K, Salmon E, Perani D, Baron JC, Holthoff V, Frölich L, et al. Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET. Neuroimage. 2002;17(1):302–16.PubMedCrossRef
42.
go back to reference Herholz K, Carter SF, Jones M. Positron emission tomography imaging in dementia. Br J Radiol. 2007;80(Spec No 2):S160–S167167.PubMedCrossRef Herholz K, Carter SF, Jones M. Positron emission tomography imaging in dementia. Br J Radiol. 2007;80(Spec No 2):S160–S167167.PubMedCrossRef
43.
go back to reference Mosconi L, Tsui WH, Herholz K, Pupi A, Drzezga A, Lucignani G, et al. Multicenter standardized 18F-FDG PET diagnosis of mild cognitive impairment, Alzheimer's disease, and other dementias. J Nucl Med. 2008;49(3):390–8.PubMedCrossRef Mosconi L, Tsui WH, Herholz K, Pupi A, Drzezga A, Lucignani G, et al. Multicenter standardized 18F-FDG PET diagnosis of mild cognitive impairment, Alzheimer's disease, and other dementias. J Nucl Med. 2008;49(3):390–8.PubMedCrossRef
46.
go back to reference Iwasa H, Murata Y, Nishimori M, Miyatake K, Tadokoro M, Kohsaki S, et al. Remote effects in the ipsilateral thalamus and/or contralateral cerebellar hemisphere using FDG PET in patients with brain tumors. Jpn J Radiol. 2018;36(4):303–11.PubMedCrossRef Iwasa H, Murata Y, Nishimori M, Miyatake K, Tadokoro M, Kohsaki S, et al. Remote effects in the ipsilateral thalamus and/or contralateral cerebellar hemisphere using FDG PET in patients with brain tumors. Jpn J Radiol. 2018;36(4):303–11.PubMedCrossRef
47.
go back to reference Van Paesschen W, Dupont P, Sunaert S, Goffin K, Van Laere K. The use of SPECT and PET in routine clinical practice in epilepsy. Curr Opin Neurol. 2007;20(2):194–202.PubMedCrossRef Van Paesschen W, Dupont P, Sunaert S, Goffin K, Van Laere K. The use of SPECT and PET in routine clinical practice in epilepsy. Curr Opin Neurol. 2007;20(2):194–202.PubMedCrossRef
48.
go back to reference la Fougère C, Rominger A, Förster S, Geisler J, Bartenstein P. PET and SPECT in epilepsy: a critical review. Epilepsy Behav. 2009;15(1):50–5.PubMedCrossRef la Fougère C, Rominger A, Förster S, Geisler J, Bartenstein P. PET and SPECT in epilepsy: a critical review. Epilepsy Behav. 2009;15(1):50–5.PubMedCrossRef
49.
go back to reference Goffin K, Dedeurwaerdere S, Van Laere K, Van Paesschen W. Neuronuclear assessment of patients with epilepsy. Semin Nucl Med. 2008;38(4):227–39.PubMedCrossRef Goffin K, Dedeurwaerdere S, Van Laere K, Van Paesschen W. Neuronuclear assessment of patients with epilepsy. Semin Nucl Med. 2008;38(4):227–39.PubMedCrossRef
50.
go back to reference Perissinotti A, Niñerola-Baizán A, Rubí S, Carreño M, Marti-Fuster B, Aparicio J, et al. PISCOM: a new procedure for epilepsy combining ictal SPECT and interictal PET. Eur J Nucl Med Mol Imaging. 2018;45(13):2358–67.PubMedPubMedCentralCrossRef Perissinotti A, Niñerola-Baizán A, Rubí S, Carreño M, Marti-Fuster B, Aparicio J, et al. PISCOM: a new procedure for epilepsy combining ictal SPECT and interictal PET. Eur J Nucl Med Mol Imaging. 2018;45(13):2358–67.PubMedPubMedCentralCrossRef
51.
go back to reference Nakajima R, Kimura K, Abe K, Sakai S. 11C-methionine PET/CT findings in benign brain disease. Jpn J Radiol. 2017;35(6):279–88.PubMedCrossRef Nakajima R, Kimura K, Abe K, Sakai S. 11C-methionine PET/CT findings in benign brain disease. Jpn J Radiol. 2017;35(6):279–88.PubMedCrossRef
52.
