Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 12/2006

01-12-2006 | Original article

Quantification of [123I]FP-CIT SPECT brain images: an accurate technique for measurement of the specific binding ratio

Authors: Livia Tossici-Bolt, Sandra M. A. Hoffmann, Paul M. Kemp, Rajnikant L. Mehta, John S. Fleming

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 12/2006

Login to get access

Abstract

Purpose

A technique is described for accurate quantification of the specific binding ratio (SBR) in [123I]FP-CIT SPECT brain images.

Methods

Using a region of interest (ROI) approach, the SBR is derived from a measure of total striatal counts that takes into account the partial volume effect. Operator intervention is limited to the placement of the striatal ROIs, a task facilitated by the use of geometrical template regions. The definition of the image for the analysis is automated and includes transaxial slices within a “slab” approximately 44 mm thick centred on the highest striatal signal. The reference region is automatically defined from the non-specific uptake in the whole brain enclosed in the slab, with exclusion of the striatal region. A retrospective study consisting of 25 normal and 30 abnormal scans—classified by the clinical diagnosis reached with the scan support—was carried out to assess intra- and inter-operator variability of the technique and its clinical usefulness. Three operators repeated the quantification twice and the variability was measured by the coefficient of variation (COV).

Results

The COVs for intra- and inter-operator variability were 3% and 4% respectively. A cutoff ∼4.5 was identified that separated normal and abnormal groups with a sensitivity, specificity and diagnostic concordance of 97%, 92% and 95% respectively.

