Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 10/2019

Open Access 01-09-2019 | Frontotemporal Dementia | Original Article

Discovery and preclinical characterization of [18F]PI-2620, a next-generation tau PET tracer for the assessment of tau pathology in Alzheimer’s disease and other tauopathies

Authors: Heiko Kroth, Felix Oden, Jerome Molette, Hanno Schieferstein, Francesca Capotosti, Andre Mueller, Mathias Berndt, Heribert Schmitt-Willich, Vincent Darmency, Emanuele Gabellieri, Cédric Boudou, Tanja Juergens, Yvan Varisco, Efthymia Vokali, David T. Hickman, Gilles Tamagnan, Andrea Pfeifer, Ludger Dinkelborg, Andreas Muhs, Andrew Stephens

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 10/2019

Login to get access

Abstract

Purpose

Tau deposition is a key pathological feature of Alzheimer’s disease (AD) and other neurodegenerative disorders. The spreading of tau neurofibrillary tangles across defined brain regions corresponds to the observed level of cognitive decline in AD. Positron-emission tomography (PET) has proved to be an important tool for the detection of amyloid-beta (Aβ) aggregates in the brain, and is currently being explored for detection of pathological misfolded tau in AD and other non-AD tauopathies. Several PET tracers targeting tau deposits have been discovered and tested in humans. Limitations have been reported, especially regarding their selectivity.

Methods

In our screening campaign we identified pyrrolo[2,3-b:4,5-c’]dipyridine core structures with high affinity for aggregated tau. Further characterization showed that compounds containing this moiety had significantly reduced monoamine oxidase A (MAO-A) binding compared to pyrido[4,3-b]indole derivatives such as AV-1451.

Results

Here we present preclinical data of all ten fluoropyridine regioisomers attached to the pyrrolo[2,3-b:4,5-c’]dipyridine scaffold, revealing compounds 4 and 7 with superior properties. The lead candidate [18F]PI-2620 (compound 7) displayed high affinity for tau deposits in AD brain homogenate competition assays. Specific binding to pathological misfolded tau was further demonstrated by autoradiography on AD brain sections (Braak I-VI), Pick’s disease and progressive supranuclear palsy (PSP) pathology, whereas no specific tracer binding was detected on brain slices from non-demented donors. In addition to its high affinity binding to tau aggregates, the compound showed excellent selectivity with no off-target binding to Aβ or MAO-A/B. Good brain uptake and fast washout were observed in healthy mice and non-human primates.