go back to reference Herholz K, Hölzer T, Bauer B, Schröder R, Voges J, Ernestus RI, et al. 11C-methionine PET for differential diagnosis of low-grade gliomas. Neurology. 1998;50(5):1316–22.PubMedCrossRef Herholz K, Hölzer T, Bauer B, Schröder R, Voges J, Ernestus RI, et al. 11C-methionine PET for differential diagnosis of low-grade gliomas. Neurology. 1998;50(5):1316–22.PubMedCrossRef
53.
go back to reference Wu R, Watanabe Y, Arisawa A, Takahashi H, Tanaka H, Fujimoto Y, et al. Whole-tumor histogram analysis of the cerebral blood volume map: tumor volume defined by 11C-methionine positron emission tomography image improves the diagnostic accuracy of cerebral glioma grading. Jpn J Radiol. 2017;35(10):613–21.PubMedCrossRef Wu R, Watanabe Y, Arisawa A, Takahashi H, Tanaka H, Fujimoto Y, et al. Whole-tumor histogram analysis of the cerebral blood volume map: tumor volume defined by 11C-methionine positron emission tomography image improves the diagnostic accuracy of cerebral glioma grading. Jpn J Radiol. 2017;35(10):613–21.PubMedCrossRef
54.
go back to reference Sawataishi J, Mineura K, Sasajima T, Kowada M, Sugawara A, Shishido F. Effects of radiotherapy determined by 11C-methyl-L-methionine positron emission tomography in patients with primary cerebral malignant lymphoma. Neuroradiology. 1992;34(6):517–9.PubMedCrossRef Sawataishi J, Mineura K, Sasajima T, Kowada M, Sugawara A, Shishido F. Effects of radiotherapy determined by 11C-methyl-L-methionine positron emission tomography in patients with primary cerebral malignant lymphoma. Neuroradiology. 1992;34(6):517–9.PubMedCrossRef
55.
go back to reference Glaudemans AW, Enting RH, Heesters MA, Dierckx RA, van Rheenen RW, Walenkamp AM, et al. Value of 11C-methionine PET in imaging brain tumours and metastases. Eur J Nucl Med Mol Imaging. 2013;40(4):615–35.PubMedCrossRef Glaudemans AW, Enting RH, Heesters MA, Dierckx RA, van Rheenen RW, Walenkamp AM, et al. Value of 11C-methionine PET in imaging brain tumours and metastases. Eur J Nucl Med Mol Imaging. 2013;40(4):615–35.PubMedCrossRef
56.
go back to reference Law I, Albert NL, Arbizu J, Boellaard R, Drzezga A, Galldiks N, et al. Joint EANM/EANO/RANO practice guidelines/SNMMI procedure standards for imaging of gliomas using PET with radiolabelled amino acids and [18F]FDG: version 1.0. Eur J Nucl Med Mol Imaging. 2019;46(3):540–57.PubMedCrossRef Law I, Albert NL, Arbizu J, Boellaard R, Drzezga A, Galldiks N, et al. Joint EANM/EANO/RANO practice guidelines/SNMMI procedure standards for imaging of gliomas using PET with radiolabelled amino acids and [18F]FDG: version 1.0. Eur J Nucl Med Mol Imaging. 2019;46(3):540–57.PubMedCrossRef
57.
go back to reference Wakabayashi T, Iuchi T, Tsuyuguchi N, Nishikawa R, Arakawa Y, Sasayama T, et al. Diagnostic performance and safety of positron emission tomography using 18F-fluciclovine in patients with clinically suspected high- or low-grade gliomas: a multicenter phase IIb trial. Asia Ocean J Nucl Med Biol. 2017;5(1):10–211.PubMedPubMedCentral Wakabayashi T, Iuchi T, Tsuyuguchi N, Nishikawa R, Arakawa Y, Sasayama T, et al. Diagnostic performance and safety of positron emission tomography using 18F-fluciclovine in patients with clinically suspected high- or low-grade gliomas: a multicenter phase IIb trial. Asia Ocean J Nucl Med Biol. 2017;5(1):10–211.PubMedPubMedCentral
58.
go back to reference Tsuyuguchi N, Terakawa Y, Uda T, Nakajo K, Kanemura Y. Diagnosis of brain tumors using amino acid transport PET imaging with 18F-fluciclovine: a comparative study with l-methyl-11C-methionine PET imaging. Asia Ocean J Nucl Med Biol. 2017;5(2):85–94.PubMedPubMedCentral Tsuyuguchi N, Terakawa Y, Uda T, Nakajo K, Kanemura Y. Diagnosis of brain tumors using amino acid transport PET imaging with 18F-fluciclovine: a comparative study with l-methyl-11C-methionine PET imaging. Asia Ocean J Nucl Med Biol. 2017;5(2):85–94.PubMedPubMedCentral
59.
