Skip to main content
Top
Published in: Clinical and Translational Medicine 1/2017

Open Access 01-12-2017 | Commentary

Lessons from the swamp: developing small molecules that confer salamander muscle cellularization in mammals

Authors: JungIn Um, Da-Woon Jung, Darren Reece Williams

Published in: Clinical and Translational Medicine | Issue 1/2017

Login to get access

Abstract

The ability of salamanders, such as newts, to regenerate damaged tissues has been studied for centuries. A prominent example of this regenerative power is the ability to re-grow entire amputated limbs. One important step in this regeneration process is skeletal muscle cellularization, in which the muscle fibers break down into dedifferentiated, mononuclear cells that proliferate and form new muscle in the replacement limb. In contrast, mammalian skeletal muscle does not undergo cellularization after injury. A significant proportion of research about tissue regeneration in salamanders aims to characterize regulatory genes that may have mammalian homologs. A less mainstream approach is to develop small molecule compounds that induce regeneration-related mechanisms in mammals. In this commentary, we discuss progress in discovering small molecules that induce cellularization in mammalian muscle. New research findings using these compounds has also shed light on cellular processes that regulate cellularization, such as apoptotic signaling. Although formidable technical hurdles remain, this progress increases our understanding of tissue regeneration and provide opportunities for developing small molecules that may enhance tissue repair in humans.
Literature
2.
go back to reference Dubois P, Ameye L (2001) Regeneration of spines and pedicellariae in echinoderms: a review. Microsc Res Tech 55(6):427–437CrossRefPubMed Dubois P, Ameye L (2001) Regeneration of spines and pedicellariae in echinoderms: a review. Microsc Res Tech 55(6):427–437CrossRefPubMed
3.
go back to reference O’Steen WK, Walker BE (1962) Radioautographic studies or regeneration in the common newt. III. Regeneration and repair of the intestine. Anat Record 142:179–187CrossRef O’Steen WK, Walker BE (1962) Radioautographic studies or regeneration in the common newt. III. Regeneration and repair of the intestine. Anat Record 142:179–187CrossRef
4.
go back to reference Egar M, Singer M (1972) The role of ependyma in spinal cord regeneration in the urodele. Triturus Exp Neurol 37(2):422–430CrossRefPubMed Egar M, Singer M (1972) The role of ependyma in spinal cord regeneration in the urodele. Triturus Exp Neurol 37(2):422–430CrossRefPubMed
5.
go back to reference Odelberg SJ (2005) Cellular plasticity in vertebrate regeneration. Anat Record Part B New Anat 287(1):25–35CrossRef Odelberg SJ (2005) Cellular plasticity in vertebrate regeneration. Anat Record Part B New Anat 287(1):25–35CrossRef
6.
go back to reference Kumar A, Godwin JW, Gates PB, Garza-Garcia AA, Brockes JP (2007) Molecular basis for the nerve dependence of limb regeneration in an adult vertebrate. Science 318(5851):772–777CrossRefPubMedPubMedCentral Kumar A, Godwin JW, Gates PB, Garza-Garcia AA, Brockes JP (2007) Molecular basis for the nerve dependence of limb regeneration in an adult vertebrate. Science 318(5851):772–777CrossRefPubMedPubMedCentral
7.
go back to reference Sugiura T, Wang H, Barsacchi R, Simon A, Tanaka EM (2016) MARCKS-like protein is an initiating molecule in axolotl appendage regeneration. Nature 531(7593):237–240PubMedPubMedCentral Sugiura T, Wang H, Barsacchi R, Simon A, Tanaka EM (2016) MARCKS-like protein is an initiating molecule in axolotl appendage regeneration. Nature 531(7593):237–240PubMedPubMedCentral
8.