Conclusion

The proposed technique provides a reproducible and sensitive index. It is hoped that its independence from the partial volume effect will improve consistency in quantitative measurements between centres with different imaging devices and analysis software.
Literature
1.
go back to reference Brucke T, Asenbaum S, Pirker W, Djamshidian S, Wenger S, Wober C, et al. Measurement of the dopaminergic degeneration in Parkinson’s disease with [123I-β-CIT and SPECT. Correlation with clinical findings and comparison with multiple system atrophy and progressive supranuclear palsy. J Neural Transm Suppl 1997;50:9–24PubMed Brucke T, Asenbaum S, Pirker W, Djamshidian S, Wenger S, Wober C, et al. Measurement of the dopaminergic degeneration in Parkinson’s disease with [123I-β-CIT and SPECT. Correlation with clinical findings and comparison with multiple system atrophy and progressive supranuclear palsy. J Neural Transm Suppl 1997;50:9–24PubMed
2.
go back to reference Asenbaum S, Pirker W, Angelberger P, Bencsits G, Pruckmayer M, Bruck T. [123I]beta-CIT and SPECT in essential tremor and Parkinson’s disease. J Neural Transm 1998;105:1213–1228PubMedCrossRef Asenbaum S, Pirker W, Angelberger P, Bencsits G, Pruckmayer M, Bruck T. [123I]beta-CIT and SPECT in essential tremor and Parkinson’s disease. J Neural Transm 1998;105:1213–1228PubMedCrossRef
3.
go back to reference Benamer TS, Patterson J, Grosset DG, Booij J, de Bruin K, van Royen E, et al. Accurate differentiation of parkinsonism and essential tremor using visual assessment of [123I]-FP-CIT SPECT imaging: the [123I]-FP-CIT study group. Mov Disord 2000;15:503–510PubMedCrossRef Benamer TS, Patterson J, Grosset DG, Booij J, de Bruin K, van Royen E, et al. Accurate differentiation of parkinsonism and essential tremor using visual assessment of [123I]-FP-CIT SPECT imaging: the [123I]-FP-CIT study group. Mov Disord 2000;15:503–510PubMedCrossRef
4.
go back to reference Ransmayr G, Seppi K, Donnemiller E, Luginger E, Marksteiner J, Riccabona G, et al. Striatal dopamine transporter function in dementia with Lewy bodies and Parkinson’s disease. Eur J Nucl Med 2001;28:1523–1528PubMedCrossRef Ransmayr G, Seppi K, Donnemiller E, Luginger E, Marksteiner J, Riccabona G, et al. Striatal dopamine transporter function in dementia with Lewy bodies and Parkinson’s disease. Eur J Nucl Med 2001;28:1523–1528PubMedCrossRef
5.
go back to reference Walker Z, Costa DC, Walker RWH, Shaw K, Gacinovic S, Stevens T, et al. CLE differentiation of dementia with lewy bodies from Alzheimer’s disease using a dopaminergic presynaptic ligand. J Neurol Neurosurg Psychiatry 2002;73:130–140 Walker Z, Costa DC, Walker RWH, Shaw K, Gacinovic S, Stevens T, et al. CLE differentiation of dementia with lewy bodies from Alzheimer’s disease using a dopaminergic presynaptic ligand. J Neurol Neurosurg Psychiatry 2002;73:130–140
6.
go back to reference O’Brien JT, Colloby S, Fenwick J, Williams ED, Firbank M, Burn D, et al. Dopamine transporter loss visualised with FP-CIT SPECT in the differential diagnosis of dementia with Lewy bodies. Arch Neurol 2004;61:919–925PubMedCrossRef O’Brien JT, Colloby S, Fenwick J, Williams ED, Firbank M, Burn D, et al. Dopamine transporter loss visualised with FP-CIT SPECT in the differential diagnosis of dementia with Lewy bodies. Arch Neurol 2004;61:919–925PubMedCrossRef
7.
go back to reference Marek KL, Seibyl JP, Zoghbi SS, Zea-Ponce Y, Baldwin RM, Fussell B, et al. [123I]beta-CIT/SPECT imaging demonstrates bilateral loss of dopamine transporters in hemi-Parkinson’s disease. Neurology 1996;46:231–237PubMed Marek KL, Seibyl JP, Zoghbi SS, Zea-Ponce Y, Baldwin RM, Fussell B, et al. [123I]beta-CIT/SPECT imaging demonstrates bilateral loss of dopamine transporters in hemi-Parkinson’s disease. Neurology 1996;46:231–237PubMed