go back to reference Kondo A, Ishii H, Aoki S, Suzuki M, Nagasawa H, Kubota K, et al. Phase IIa clinical study of [18F]fluciclovine: efficacy and safety of a new PET tracer for brain tumors. Ann Nucl Med. 2016;30(9):608–18.PubMedCrossRef Kondo A, Ishii H, Aoki S, Suzuki M, Nagasawa H, Kubota K, et al. Phase IIa clinical study of [18F]fluciclovine: efficacy and safety of a new PET tracer for brain tumors. Ann Nucl Med. 2016;30(9):608–18.PubMedCrossRef
60.
go back to reference Jellinger K. Morphology of Alzheimer disease and related disorders. In: Maurer K, Riederer P, Beckmann H, editors. Alzheimer disease: epidemiology, neuropathology, neurochemistry, and clinics. Berlin: Springer; 1990. p. 61–77.CrossRef Jellinger K. Morphology of Alzheimer disease and related disorders. In: Maurer K, Riederer P, Beckmann H, editors. Alzheimer disease: epidemiology, neuropathology, neurochemistry, and clinics. Berlin: Springer; 1990. p. 61–77.CrossRef
61.
go back to reference Masters CL. Neuropathology of Alzheimer’s disease. In: Burns A, O’Brien J, Ames D, editors. Dementia. 3rd ed. London: Hodder Arnold; 2005. p. 393–407. Masters CL. Neuropathology of Alzheimer’s disease. In: Burns A, O’Brien J, Ames D, editors. Dementia. 3rd ed. London: Hodder Arnold; 2005. p. 393–407.
62.
go back to reference Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, et al. Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B. Ann Neurol. 2004;55(3):306–19.PubMedCrossRef Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, et al. Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B. Ann Neurol. 2004;55(3):306–19.PubMedCrossRef
63.
go back to reference Clark CM, Schneider JA, Bedell BJ, Beach TG, Bilker WB, Mintun MA, et al. Use of florbetapir-PET for imaging beta-amyloid pathology. JAMA. 2011;305(3):275–83.PubMedPubMedCentralCrossRef Clark CM, Schneider JA, Bedell BJ, Beach TG, Bilker WB, Mintun MA, et al. Use of florbetapir-PET for imaging beta-amyloid pathology. JAMA. 2011;305(3):275–83.PubMedPubMedCentralCrossRef
64.
go back to reference Barthel H, Gertz HJ, Dresel S, Peters O, Bartenstein P, Buerger K, et al. Cerebral amyloid-β PET with florbetaben (18F) in patients with Alzheimer's disease and healthy controls: a multicentre phase 2 diagnostic study. Lancet Neurol. 2011;10(5):424–35.PubMedCrossRef Barthel H, Gertz HJ, Dresel S, Peters O, Bartenstein P, Buerger K, et al. Cerebral amyloid-β PET with florbetaben (18F) in patients with Alzheimer's disease and healthy controls: a multicentre phase 2 diagnostic study. Lancet Neurol. 2011;10(5):424–35.PubMedCrossRef
65.
go back to reference Vandenberghe R, Van Laere K, Ivanoiu A, Salmon E, Bastin C, Triau E, et al. 18F-flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment: a phase 2 trial. Ann Neurol. 2010;68(3):319–29.PubMedCrossRef Vandenberghe R, Van Laere K, Ivanoiu A, Salmon E, Bastin C, Triau E, et al. 18F-flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment: a phase 2 trial. Ann Neurol. 2010;68(3):319–29.PubMedCrossRef
66.
go back to reference Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82(4):239–59.PubMedCrossRef Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82(4):239–59.PubMedCrossRef
67.
go back to reference Johnson KA, Minoshima S, Bohnen NI, Donohoe KJ, Foster NL, Herscovitch P, et al. Update on appropriate use criteria for amyloid PET imaging: dementia experts, mild cognitive impairment, and education. J Nucl Med. 2013;54(7):1011–3.PubMedCrossRef Johnson KA, Minoshima S, Bohnen NI, Donohoe KJ, Foster NL, Herscovitch P, et al. Update on appropriate use criteria for amyloid PET imaging: dementia experts, mild cognitive impairment, and education. J Nucl Med. 2013;54(7):1011–3.PubMedCrossRef
68.