go back to reference Nacu E, Gromberg E, Oliveira CR, Drechsel D, Tanaka EM (2016) FGF8 and SHH substitute for anterior–posterior tissue interactions to induce limb regeneration. Nature 533(7603):407–410CrossRefPubMed Nacu E, Gromberg E, Oliveira CR, Drechsel D, Tanaka EM (2016) FGF8 and SHH substitute for anterior–posterior tissue interactions to induce limb regeneration. Nature 533(7603):407–410CrossRefPubMed
9.
go back to reference Odelberg SJ, Kollhoff A, Keating MT (2000) Dedifferentiation of mammalian myotubes induced by msx1. Cell 103(7):1099–1109CrossRefPubMed Odelberg SJ, Kollhoff A, Keating MT (2000) Dedifferentiation of mammalian myotubes induced by msx1. Cell 103(7):1099–1109CrossRefPubMed
10.
go back to reference Brockes JP, Kumar A (2008) Comparative aspects of animal regeneration. Annu Rev Cell Dev Biol 24:525–549CrossRefPubMed Brockes JP, Kumar A (2008) Comparative aspects of animal regeneration. Annu Rev Cell Dev Biol 24:525–549CrossRefPubMed
11.
go back to reference Maden M (1982) Vitamin A and pattern formation in the regenerating limb. Nature 295(5851):672–675CrossRefPubMed Maden M (1982) Vitamin A and pattern formation in the regenerating limb. Nature 295(5851):672–675CrossRefPubMed
12.
go back to reference Stocum DL, Crawford K (1987) Use of retinoids to analyze the cellular basis of positional memory in regenerating amphibian limbs. Biochem Cell Biol 65(8):750–761CrossRefPubMed Stocum DL, Crawford K (1987) Use of retinoids to analyze the cellular basis of positional memory in regenerating amphibian limbs. Biochem Cell Biol 65(8):750–761CrossRefPubMed
14.
go back to reference Karczmar AG (1947) The effect of repeated amputation and blastema formation on regeneration. Anat Record 99(4):567 Karczmar AG (1947) The effect of repeated amputation and blastema formation on regeneration. Anat Record 99(4):567
15.
go back to reference Thorton CR (1938) The histogenesis of muscle in the regenerating forelimb of larval Amblystoma punctatum. J Morph 62:17–47CrossRef Thorton CR (1938) The histogenesis of muscle in the regenerating forelimb of larval Amblystoma punctatum. J Morph 62:17–47CrossRef
16.
go back to reference Hay ED (1959) Electron microscopic observations of muscle dedifferentiation in regenerating Amblystoma limbs. Dev Biol 1:555–585CrossRef Hay ED (1959) Electron microscopic observations of muscle dedifferentiation in regenerating Amblystoma limbs. Dev Biol 1:555–585CrossRef
17.
go back to reference Spallanzani A (1769) Reproductions of the legs in the aquatic salamander. An essay on animal reproductions. Becket and de Hondt, London, pp 68–82 Spallanzani A (1769) Reproductions of the legs in the aquatic salamander. An essay on animal reproductions. Becket and de Hondt, London, pp 68–82
18.
go back to reference Hay ED, Fischman DA (1961) Origin of the blastema in regenerating limbs of the newt Triturus viridescens. An autoradiographic study using tritiated thymidine to follow cell proliferation and migration. Dev Biol 3:26–59CrossRefPubMed Hay ED, Fischman DA (1961) Origin of the blastema in regenerating limbs of the newt Triturus viridescens. An autoradiographic study using tritiated thymidine to follow cell proliferation and migration. Dev Biol 3:26–59CrossRefPubMed
19.
go back to reference Kragl M, Knapp D, Nacu E, Khattak S, Maden M, Epperlein HH et al (2009) Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature 460(7251):7260–7265CrossRef Kragl M, Knapp D, Nacu E, Khattak S, Maden M, Epperlein HH et al (2009) Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature 460(7251):7260–7265CrossRef
22.