8.
go back to reference Booij J, Tissingh G, Boer GJ, Speelman JD, Stoof JC, Janssen AGM, et al. [123I]FP-CIT SPECT shows a pronounced decline of striatal dopamine transporter labelling in early and advanced Parkinson’s disease. J Neurol Neurosurg Psychiatry 1997;62:133–140PubMed Booij J, Tissingh G, Boer GJ, Speelman JD, Stoof JC, Janssen AGM, et al. [123I]FP-CIT SPECT shows a pronounced decline of striatal dopamine transporter labelling in early and advanced Parkinson’s disease. J Neurol Neurosurg Psychiatry 1997;62:133–140PubMed
9.
go back to reference Booij J, Tissingh G, Winogrodzka A, Boer GJ, Stoof JC, Wolters EC, et al. Practical benefit of [123I]FP-CIT SPECT in the demonstration of the dopaminergic deficit in Parkinson’s disease. Eur J Nucl Med 1997;24:68–71PubMedCrossRef Booij J, Tissingh G, Winogrodzka A, Boer GJ, Stoof JC, Wolters EC, et al. Practical benefit of [123I]FP-CIT SPECT in the demonstration of the dopaminergic deficit in Parkinson’s disease. Eur J Nucl Med 1997;24:68–71PubMedCrossRef
10.
go back to reference Seibyl JP, Marek K, Sheff K, Zoghbi S, Baldwin RB, Charney DS, et al. Iodine-123-β-CIT and iodine-123-FPCIT SPECT measurement of dopamine transporter in healthy subjects and Parkinson’s patients. J Nucl Med 1998;39:1500–1508PubMed Seibyl JP, Marek K, Sheff K, Zoghbi S, Baldwin RB, Charney DS, et al. Iodine-123-β-CIT and iodine-123-FPCIT SPECT measurement of dopamine transporter in healthy subjects and Parkinson’s patients. J Nucl Med 1998;39:1500–1508PubMed
11.
go back to reference Mozley PD, Scheneider JS, Acton PD, Plössl K, Stern MB, Siderowf A, et al. Binding of [99mTc]TRODAT-1 to dopamine transporters in patients with Parkinson’s disease and in healthy volunteers. J Nucl Med 2000;41:584–589PubMed Mozley PD, Scheneider JS, Acton PD, Plössl K, Stern MB, Siderowf A, et al. Binding of [99mTc]TRODAT-1 to dopamine transporters in patients with Parkinson’s disease and in healthy volunteers. J Nucl Med 2000;41:584–589PubMed
12.
go back to reference Tatsch K, Schwarz J, Mozley PD, Linke R, Pogarell O, Oertel WH, et al. Relationship between clinical features of Parkinson’s disease and presynaptic dopamine transporter binding assessed with [123I]IPT and single-photon emission tomography. Eur J Nucl Med 1997;24:415–421PubMed Tatsch K, Schwarz J, Mozley PD, Linke R, Pogarell O, Oertel WH, et al. Relationship between clinical features of Parkinson’s disease and presynaptic dopamine transporter binding assessed with [123I]IPT and single-photon emission tomography. Eur J Nucl Med 1997;24:415–421PubMed
13.
go back to reference Laruelle M, Wallace E, Seibyl JP, Baldwin RM, Zea-Ponce Y, Zoghbi SS, et al. Graphical, kinetic and equilibrium analyses of in vivo [123I]β-CIT binding to dopamine transporter in healthy human subjects. J Cereb Blood Flow Metab 1994;14:982–994PubMed Laruelle M, Wallace E, Seibyl JP, Baldwin RM, Zea-Ponce Y, Zoghbi SS, et al. Graphical, kinetic and equilibrium analyses of in vivo [123I]β-CIT binding to dopamine transporter in healthy human subjects. J Cereb Blood Flow Metab 1994;14:982–994PubMed
14.
go back to reference Booij J, Hemelaar JTGM, Speelman JD, de Bruin K, Janssen GM, van Royen EA. One-day protocol for imaging of the nigrostriatal dopaminergic pathway in Parkinson’s disease by [123I]FPCIT SPECT. J Nucl Med 1999;40:753–761PubMed Booij J, Hemelaar JTGM, Speelman JD, de Bruin K, Janssen GM, van Royen EA. One-day protocol for imaging of the nigrostriatal dopaminergic pathway in Parkinson’s disease by [123I]FPCIT SPECT. J Nucl Med 1999;40:753–761PubMed