69.
go back to reference Chiotis K, Saint-Aubert L, Boccardi M, Gietl A, Picco A, Varrone A, et al. Clinical validity of increased cortical uptake of amyloid ligands on PET as a biomarker for Alzheimer's disease in the context of a structured 5-phase development framework. Neurobiol Aging. 2017;52:214–27.PubMedCrossRef Chiotis K, Saint-Aubert L, Boccardi M, Gietl A, Picco A, Varrone A, et al. Clinical validity of increased cortical uptake of amyloid ligands on PET as a biomarker for Alzheimer's disease in the context of a structured 5-phase development framework. Neurobiol Aging. 2017;52:214–27.PubMedCrossRef
70.
go back to reference Rabinovici GD, Gatsonis C, Apgar C, Chaudhary K, Gareen I, Hanna L, et al. Association of amyloid positron emission tomography with subsequent change in clinical management among medicare beneficiaries with mild cognitive impairment or dementia. JAMA. 2019;321(13):1286–94.PubMedPubMedCentralCrossRef Rabinovici GD, Gatsonis C, Apgar C, Chaudhary K, Gareen I, Hanna L, et al. Association of amyloid positron emission tomography with subsequent change in clinical management among medicare beneficiaries with mild cognitive impairment or dementia. JAMA. 2019;321(13):1286–94.PubMedPubMedCentralCrossRef
71.
go back to reference Jellinger KA, Bancher C. Neuropathology of Alzheimer's disease: a critical update. J Neural Transm Suppl. 1998;54:77–95.PubMedCrossRef Jellinger KA, Bancher C. Neuropathology of Alzheimer's disease: a critical update. J Neural Transm Suppl. 1998;54:77–95.PubMedCrossRef
72.
go back to reference Michaelis ML, Dobrowsky RT, Li G. Tau neurofibrillary pathology and microtubule stability. J Mol Neurosci. 2002;19(3):289–93.PubMedCrossRef Michaelis ML, Dobrowsky RT, Li G. Tau neurofibrillary pathology and microtubule stability. J Mol Neurosci. 2002;19(3):289–93.PubMedCrossRef
73.
go back to reference Chien DT, Bahri S, Szardenings AK, Walsh JC, Mu F, Su MY, et al. Early clinical PET imaging results with the novel PHF-tau radioligand [F-18]-T807. J Alzheimers Dis. 2013;34(2):457–68.PubMedCrossRef Chien DT, Bahri S, Szardenings AK, Walsh JC, Mu F, Su MY, et al. Early clinical PET imaging results with the novel PHF-tau radioligand [F-18]-T807. J Alzheimers Dis. 2013;34(2):457–68.PubMedCrossRef
74.
go back to reference Maruyama M, Shimada H, Suhara T, Shinotoh H, Ji B, Maeda J, et al. Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls. Neuron. 2013;79(6):1094–108.PubMedCrossRef Maruyama M, Shimada H, Suhara T, Shinotoh H, Ji B, Maeda J, et al. Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls. Neuron. 2013;79(6):1094–108.PubMedCrossRef
75.
go back to reference Walji AM, Hostetler ED, Selnick H, Zeng Z, Miller P, Bennacef I, et al. Discovery of 6-(fluoro-(18)F)-3-(1H-pyrrolo[2,3-c]pyridin-1-yl)isoquinolin-5-amine ([(18)F]-MK-6240): a positron emission tomography (PET) imaging agent for quantification of neurofibrillary tangles (NFTs). J Med Chem. 2016;59(10):4778–899.PubMedCrossRef Walji AM, Hostetler ED, Selnick H, Zeng Z, Miller P, Bennacef I, et al. Discovery of 6-(fluoro-(18)F)-3-(1H-pyrrolo[2,3-c]pyridin-1-yl)isoquinolin-5-amine ([(18)F]-MK-6240): a positron emission tomography (PET) imaging agent for quantification of neurofibrillary tangles (NFTs). J Med Chem. 2016;59(10):4778–899.PubMedCrossRef
76.
go back to reference Chiotis K, Saint-Aubert L, Savitcheva I, Jelic V, Andersen P, Jonasson M, et al. Imaging in-vivo tau pathology in Alzheimer's disease with THK5317 PET in a multimodal paradigm. Eur J Nucl Med Mol Imaging. 2016;43(9):1686–99.PubMedPubMedCentralCrossRef Chiotis K, Saint-Aubert L, Savitcheva I, Jelic V, Andersen P, Jonasson M, et al. Imaging in-vivo tau pathology in Alzheimer's disease with THK5317 PET in a multimodal paradigm. Eur J Nucl Med Mol Imaging. 2016;43(9):1686–99.PubMedPubMedCentralCrossRef
77.