Conclusions

Therefore, [18F]PI-2620 was selected for clinical validation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Alzheimer's A. Alzheimer's disease facts and figures. Alzheimers Dement. 2015;11(3):332–84.CrossRef Alzheimer's A. Alzheimer's disease facts and figures. Alzheimers Dement. 2015;11(3):332–84.CrossRef
2.
go back to reference Citron M. Alzheimer's disease: strategies for disease modification. Nat Rev Drug Discov. 2010;9(5):387–98.CrossRefPubMed Citron M. Alzheimer's disease: strategies for disease modification. Nat Rev Drug Discov. 2010;9(5):387–98.CrossRefPubMed
3.
go back to reference Ariza M, et al. Tau positron emission tomography (PET) imaging: past, present, and future. J Med Chem. 2015;58(11):4365–82.CrossRefPubMed Ariza M, et al. Tau positron emission tomography (PET) imaging: past, present, and future. J Med Chem. 2015;58(11):4365–82.CrossRefPubMed
4.
go back to reference Heurling K, et al. Imaging beta-amyloid using [(18)F]flutemetamol positron emission tomography: from dosimetry to clinical diagnosis. Eur J Nucl Med Mol Imaging. 2016;43(2):362–73.CrossRefPubMed Heurling K, et al. Imaging beta-amyloid using [(18)F]flutemetamol positron emission tomography: from dosimetry to clinical diagnosis. Eur J Nucl Med Mol Imaging. 2016;43(2):362–73.CrossRefPubMed
5.
go back to reference Sabbagh MN, et al. Histopathology and Florbetaben PET in patients incorrectly diagnosed with Alzheimer's disease. J Alzheimers Dis. 2017;56(2):441–6.CrossRefPubMed Sabbagh MN, et al. Histopathology and Florbetaben PET in patients incorrectly diagnosed with Alzheimer's disease. J Alzheimers Dis. 2017;56(2):441–6.CrossRefPubMed
6.
go back to reference Thal DR, et al. [(18)F]flutemetamol amyloid positron emission tomography in preclinical and symptomatic Alzheimer's disease: specific detection of advanced phases of amyloid-beta pathology. Alzheimers Dement. 2015;11(8):975–85.CrossRefPubMed Thal DR, et al. [(18)F]flutemetamol amyloid positron emission tomography in preclinical and symptomatic Alzheimer's disease: specific detection of advanced phases of amyloid-beta pathology. Alzheimers Dement. 2015;11(8):975–85.CrossRefPubMed
7.
go back to reference Villemagne VL, et al. Author correction: imaging tau and amyloid-beta proteinopathies in Alzheimer disease and other conditions. Nat Rev Neurol. 2018;14(7):446.CrossRefPubMed Villemagne VL, et al. Author correction: imaging tau and amyloid-beta proteinopathies in Alzheimer disease and other conditions. Nat Rev Neurol. 2018;14(7):446.CrossRefPubMed
8.
go back to reference Villemagne VL, et al. Imaging tau and amyloid-beta proteinopathies in Alzheimer disease and other conditions. Nat Rev Neurol. 2018;14(4):225–36.CrossRefPubMed Villemagne VL, et al. Imaging tau and amyloid-beta proteinopathies in Alzheimer disease and other conditions. Nat Rev Neurol. 2018;14(4):225–36.CrossRefPubMed
9.
go back to reference Rabinovici GD, et al. Association of amyloid positron emission tomography with subsequent change in clinical management among medicare beneficiaries with mild cognitive impairment or dementia. JAMA. 2019;321(13):1286–94.CrossRefPubMedPubMedCentral Rabinovici GD, et al. Association of amyloid positron emission tomography with subsequent change in clinical management among medicare beneficiaries with mild cognitive impairment or dementia. JAMA. 2019;321(13):1286–94.CrossRefPubMedPubMedCentral
10.
go back to reference Chien DT, et al. Early clinical PET imaging results with the novel PHF-tau radioligand [F-18]-T807. J Alzheimers Dis. 2013;34(2):457–68.CrossRefPubMed Chien DT, et al. Early clinical PET imaging results with the novel PHF-tau radioligand [F-18]-T807. J Alzheimers Dis. 2013;34(2):457–68.CrossRefPubMed
11.
go back to reference Declercq L, et al. Preclinical evaluation of (18)F-JNJ64349311, a novel PET tracer for tau imaging. J Nucl Med. 2017;58(6):975–81.CrossRefPubMed Declercq L, et al. Preclinical evaluation of (18)F-JNJ64349311, a novel PET tracer for tau imaging. J Nucl Med. 2017;58(6):975–81.CrossRefPubMed
12.
go back to reference Gobbi LC, et al. Identification of three novel radiotracers for imaging aggregated tau in Alzheimer's disease with positron emission tomography. J Med Chem. 2017;60(17):7350–70.CrossRefPubMed Gobbi LC, et al. Identification of three novel radiotracers for imaging aggregated tau in Alzheimer's disease with positron emission tomography. J Med Chem. 2017;60(17):7350–70.CrossRefPubMed
13.