15.
go back to reference Acton PD, Meyer PT, Mozley PD, Plössl K, Kung HF. Simplified quantification of dopamine transporters in humans using [99mTc]TRODAT-1 and single-photon emission tomography. Eur J Nucl Med 2000;27:1714–1718PubMedCrossRef Acton PD, Meyer PT, Mozley PD, Plössl K, Kung HF. Simplified quantification of dopamine transporters in humans using [99mTc]TRODAT-1 and single-photon emission tomography. Eur J Nucl Med 2000;27:1714–1718PubMedCrossRef
16.
go back to reference Costa DC, Walker Z, Dizdarevic S, Ioannides C, Gacinovic S, Walker RW, et al. Striatal binding index of FP-CIT: a simple method to separate Parkinson’s disease patients and controls [abstract]. Eur J Nucl Med 1998;25:1069 Costa DC, Walker Z, Dizdarevic S, Ioannides C, Gacinovic S, Walker RW, et al. Striatal binding index of FP-CIT: a simple method to separate Parkinson’s disease patients and controls [abstract]. Eur J Nucl Med 1998;25:1069
17.
go back to reference Bolt L, Fleming JS, Hoffmann SMA, Kemp PM, Costa DC. Quantifying DaTSCAN images: how automation reduces operator variability. Nucl Med Commun 2003;24:445CrossRef Bolt L, Fleming JS, Hoffmann SMA, Kemp PM, Costa DC. Quantifying DaTSCAN images: how automation reduces operator variability. Nucl Med Commun 2003;24:445CrossRef
18.
go back to reference Fleming JS, Bolt L, Stratford JS, Kemp PM. The specific uptake size index for quantifying radiopharmaceutical uptake. Phys Med Biol 2004;49:N227–N234PubMedCrossRef Fleming JS, Bolt L, Stratford JS, Kemp PM. The specific uptake size index for quantifying radiopharmaceutical uptake. Phys Med Biol 2004;49:N227–N234PubMedCrossRef
19.
go back to reference Blinkov SM, Glezer II. The human brain in figures and tables. A quantitative handbook. New York: Basic Books, Plenum Press; 1968. pp 166–171 Blinkov SM, Glezer II. The human brain in figures and tables. A quantitative handbook. New York: Basic Books, Plenum Press; 1968. pp 166–171
20.
go back to reference Aylward EH, Li Q, Habbak R, Warren A, Pulsifer MB, Barta PE, et al. Basal ganglia volume in adults with Down syndrome. Psychiatry Res Neuroimaging Section 1997;74:73–82CrossRef Aylward EH, Li Q, Habbak R, Warren A, Pulsifer MB, Barta PE, et al. Basal ganglia volume in adults with Down syndrome. Psychiatry Res Neuroimaging Section 1997;74:73–82CrossRef
21.
go back to reference JL Fleiss. Statistical methods for rates and proportions. 2nd ed. New York: Wiley; 1981MATH JL Fleiss. Statistical methods for rates and proportions. 2nd ed. New York: Wiley; 1981MATH
22.
go back to reference Bland JM, Altman DG. Statistical method for assessing agreement between two methods of clinical measurement. Lancet 1986;1:307–310PubMed Bland JM, Altman DG. Statistical method for assessing agreement between two methods of clinical measurement. Lancet 1986;1:307–310PubMed
23.
go back to reference Fleming JS, Alaamer AS. Influence of collimator characteristics on quantification in SPECT. J Nucl Med 1996;37:1832–1836PubMed Fleming JS, Alaamer AS. Influence of collimator characteristics on quantification in SPECT. J Nucl Med 1996;37:1832–1836PubMed
24.
go back to reference Hashimoto J, Sasaki T, Ogawa K, Kubo A, Motomura N, Ichihara T, et al. Effects of scatter and attenuation correction on quantitative analysis of β-CIT brain SPECT. Nucl Med Commun 1999;20:159–165PubMedCrossRef Hashimoto J, Sasaki T, Ogawa K, Kubo A, Motomura N, Ichihara T, et al. Effects of scatter and attenuation correction on quantitative analysis of β-CIT brain SPECT. Nucl Med Commun 1999;20:159–165PubMedCrossRef