go back to reference Harada R, Okamura N, Furumoto S, Furukawa K, Ishiki A, Tomita N, et al. 18F-THK5351: a novel PET radiotracer for imaging neurofibrillary pathology in Alzheimer disease. J Nucl Med. 2016;57(2):208–14.PubMedCrossRef Harada R, Okamura N, Furumoto S, Furukawa K, Ishiki A, Tomita N, et al. 18F-THK5351: a novel PET radiotracer for imaging neurofibrillary pathology in Alzheimer disease. J Nucl Med. 2016;57(2):208–14.PubMedCrossRef
78.
go back to reference Schöll M, Lockhart SN, Schonhaut DR, O'Neil JP, Janabi M, Ossenkoppele R, et al. PET imaging of Tau deposition in the aging human brain. Neuron. 2016;89(5):971–82.PubMedPubMedCentralCrossRef Schöll M, Lockhart SN, Schonhaut DR, O'Neil JP, Janabi M, Ossenkoppele R, et al. PET imaging of Tau deposition in the aging human brain. Neuron. 2016;89(5):971–82.PubMedPubMedCentralCrossRef
79.
go back to reference Johnson KA, Schultz A, Betensky RA, Becker JA, Sepulcre J, Rentz D, et al. Tau positron emission tomographic imaging in aging and early Alzheimer disease. Ann Neurol. 2016;79(1):110–9.PubMedCrossRef Johnson KA, Schultz A, Betensky RA, Becker JA, Sepulcre J, Rentz D, et al. Tau positron emission tomographic imaging in aging and early Alzheimer disease. Ann Neurol. 2016;79(1):110–9.PubMedCrossRef
80.
go back to reference Passamonti L, Vazquez Rodriguez P, Hong YT, Allinson KS, Williamson D, Borchert RJ, et al. 18F-AV-1451 positron emission tomography in Alzheimer’s disease and progressive supranuclear palsy. Brain. 2017;140(3):781–91.PubMedPubMedCentral Passamonti L, Vazquez Rodriguez P, Hong YT, Allinson KS, Williamson D, Borchert RJ, et al. 18F-AV-1451 positron emission tomography in Alzheimer’s disease and progressive supranuclear palsy. Brain. 2017;140(3):781–91.PubMedPubMedCentral
81.
go back to reference Ng KP, Pascoal TA, Mathotaarachchi S, Therriault J, Kang MS, Shin M, et al. Monoamine oxidase B inhibitor, selegiline, reduces 18F-THK5351 uptake in the human brain. Alzheimers Res Ther. 2017;9(1):25.PubMedPubMedCentralCrossRef Ng KP, Pascoal TA, Mathotaarachchi S, Therriault J, Kang MS, Shin M, et al. Monoamine oxidase B inhibitor, selegiline, reduces 18F-THK5351 uptake in the human brain. Alzheimers Res Ther. 2017;9(1):25.PubMedPubMedCentralCrossRef
82.
go back to reference Harada R, Ishiki A, Kai H, Sato N, Furukawa K, Furumoto S, et al. Correlations of 18F-THK5351 PET with postmortem burden of tau and astrogliosis in Alzheimer disease. J Nucl Med. 2018;59(4):671–4.PubMedCrossRef Harada R, Ishiki A, Kai H, Sato N, Furukawa K, Furumoto S, et al. Correlations of 18F-THK5351 PET with postmortem burden of tau and astrogliosis in Alzheimer disease. J Nucl Med. 2018;59(4):671–4.PubMedCrossRef
83.
go back to reference Vermeiren C, Motte P, Viot D, Mairet-Coello G, Courade JP, Citron M, et al. The tau positron-emission tomography tracer AV-1451 binds with similar affinities to tau fibrils and monoamine oxidases. Mov Disord. 2018;33(2):273–81.PubMedCrossRef Vermeiren C, Motte P, Viot D, Mairet-Coello G, Courade JP, Citron M, et al. The tau positron-emission tomography tracer AV-1451 binds with similar affinities to tau fibrils and monoamine oxidases. Mov Disord. 2018;33(2):273–81.PubMedCrossRef
84.