go back to reference Honer M, et al. Preclinical evaluation of (18)F-RO6958948, (11)C-RO6931643 and (11)C-RO6924963 as novel radiotracers for imaging aggregated tau in AD with positron emission tomography. J Nucl Med. 2017. Honer M, et al. Preclinical evaluation of (18)F-RO6958948, (11)C-RO6931643 and (11)C-RO6924963 as novel radiotracers for imaging aggregated tau in AD with positron emission tomography. J Nucl Med. 2017.
14.
go back to reference Hostetler ED, et al. Preclinical characterization of 18F-MK-6240, a promising PET tracer for in vivo quantification of human neurofibrillary tangles. J Nucl Med. 2016;57(10):1599–606.CrossRefPubMed Hostetler ED, et al. Preclinical characterization of 18F-MK-6240, a promising PET tracer for in vivo quantification of human neurofibrillary tangles. J Nucl Med. 2016;57(10):1599–606.CrossRefPubMed
15.
go back to reference Rombouts FJR, et al. Discovery of N-(4-[(18)F]Fluoro-5-methylpyridin-2-yl)isoquinolin-6-amine (JNJ-64326067), a new promising tau positron emission tomography imaging tracer. J Med Chem. 2019;62(6):2974–87.CrossRefPubMed Rombouts FJR, et al. Discovery of N-(4-[(18)F]Fluoro-5-methylpyridin-2-yl)isoquinolin-6-amine (JNJ-64326067), a new promising tau positron emission tomography imaging tracer. J Med Chem. 2019;62(6):2974–87.CrossRefPubMed
17.
go back to reference Walji AM, et al. Discovery of 6-(Fluoro-(18)F)-3-(1H-pyrrolo[2,3-c]pyridin-1-yl)isoquinolin-5-amine ([(18)F]-MK-6240): a positron emission tomography (PET) imaging agent for quantification of neurofibrillary tangles (NFTs). J Med Chem. 2016;59(10):4778–89.CrossRefPubMed Walji AM, et al. Discovery of 6-(Fluoro-(18)F)-3-(1H-pyrrolo[2,3-c]pyridin-1-yl)isoquinolin-5-amine ([(18)F]-MK-6240): a positron emission tomography (PET) imaging agent for quantification of neurofibrillary tangles (NFTs). J Med Chem. 2016;59(10):4778–89.CrossRefPubMed
18.
go back to reference Leuzy A, et al. Tau PET imaging in neurodegenerative tauopathies-still a challenge. Mol Psychiatry. 2019. Leuzy A, et al. Tau PET imaging in neurodegenerative tauopathies-still a challenge. Mol Psychiatry. 2019.
20.
go back to reference Scholl M, et al. Biomarkers for tau pathology. Mol Cell Neurosci. 2018. Scholl M, et al. Biomarkers for tau pathology. Mol Cell Neurosci. 2018.
21.
go back to reference Masters CL, et al. Neuronal origin of a cerebral amyloid: neurofibrillary tangles of Alzheimer's disease contain the same protein as the amyloid of plaque cores and blood vessels. EMBO J. 1985;4(11):2757–63.CrossRefPubMedPubMedCentral Masters CL, et al. Neuronal origin of a cerebral amyloid: neurofibrillary tangles of Alzheimer's disease contain the same protein as the amyloid of plaque cores and blood vessels. EMBO J. 1985;4(11):2757–63.CrossRefPubMedPubMedCentral
22.
go back to reference Buee L, et al. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Brain Res Rev. 2000;33(1):95–130.CrossRefPubMed Buee L, et al. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Brain Res Rev. 2000;33(1):95–130.CrossRefPubMed
24.
go back to reference Goedert M, et al. Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer's disease. Neuron. 1989;3(4):519–26.CrossRefPubMed Goedert M, et al. Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer's disease. Neuron. 1989;3(4):519–26.CrossRefPubMed
25.
go back to reference Iqbal K, Liu F, Gong CX. Tau and neurodegenerative disease: the story so far. Nat Rev Neurol. 2016;12(1):15–27.CrossRefPubMed Iqbal K, Liu F, Gong CX. Tau and neurodegenerative disease: the story so far. Nat Rev Neurol. 2016;12(1):15–27.CrossRefPubMed
26.
go back to reference Falcon B, et al. Novel tau filament fold in chronic traumatic encephalopathy encloses hydrophobic molecules. Nature. 2019. Falcon B, et al. Novel tau filament fold in chronic traumatic encephalopathy encloses hydrophobic molecules. Nature. 2019.
27.
go back to reference Arai T, et al. Distinct isoforms of tau aggregated in neurons and glial cells in brains of patients with Pick's disease, corticobasal degeneration and progressive supranuclear palsy. Acta Neuropathol. 2001;101(2):167–73.PubMedCrossRef Arai T, et al. Distinct isoforms of tau aggregated in neurons and glial cells in brains of patients with Pick's disease, corticobasal degeneration and progressive supranuclear palsy. Acta Neuropathol. 2001;101(2):167–73.PubMedCrossRef
29.