25.
go back to reference Kim KM, Varrone A, Watabe H, Shidahara M, Fujita M, Innis RB, et al. Contribution of scatter and attenuation compensation to SPECT images of nonuniformly distributed brain activities. J Nucl Med 2003;44:512–519PubMed Kim KM, Varrone A, Watabe H, Shidahara M, Fujita M, Innis RB, et al. Contribution of scatter and attenuation compensation to SPECT images of nonuniformly distributed brain activities. J Nucl Med 2003;44:512–519PubMed
26.
go back to reference Parkinson Study Group. Dopamine transporter brain imaging to assess the effect of pramipexole vs levadopa on Parkinson disease progression. JAMA 2002;13:1653–1661CrossRef Parkinson Study Group. Dopamine transporter brain imaging to assess the effect of pramipexole vs levadopa on Parkinson disease progression. JAMA 2002;13:1653–1661CrossRef
27.
go back to reference Kuikka JT, Bergstrom KA, Ahonen A, Hiltunen J, Haukka J, Länsimies E, et al. Comparison of iodine-123 labelled 2β-carbomethoxy-3β-(4-iodophenyl)tropane and 2β-carbomethoxy-3β-(4-iodophenyl)-N-(3-fluoropropyl)nortropane for imaging the dopamine transporter in the living human brain. Eur J Nucl Med 1995;22:356–360PubMedCrossRef Kuikka JT, Bergstrom KA, Ahonen A, Hiltunen J, Haukka J, Länsimies E, et al. Comparison of iodine-123 labelled 2β-carbomethoxy-3β-(4-iodophenyl)tropane and 2β-carbomethoxy-3β-(4-iodophenyl)-N-(3-fluoropropyl)nortropane for imaging the dopamine transporter in the living human brain. Eur J Nucl Med 1995;22:356–360PubMedCrossRef
28.
go back to reference Booij J, Habraken JBA, Bergmans P, Tissingh G, Winogrodzka A, Wolters EC, et al. Imaging of dopamine transporter with iodine-123-FP-CIT SPECT in healthy controls and patients with Parkinson’s disease. J Nucl Med 1998;39:1879–1884PubMed Booij J, Habraken JBA, Bergmans P, Tissingh G, Winogrodzka A, Wolters EC, et al. Imaging of dopamine transporter with iodine-123-FP-CIT SPECT in healthy controls and patients with Parkinson’s disease. J Nucl Med 1998;39:1879–1884PubMed
29.
go back to reference Ichise M, Ballinger JR, Tanaka F, Moscovitch M, St. George-Hyslop PH, Raphael D, et al. Age-related changes in D2 receptor binding with iodine-123-iodobenzofuran SPECT. J Nucl Med 1998;39:1511–1518PubMed Ichise M, Ballinger JR, Tanaka F, Moscovitch M, St. George-Hyslop PH, Raphael D, et al. Age-related changes in D2 receptor binding with iodine-123-iodobenzofuran SPECT. J Nucl Med 1998;39:1511–1518PubMed
30.
go back to reference Linke R, Gostomzyk J, Hahn K, Tatsch K. [123I]IPT binding to presynaptic dopamine transporter: variation of intra- and interobserver data evaluation in parkinsonian patients and controls. Eur J Nucl Med 2000;27:1809–1812PubMedCrossRef Linke R, Gostomzyk J, Hahn K, Tatsch K. [123I]IPT binding to presynaptic dopamine transporter: variation of intra- and interobserver data evaluation in parkinsonian patients and controls. Eur J Nucl Med 2000;27:1809–1812PubMedCrossRef
31.
go back to reference Cot A, Falcón C, Crespo C, Sempau J, Pareto D, Bullich S, et al. Absolute quantification of dopaminergic neurotransmission SPECT using a Monte Carlo-based scatter correction and fully 3-dimensional reconstruction. J Nucl Med 2005;46:1497–1504PubMed Cot A, Falcón C, Crespo C, Sempau J, Pareto D, Bullich S, et al. Absolute quantification of dopaminergic neurotransmission SPECT using a Monte Carlo-based scatter correction and fully 3-dimensional reconstruction. J Nucl Med 2005;46:1497–1504PubMed
32.