go back to reference Gobbi LC, Knust H, Körner M, Honer M, Czech C, Belli S, et al. Identification of three novel radiotracers for imaging aggregated tau in Alzheimer's disease with positron emission tomography. J Med Chem. 2017;60(17):7350–70.PubMedCrossRef Gobbi LC, Knust H, Körner M, Honer M, Czech C, Belli S, et al. Identification of three novel radiotracers for imaging aggregated tau in Alzheimer's disease with positron emission tomography. J Med Chem. 2017;60(17):7350–70.PubMedCrossRef
85.
go back to reference Kroth H, Oden F, Molette J, Schieferstein H, Capotosti F, Mueller A, et al. Discovery and preclinical characterization of [18F]PI-2620, a next-generation tau PET tracer for the assessment of tau pathology in Alzheimer's disease and other tauopathies. Eur J Nucl Med Mol Imaging. 2019;46(10):2178–89.PubMedPubMedCentralCrossRef Kroth H, Oden F, Molette J, Schieferstein H, Capotosti F, Mueller A, et al. Discovery and preclinical characterization of [18F]PI-2620, a next-generation tau PET tracer for the assessment of tau pathology in Alzheimer's disease and other tauopathies. Eur J Nucl Med Mol Imaging. 2019;46(10):2178–89.PubMedPubMedCentralCrossRef
86.
go back to reference Furumoto S, Harada R, Rowe C, Villemagne V, Okamura N. Current status and future prospects of new radiotracers for molecular imaging of neuropathological changes in Alzheimer’s disease. Rinshogazo. 2019;35(8):933–42 (in Japanese). Furumoto S, Harada R, Rowe C, Villemagne V, Okamura N. Current status and future prospects of new radiotracers for molecular imaging of neuropathological changes in Alzheimer’s disease. Rinshogazo. 2019;35(8):933–42 (in Japanese).
87.
go back to reference Albrecht DS, Granziera C, Hooker JM, Loggia ML. In Vivo imaging of human neuroinflammation. ACS Chem Neurosci. 2016;7(4):470–83.PubMedCrossRef Albrecht DS, Granziera C, Hooker JM, Loggia ML. In Vivo imaging of human neuroinflammation. ACS Chem Neurosci. 2016;7(4):470–83.PubMedCrossRef
88.
go back to reference Janssen B, Mach RH. Development of brain PET imaging agents: Strategies for imaging neuroinflammation in Alzheimer's disease. Prog Mol Biol Transl Sci. 2019;165:371–99.PubMedCrossRef Janssen B, Mach RH. Development of brain PET imaging agents: Strategies for imaging neuroinflammation in Alzheimer's disease. Prog Mol Biol Transl Sci. 2019;165:371–99.PubMedCrossRef
89.
go back to reference Ezura M, Kikuchi A, Ishiki A, Okamura N, Hasegawa T, Harada R, et al. Longitudinal changes in 18F-THK5351 positron emission tomography in corticobasal syndrome. Eur J Neurol. 2019;26(9):1205–11.PubMedCrossRef Ezura M, Kikuchi A, Ishiki A, Okamura N, Hasegawa T, Harada R, et al. Longitudinal changes in 18F-THK5351 positron emission tomography in corticobasal syndrome. Eur J Neurol. 2019;26(9):1205–11.PubMedCrossRef
91.
go back to reference Pichler BJ, Wehrl HF, Kolb A, Judenhofer MS. Positron emission tomography/magnetic resonance imaging: the next generation of multimodality imaging? Semin Nucl Med. 2008;38(3):199–208.PubMedPubMedCentralCrossRef Pichler BJ, Wehrl HF, Kolb A, Judenhofer MS. Positron emission tomography/magnetic resonance imaging: the next generation of multimodality imaging? Semin Nucl Med. 2008;38(3):199–208.PubMedPubMedCentralCrossRef
92.
go back to reference Maramraju SH, Smith SD, Junnarkar SS, Schulz D, Stoll S, Ravindranath B, et al. Small animal simultaneous PET/MRI: initial experiences in a 9.4 T microMRI. Phys Med Biol. 2011;56(8):2459–80.PubMedCrossRef Maramraju SH, Smith SD, Junnarkar SS, Schulz D, Stoll S, Ravindranath B, et al. Small animal simultaneous PET/MRI: initial experiences in a 9.4 T microMRI. Phys Med Biol. 2011;56(8):2459–80.PubMedCrossRef
93.