go back to reference Schreiber SL (1998) Chemical genetics resulting from a passion for synthetic organic chemistry. Bioorg Med Chem 6(8):1127–1152CrossRefPubMed Schreiber SL (1998) Chemical genetics resulting from a passion for synthetic organic chemistry. Bioorg Med Chem 6(8):1127–1152CrossRefPubMed
23.
go back to reference Rosania GR, Chang YT, Perez O, Sutherlin D, Dong H, Lockhart DJ et al (2000) Myoseverin, a microtubule-binding molecule with novel cellular effects. Nat Biotechnol 18(3):304–308CrossRefPubMed Rosania GR, Chang YT, Perez O, Sutherlin D, Dong H, Lockhart DJ et al (2000) Myoseverin, a microtubule-binding molecule with novel cellular effects. Nat Biotechnol 18(3):304–308CrossRefPubMed
24.
go back to reference Imokawa Y, Gates PB, Chang YT, Simon HG, Brockes JP (2004) Distinctive expression of Myf5 in relation to differentiation and plasticity of newt muscle cells. Int J Dev Biol 48(4):285–291CrossRefPubMed Imokawa Y, Gates PB, Chang YT, Simon HG, Brockes JP (2004) Distinctive expression of Myf5 in relation to differentiation and plasticity of newt muscle cells. Int J Dev Biol 48(4):285–291CrossRefPubMed
25.
go back to reference Duckmanton A, Kumar A, Chang YT, Brockes JP (2005) A single-cell analysis of myogenic dedifferentiation induced by small molecules. Chem Biol 12(10):1117–1126CrossRefPubMed Duckmanton A, Kumar A, Chang YT, Brockes JP (2005) A single-cell analysis of myogenic dedifferentiation induced by small molecules. Chem Biol 12(10):1117–1126CrossRefPubMed
26.
go back to reference Jung DW, Williams DR (2011) Novel chemically defined approach to produce multipotent cells from terminally differentiated tissue syncytia. ACS Chem Biol 6(6):553–562CrossRefPubMed Jung DW, Williams DR (2011) Novel chemically defined approach to produce multipotent cells from terminally differentiated tissue syncytia. ACS Chem Biol 6(6):553–562CrossRefPubMed
27.
go back to reference Pajcini KV, Corbel SY, Sage J, Pomerantz JH, Blau HM (2010) Transient inactivation of Rb and ARF yields regenerative cells from postmitotic mammalian muscle. Cell Stem Cell 7(2):198–213CrossRefPubMedPubMedCentral Pajcini KV, Corbel SY, Sage J, Pomerantz JH, Blau HM (2010) Transient inactivation of Rb and ARF yields regenerative cells from postmitotic mammalian muscle. Cell Stem Cell 7(2):198–213CrossRefPubMedPubMedCentral
28.
go back to reference Hjiantoniou E, Anayasa M, Nicolaou P, Bantounas I, Saito M, Iseki S et al (2008) Twist induces reversal of myotube formation. Differ Res Biol Divers 76(2):182–192CrossRef Hjiantoniou E, Anayasa M, Nicolaou P, Bantounas I, Saito M, Iseki S et al (2008) Twist induces reversal of myotube formation. Differ Res Biol Divers 76(2):182–192CrossRef
29.
go back to reference Paliwal P, Conboy IM (2011) Inhibitors of tyrosine phosphatases and apoptosis reprogram lineage-marked differentiated muscle to myogenic progenitor cells. Chem Biol 18(9):1153–1166CrossRefPubMedPubMedCentral Paliwal P, Conboy IM (2011) Inhibitors of tyrosine phosphatases and apoptosis reprogram lineage-marked differentiated muscle to myogenic progenitor cells. Chem Biol 18(9):1153–1166CrossRefPubMedPubMedCentral
30.
go back to reference Endo T, Nadal-Ginard B (1998) Reversal of myogenic terminal differentiation by SV40 large T antigen results in mitosis and apoptosis. J Cell Sci 111(Pt 8):1081–1093PubMed Endo T, Nadal-Ginard B (1998) Reversal of myogenic terminal differentiation by SV40 large T antigen results in mitosis and apoptosis. J Cell Sci 111(Pt 8):1081–1093PubMed
31.
go back to reference Tseng AS, Engel FB, Keating MT (2006) The GSK-3 inhibitor BIO promotes proliferation in mammalian cardiomyocytes. Chem Biol 13(9):957–963CrossRefPubMed Tseng AS, Engel FB, Keating MT (2006) The GSK-3 inhibitor BIO promotes proliferation in mammalian cardiomyocytes. Chem Biol 13(9):957–963CrossRefPubMed