go back to reference Pirker W, Asenbaum S, Bencsits G, Prayer D, Gerschlager W, Deecke L, et al. [123I]-β-CIT SPECT in multiple system atrophy, progressive supranuclear palsy, and corticobasal degeneration. Mov Disord 2000;15:1158–1167PubMedCrossRef Pirker W, Asenbaum S, Bencsits G, Prayer D, Gerschlager W, Deecke L, et al. [123I]-β-CIT SPECT in multiple system atrophy, progressive supranuclear palsy, and corticobasal degeneration. Mov Disord 2000;15:1158–1167PubMedCrossRef
33.
go back to reference Pirker W, Asenbaum S, Hauk M, Kandlhofer S, Tauscher J, Willeit M, et al. Imaging serotonin and dopamine transporters with123I-beta-CIT SPECT: binding kinetics and effects of normal aging. J Nucl Med 2000;41:36–44PubMed Pirker W, Asenbaum S, Hauk M, Kandlhofer S, Tauscher J, Willeit M, et al. Imaging serotonin and dopamine transporters with123I-beta-CIT SPECT: binding kinetics and effects of normal aging. J Nucl Med 2000;41:36–44PubMed
34.
go back to reference van Dyck CH, Seibyl JP, Malison RT, Laurelle M, Wallace E, Zoghbi SS, et al. Age-related decline in striatal dopamine transporter binding with iodine-123-β-CIT SPECT. J Nucl Med 1995;36:1175–1181PubMed van Dyck CH, Seibyl JP, Malison RT, Laurelle M, Wallace E, Zoghbi SS, et al. Age-related decline in striatal dopamine transporter binding with iodine-123-β-CIT SPECT. J Nucl Med 1995;36:1175–1181PubMed
35.
go back to reference Schwarz J, Storch A, Koch W, Pogarelli O, Radau PE, Tatsch K. Loss of dopamine transporter binding follows a single exponential rather than linear decline. J Nucl Med 2004;45:1694–1697PubMed Schwarz J, Storch A, Koch W, Pogarelli O, Radau PE, Tatsch K. Loss of dopamine transporter binding follows a single exponential rather than linear decline. J Nucl Med 2004;45:1694–1697PubMed
36.
go back to reference Tsuchida T, Ballinger JR, Vines D, Kim YJ, Utsunomiya K, Lang AE, et al. Reproducibility of dopamine transporter density measured with 123I-FPCIT SPECT in normal control and Parkinson’s disease patients. Ann Nucl Med 2004;18:609–616PubMedCrossRef Tsuchida T, Ballinger JR, Vines D, Kim YJ, Utsunomiya K, Lang AE, et al. Reproducibility of dopamine transporter density measured with 123I-FPCIT SPECT in normal control and Parkinson’s disease patients. Ann Nucl Med 2004;18:609–616PubMedCrossRef
37.
go back to reference Seibyl JP, Laurelle M, van Dick CH, Wallace E, Baldwin RM, Zoghbi S, et al. Reproducibility of iodine-123-β-CIT SPECT brain measurement of dopamine transporters. J Nucl Med 1996;37:222–228PubMed Seibyl JP, Laurelle M, van Dick CH, Wallace E, Baldwin RM, Zoghbi S, et al. Reproducibility of iodine-123-β-CIT SPECT brain measurement of dopamine transporters. J Nucl Med 1996;37:222–228PubMed
38.
go back to reference Meyer PT, Sattler B, Lincke T, Seese A, Sabri O. Investigating dopaminergic neurotransmission with 123I-FP-CIT SPECT: comparability of modern SPECT systems. J Nucl Med 2003;45:839–845 Meyer PT, Sattler B, Lincke T, Seese A, Sabri O. Investigating dopaminergic neurotransmission with 123I-FP-CIT SPECT: comparability of modern SPECT systems. J Nucl Med 2003;45:839–845
Metadata
Title
Quantification of [123I]FP-CIT SPECT brain images: an accurate technique for measurement of the specific binding ratio
Authors
Livia Tossici-Bolt
Sandra M. A. Hoffmann
Paul M. Kemp
Rajnikant L. Mehta
John S. Fleming
Publication date
01-12-2006
Publisher
Springer-Verlag
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 12/2006
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-006-0155-x

Other articles of this Issue 12/2006

European Journal of Nuclear Medicine and Molecular Imaging 12/2006 Go to the issue

Society communication

Society communications