go back to reference Catana C, Procissi D, Wu Y, Judenhofer MS, Qi J, Pichler BJ, et al. Simultaneous in vivo positron emission tomography and magnetic resonance imaging. Proc Natl Acad Sci USA. 2008;105(10):3705–10.PubMedPubMedCentralCrossRef Catana C, Procissi D, Wu Y, Judenhofer MS, Qi J, Pichler BJ, et al. Simultaneous in vivo positron emission tomography and magnetic resonance imaging. Proc Natl Acad Sci USA. 2008;105(10):3705–10.PubMedPubMedCentralCrossRef
94.
go back to reference Schlemmer HP, Pichler BJ, Schmand M, Burbar Z, Michel C, Ladebeck R, et al. Simultaneous MR/PET imaging of the human brain: feasibility study. Radiology. 2008;248(3):1028–35.PubMedCrossRef Schlemmer HP, Pichler BJ, Schmand M, Burbar Z, Michel C, Ladebeck R, et al. Simultaneous MR/PET imaging of the human brain: feasibility study. Radiology. 2008;248(3):1028–35.PubMedCrossRef
95.
go back to reference Kaneta T. A brief review of Japanese guidelines for the clinical use of (18)F-FDG-PET/MRI 2012 (Ver 1.0). Ann Nucl Med. 2013;27(4):309–13.PubMedCrossRef Kaneta T. A brief review of Japanese guidelines for the clinical use of (18)F-FDG-PET/MRI 2012 (Ver 1.0). Ann Nucl Med. 2013;27(4):309–13.PubMedCrossRef
96.
go back to reference Aiello M, Cavaliere C, Fiorenza D, Duggento A, Passamonti L, Toschi N. Neuroinflammation in neurodegenerative diseases: current multi-modal imaging studies and future opportunities for hybrid PET/MRI. Neuroscience. 2019;403:125–35.PubMedCrossRef Aiello M, Cavaliere C, Fiorenza D, Duggento A, Passamonti L, Toschi N. Neuroinflammation in neurodegenerative diseases: current multi-modal imaging studies and future opportunities for hybrid PET/MRI. Neuroscience. 2019;403:125–35.PubMedCrossRef
97.
go back to reference Stegger L, Martirosian P, Schwenzer N, Bisdas S, Kolb A, Pfannenberg C, et al. Simultaneous PET/MR imaging of the brain: feasibility of cerebral blood flow measurements with FAIR-TrueFISP arterial spin labeling MRI. Acta Radiol. 2012;53(9):1066–72.PubMedCrossRef Stegger L, Martirosian P, Schwenzer N, Bisdas S, Kolb A, Pfannenberg C, et al. Simultaneous PET/MR imaging of the brain: feasibility of cerebral blood flow measurements with FAIR-TrueFISP arterial spin labeling MRI. Acta Radiol. 2012;53(9):1066–72.PubMedCrossRef
98.
go back to reference Dukart J, Mueller K, Barthel H, Villringer A, Sabri O, Schroeter ML, Alzheimer's Disease Neuroimaging Initiative. Meta-analysis based SVM classification enables accurate detection of Alzheimer's disease across different clinical centers using FDG-PET and MRI. Psychiatry Res. 2013;212(3):230–6.PubMedCrossRef Dukart J, Mueller K, Barthel H, Villringer A, Sabri O, Schroeter ML, Alzheimer's Disease Neuroimaging Initiative. Meta-analysis based SVM classification enables accurate detection of Alzheimer's disease across different clinical centers using FDG-PET and MRI. Psychiatry Res. 2013;212(3):230–6.PubMedCrossRef
99.
go back to reference Rischpler C, Nekolla SG, Dregely I, Schwaiger M. Hybrid PET/MR imaging of the heart: potential, initial experiences, and future prospects. J Nucl Med. 2013;54(3):402–15.PubMedCrossRef Rischpler C, Nekolla SG, Dregely I, Schwaiger M. Hybrid PET/MR imaging of the heart: potential, initial experiences, and future prospects. J Nucl Med. 2013;54(3):402–15.PubMedCrossRef
100.
go back to reference Nensa F, Poeppel TD, Beiderwellen K, Schelhorn J, Mahabadi AA, Erbel R, et al. Hybrid PET/MR imaging of the heart: feasibility and initial results. Radiology. 2013;268(2):366–73.PubMedCrossRef Nensa F, Poeppel TD, Beiderwellen K, Schelhorn J, Mahabadi AA, Erbel R, et al. Hybrid PET/MR imaging of the heart: feasibility and initial results. Radiology. 2013;268(2):366–73.PubMedCrossRef
101.