go back to reference Fichou Y, et al. The elusive tau molecular structures: can we translate the recent breakthroughs into new targets for intervention? Acta Neuropathol Commun. 2019;7(1):31.CrossRefPubMedPubMedCentral Fichou Y, et al. The elusive tau molecular structures: can we translate the recent breakthroughs into new targets for intervention? Acta Neuropathol Commun. 2019;7(1):31.CrossRefPubMedPubMedCentral
31.
go back to reference Mott RT, et al. Neuropathologic, biochemical, and molecular characterization of the frontotemporal dementias. J Neuropathol Exp Neurol. 2005;64(5):420–8.CrossRefPubMed Mott RT, et al. Neuropathologic, biochemical, and molecular characterization of the frontotemporal dementias. J Neuropathol Exp Neurol. 2005;64(5):420–8.CrossRefPubMed
32.
go back to reference Gao M, Wang M, Zheng QH. Fully automated synthesis of [(18)F]T807, a PET tau tracer for Alzheimer's disease. Bioorg Med Chem Lett. 2015;25(15):2953–7.CrossRefPubMed Gao M, Wang M, Zheng QH. Fully automated synthesis of [(18)F]T807, a PET tau tracer for Alzheimer's disease. Bioorg Med Chem Lett. 2015;25(15):2953–7.CrossRefPubMed
33.
go back to reference Schieferstein H, et al. Selective binding to monoamine oxidase a: in vitro and in vivo evaluation of (18)F-labeled beta-carboline derivatives. Bioorg Med Chem. 2015;23(3):612–23.CrossRefPubMed Schieferstein H, et al. Selective binding to monoamine oxidase a: in vitro and in vivo evaluation of (18)F-labeled beta-carboline derivatives. Bioorg Med Chem. 2015;23(3):612–23.CrossRefPubMed
34.
go back to reference Jacobson O, Kiesewetter DO, Chen X. Fluorine-18 radiochemistry, labeling strategies and synthetic routes. Bioconjug Chem. 2015;26(1):1–18.CrossRefPubMed Jacobson O, Kiesewetter DO, Chen X. Fluorine-18 radiochemistry, labeling strategies and synthetic routes. Bioconjug Chem. 2015;26(1):1–18.CrossRefPubMed
35.
go back to reference Vermeiren C, et al. The tau positron-emission tomography tracer AV-1451 binds with similar affinities to tau fibrils and monoamine oxidases. Mov Disord. 2018;33(2):273–81.CrossRefPubMed Vermeiren C, et al. The tau positron-emission tomography tracer AV-1451 binds with similar affinities to tau fibrils and monoamine oxidases. Mov Disord. 2018;33(2):273–81.CrossRefPubMed
36.
37.
go back to reference Marquie M, et al. Validating novel tau positron emission tomography tracer [F-18]-AV-1451 (T807) on postmortem brain tissue. Ann Neurol. 2015;78(5):787–800.CrossRefPubMedPubMedCentral Marquie M, et al. Validating novel tau positron emission tomography tracer [F-18]-AV-1451 (T807) on postmortem brain tissue. Ann Neurol. 2015;78(5):787–800.CrossRefPubMedPubMedCentral
38.
go back to reference Aguero C, et al. Autoradiography validation of novel tau PET tracer [F-18]-MK-6240 on human postmortem brain tissue. Acta Neuropathol Commun. 2019;7(1):37.CrossRefPubMedPubMedCentral Aguero C, et al. Autoradiography validation of novel tau PET tracer [F-18]-MK-6240 on human postmortem brain tissue. Acta Neuropathol Commun. 2019;7(1):37.CrossRefPubMedPubMedCentral
39.
go back to reference Whitwell JL, et al. [(18) F]AV-1451 tau positron emission tomography in progressive supranuclear palsy. Mov Disord. 2017;32(1):124–33.CrossRefPubMed Whitwell JL, et al. [(18) F]AV-1451 tau positron emission tomography in progressive supranuclear palsy. Mov Disord. 2017;32(1):124–33.CrossRefPubMed
40.
go back to reference Schonhaut DR, et al. (18) F-flortaucipir tau positron emission tomography distinguishes established progressive supranuclear palsy from controls and Parkinson disease: a multicenter study. Ann Neurol. 2017;82(4):622–34.CrossRefPubMedPubMedCentral Schonhaut DR, et al. (18) F-flortaucipir tau positron emission tomography distinguishes established progressive supranuclear palsy from controls and Parkinson disease: a multicenter study. Ann Neurol. 2017;82(4):622–34.CrossRefPubMedPubMedCentral
Metadata
Title
Discovery and preclinical characterization of [18F]PI-2620, a next-generation tau PET tracer for the assessment of tau pathology in Alzheimer’s disease and other tauopathies
Authors
Heiko Kroth
Felix Oden
Jerome Molette
Hanno Schieferstein
Francesca Capotosti
Andre Mueller
Mathias Berndt
Heribert Schmitt-Willich
Vincent Darmency
Emanuele Gabellieri
Cédric Boudou
Tanja Juergens
Yvan Varisco
Efthymia Vokali
David T. Hickman
Gilles Tamagnan
Andrea Pfeifer
Ludger Dinkelborg
Andreas Muhs
Andrew Stephens
Publication date
01-09-2019
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 10/2019
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-019-04397-2

Other articles of this Issue 10/2019

European Journal of Nuclear Medicine and Molecular Imaging 10/2019 Go to the issue