32.
go back to reference Kim WH, Shen H, Jung DW, Williams DR (2016) Some leopards can change their spots: potential repositioning of stem cell reprogramming compounds as anti-cancer agents. Cell Biol Toxicol 32(3):157–168CrossRefPubMed Kim WH, Shen H, Jung DW, Williams DR (2016) Some leopards can change their spots: potential repositioning of stem cell reprogramming compounds as anti-cancer agents. Cell Biol Toxicol 32(3):157–168CrossRefPubMed
33.
go back to reference Kim WH, Jung DW, Kim J, Im SH, Hwang SY, Williams DR (2012) Small molecules that recapitulate the early steps of urodele Amphibian Limb regeneration and confer multipotency. ACS Chem Biol 8(6):1271–1282 Kim WH, Jung DW, Kim J, Im SH, Hwang SY, Williams DR (2012) Small molecules that recapitulate the early steps of urodele Amphibian Limb regeneration and confer multipotency. ACS Chem Biol 8(6):1271–1282
34.
go back to reference Chen S, Zhang Q, Wu X, Schultz PG, Ding S (2004) Dedifferentiation of lineage-committed cells by a small molecule. J Am Chem Soc 126(2):410–411CrossRefPubMed Chen S, Zhang Q, Wu X, Schultz PG, Ding S (2004) Dedifferentiation of lineage-committed cells by a small molecule. J Am Chem Soc 126(2):410–411CrossRefPubMed
35.
go back to reference Wang H, Loof S, Borg P, Nader GA, Blau HM, Simon A (2015) Turning terminally differentiated skeletal muscle cells into regenerative progenitors. Nat Commun 6:7916CrossRefPubMedPubMedCentral Wang H, Loof S, Borg P, Nader GA, Blau HM, Simon A (2015) Turning terminally differentiated skeletal muscle cells into regenerative progenitors. Nat Commun 6:7916CrossRefPubMedPubMedCentral
36.
go back to reference Sardao VA, Oliveira PJ, Holy J, Oliveira CR, Wallace KB (2009) Morphological alterations induced by doxorubicin on H9c2 myoblasts: nuclear, mitochondrial, and cytoskeletal targets. Cell Biol Toxicol 25(3):227–243CrossRefPubMed Sardao VA, Oliveira PJ, Holy J, Oliveira CR, Wallace KB (2009) Morphological alterations induced by doxorubicin on H9c2 myoblasts: nuclear, mitochondrial, and cytoskeletal targets. Cell Biol Toxicol 25(3):227–243CrossRefPubMed
37.
go back to reference Bedelbaeva K, Snyder A, Gourevitch D, Clark L, Zhang XM, Leferovich J et al (2010) Lack of p21 expression links cell cycle control and appendage regeneration in mice. Proc Natl Acad Sci USA 107(13):5845–5850CrossRefPubMedPubMedCentral Bedelbaeva K, Snyder A, Gourevitch D, Clark L, Zhang XM, Leferovich J et al (2010) Lack of p21 expression links cell cycle control and appendage regeneration in mice. Proc Natl Acad Sci USA 107(13):5845–5850CrossRefPubMedPubMedCentral
38.
go back to reference Stebbins RC, Cohen NW (1995) A natural history of Amphibians. Princeton University Press, Princeton, p 3 Stebbins RC, Cohen NW (1995) A natural history of Amphibians. Princeton University Press, Princeton, p 3
39.
go back to reference Stewart S, Rojas-Munoz A, Izpisua Belmonte JC (2007) Bioelectricity and epimorphic regeneration. BioEssays News Rev Mol Cell Dev Biol 29(11):1133–1137CrossRef Stewart S, Rojas-Munoz A, Izpisua Belmonte JC (2007) Bioelectricity and epimorphic regeneration. BioEssays News Rev Mol Cell Dev Biol 29(11):1133–1137CrossRef
Metadata
Title
Lessons from the swamp: developing small molecules that confer salamander muscle cellularization in mammals
Authors
JungIn Um
Da-Woon Jung
Darren Reece Williams
Publication date
01-12-2017
Publisher
Springer Berlin Heidelberg
Published in
Clinical and Translational Medicine / Issue 1/2017
Electronic ISSN: 2001-1326
DOI
https://doi.org/10.1186/s40169-017-0143-8

Other articles of this Issue 1/2017

Clinical and Translational Medicine 1/2017 Go to the issue