go back to reference Parghane RV, Basu S. PET/computed tomography and PET/MR imaging: basic principles, methodology, and imaging protocol for musculoskeletal applications. PET Clin. 2018;13(4):459–76.PubMedCrossRef Parghane RV, Basu S. PET/computed tomography and PET/MR imaging: basic principles, methodology, and imaging protocol for musculoskeletal applications. PET Clin. 2018;13(4):459–76.PubMedCrossRef
102.
go back to reference Hirsch FW, Sattler B, Sorge I, Kurch L, Viehweger A, Ritter L, et al. PET/MR in children. Initial clinical experience in paediatric oncology using an integrated PET/MR scanner. Pediatr Radiol. 2013;43(7):860–75.PubMedPubMedCentralCrossRef Hirsch FW, Sattler B, Sorge I, Kurch L, Viehweger A, Ritter L, et al. PET/MR in children. Initial clinical experience in paediatric oncology using an integrated PET/MR scanner. Pediatr Radiol. 2013;43(7):860–75.PubMedPubMedCentralCrossRef
103.
go back to reference Sonni I, Baratto L, Park S, Hatami N, Srinivas S, Davidzon G, et al. Initial experience with a SiPM-based PET/CT scanner: influence of acquisition time on image quality. EJNMMI Phys. 2018;5(1):9.PubMedPubMedCentralCrossRef Sonni I, Baratto L, Park S, Hatami N, Srinivas S, Davidzon G, et al. Initial experience with a SiPM-based PET/CT scanner: influence of acquisition time on image quality. EJNMMI Phys. 2018;5(1):9.PubMedPubMedCentralCrossRef
104.
go back to reference Trägårdh E, Minarik D, Almquist H, Bitzén U, Garpered S, Hvittfelt E, et al. Impact of acquisition time and penalizing factor in a block-sequential regularized expectation maximization reconstruction algorithm on a Si-photomultiplier-based PET-CT system for 18F-FDG. EJNMMI Res. 2019;9(1):64.PubMedPubMedCentralCrossRef Trägårdh E, Minarik D, Almquist H, Bitzén U, Garpered S, Hvittfelt E, et al. Impact of acquisition time and penalizing factor in a block-sequential regularized expectation maximization reconstruction algorithm on a Si-photomultiplier-based PET-CT system for 18F-FDG. EJNMMI Res. 2019;9(1):64.PubMedPubMedCentralCrossRef
105.
go back to reference Wagatsuma K, Miwa K, Sakata M, Oda K, Ono H, Kameyama M, et al. Comparison between new-generation SiPM-based and conventional PMT-based TOF-PET/CT. Phys Med. 2017;42:203–10.PubMedCrossRef Wagatsuma K, Miwa K, Sakata M, Oda K, Ono H, Kameyama M, et al. Comparison between new-generation SiPM-based and conventional PMT-based TOF-PET/CT. Phys Med. 2017;42:203–10.PubMedCrossRef
106.
go back to reference Yeom JY, Vinke R, Levin CS. Optimizing timing performance of silicon photomultiplier-based scintillation detectors. Phys Med Biol. 2013;58(4):1207–20.PubMedPubMedCentralCrossRef Yeom JY, Vinke R, Levin CS. Optimizing timing performance of silicon photomultiplier-based scintillation detectors. Phys Med Biol. 2013;58(4):1207–20.PubMedPubMedCentralCrossRef
107.
go back to reference López-Mora DA, Flotats A, Fuentes-Ocampo F, Camacho V, Fernández A, Ruiz A, et al. Comparison of image quality and lesion detection between digital and analog PET/CT. Eur J Nucl Med Mol Imaging. 2019;46(6):1383–90.PubMedCrossRef López-Mora DA, Flotats A, Fuentes-Ocampo F, Camacho V, Fernández A, Ruiz A, et al. Comparison of image quality and lesion detection between digital and analog PET/CT. Eur J Nucl Med Mol Imaging. 2019;46(6):1383–90.PubMedCrossRef
Metadata
Title
PET and SPECT imaging of the brain: a review on the current status of nuclear medicine in Japan
Author
Tomohiro Kaneta
Publication date
01-04-2020
Publisher
Springer Singapore
Published in
Japanese Journal of Radiology / Issue 4/2020
Print ISSN: 1867-1071
Electronic ISSN: 1867-108X
DOI
https://doi.org/10.1007/s11604-019-00901-8

Other articles of this Issue 4/2020

Japanese Journal of Radiology 4/2020 Go to the issue