Skip to main content
Top
Published in:

Open Access 01-12-2017 | Review

Thermodynamics in cancers: opposing interactions between PPAR gamma and the canonical WNT/beta-catenin pathway

Authors: Yves Lecarpentier, Victor Claes, Alexandre Vallée, Jean-Louis Hébert

Published in: Clinical and Translational Medicine | Issue 1/2017

Login to get access

Abstract

Cancer cells are the site of numerous metabolic and thermodynamic abnormalities. We focus this review on the interactions between the canonical WNT/beta-catenin pathway and peroxisome proliferator-activated receptor gamma (PPAR gamma) in cancers and their implications from an energetic and metabolic point of view. In numerous tissues, PPAR gamma activation induces inhibition of beta-catenin pathway, while the activation of the canonical WNT/beta-catenin pathway inactivates PPAR gamma. In most cancers but not all, PPAR gamma is downregulated while the WNT/beta-catenin pathway is upregulated. In cancer cells, upregulation of the WNT/beta-catenin signaling induces dramatic changes in key metabolic enzymes that modify their thermodynamic behavior. This leads to activation of pyruvate dehydrogenase kinase1 (PDK-1) and monocarboxylate lactate transporter. Consequently, phosphorylation of PDK-1 inhibits the pyruvate dehydrogenase complex (PDH). Thus, a large part of pyruvate cannot be converted into acetyl-coenzyme A (acetyl-CoA) in mitochondria and only a part of acetyl-CoA can enter the tricarboxylic acid cycle. This leads to aerobic glycolysis in spite of the availability of oxygen. This phenomenon is referred to as the Warburg effect. Cytoplasmic pyruvate is converted into lactate. The WNT/beta-catenin pathway induces the transcription of genes involved in cell proliferation, i.e., MYC and CYCLIN D1. This ultimately promotes the nucleotide, protein and lipid synthesis necessary for cell growth and multiplication. In cancer, activation of the PI3K-AKT pathway induces an increase of the aerobic glycolysis. Moreover, prostaglandin E2 by activating the canonical WNT pathway plays also a role in cancer. In addition in many cancer cells, PPAR gamma is downregulated. Moreover, PPAR gamma contributes to regulate some key circadian genes. In cancers, abnormalities in the regulation of circadian rhythms (CRs) are observed. CRs are dissipative structures which play a key-role in far-from-equilibrium thermodynamics. In cancers, metabolism, thermodynamics and CRs are intimately interrelated.
Literature
1.
go back to reference Schrödinger E (1944) What is life?: Cambridge University Press, Cambridge Schrödinger E (1944) What is life?: Cambridge University Press, Cambridge
2.
go back to reference Prigogine I, Nicolis G, Babloyantz A (1974) Nonequilibrium problems in biological phenomena. Ann NY Acad Sci 231:99–105PubMedCrossRef Prigogine I, Nicolis G, Babloyantz A (1974) Nonequilibrium problems in biological phenomena. Ann NY Acad Sci 231:99–105PubMedCrossRef
4.
go back to reference Atkins PW (1990) Physical chemistry. Oxford University Press, Oxford, pp 1–1031 Atkins PW (1990) Physical chemistry. Oxford University Press, Oxford, pp 1–1031
5.
go back to reference Kondepudi D, Prigogine I (1999) Modern thermodynamics from heat engines to dissipative structures. Wiley, New York, pp 1–486 Kondepudi D, Prigogine I (1999) Modern thermodynamics from heat engines to dissipative structures. Wiley, New York, pp 1–486
6.
go back to reference Lecarpentier Y, Claes V, Duthoit G, Hebert JL (2014) Circadian rhythms, Wnt/beta-catenin pathway and PPAR alpha/gamma profiles in diseases with primary or secondary cardiac dysfunction. Front Physiol 5:429PubMedPubMedCentralCrossRef Lecarpentier Y, Claes V, Duthoit G, Hebert JL (2014) Circadian rhythms, Wnt/beta-catenin pathway and PPAR alpha/gamma profiles in diseases with primary or secondary cardiac dysfunction. Front Physiol 5:429PubMedPubMedCentralCrossRef
7.
go back to reference Krishnan A, Nair SA, Pillai MR (2007) Biology of PPAR gamma in cancer: a critical review on existing lacunae. Curr Mol Med 7:532–540PubMedCrossRef Krishnan A, Nair SA, Pillai MR (2007) Biology of PPAR gamma in cancer: a critical review on existing lacunae. Curr Mol Med 7:532–540PubMedCrossRef
9.
go back to reference Lecarpentier Y, Claes V, Vallee A, Hébert JL (2017) Interactions between PPAR gamma and the canonical Wnt/beta-catenin pathway in type 2 diabetes and colon cancer. PPAR Res 5:1–9CrossRef Lecarpentier Y, Claes V, Vallee A, Hébert JL (2017) Interactions between PPAR gamma and the canonical Wnt/beta-catenin pathway in type 2 diabetes and colon cancer. PPAR Res 5:1–9CrossRef
10.
go back to reference Lecarpentier Y, Vallee A (2016) Opposite interplay between PPAR gamma and canonical Wnt/Beta-catenin pathway in amyotrophic lateral sclerosis. Front Neurol 7:100PubMedPubMedCentralCrossRef Lecarpentier Y, Vallee A (2016) Opposite interplay between PPAR gamma and canonical Wnt/Beta-catenin pathway in amyotrophic lateral sclerosis. Front Neurol 7:100PubMedPubMedCentralCrossRef
11.
go back to reference Godin JD, Poizat G, Hickey MA, Maschat F, Humbert S (2010) Mutant huntingtin-impaired degradation of beta-catenin causes neurotoxicity in Huntington’s disease. EMBO J 29:2433–2445PubMedPubMedCentralCrossRef Godin JD, Poizat G, Hickey MA, Maschat F, Humbert S (2010) Mutant huntingtin-impaired degradation of beta-catenin causes neurotoxicity in Huntington’s disease. EMBO J 29:2433–2445PubMedPubMedCentralCrossRef
13.
go back to reference Yuan S, Shi Y, Tang SJ (2012) Wnt signaling in the pathogenesis of multiple sclerosis-associated chronic pain. J Neuroimmune Pharmacol 7:904–913PubMedCrossRef Yuan S, Shi Y, Tang SJ (2012) Wnt signaling in the pathogenesis of multiple sclerosis-associated chronic pain. J Neuroimmune Pharmacol 7:904–913PubMedCrossRef
14.
go back to reference Coppola G, Marmolino D, Lu D, Wang Q, Cnop M et al (2009) Functional genomic analysis of frataxin deficiency reveals tissue-specific alterations and identifies the PPARgamma pathway as a therapeutic target in Friedreich’s ataxia. Hum Mol Genet 18:2452–2461PubMedPubMedCentralCrossRef Coppola G, Marmolino D, Lu D, Wang Q, Cnop M et al (2009) Functional genomic analysis of frataxin deficiency reveals tissue-specific alterations and identifies the PPARgamma pathway as a therapeutic target in Friedreich’s ataxia. Hum Mol Genet 18:2452–2461PubMedPubMedCentralCrossRef
15.
go back to reference Garcia-Gras E, Lombardi R, Giocondo MJ, Willerson JT, Schneider MD et al (2006) Suppression of canonical Wnt/beta-catenin signaling by nuclear plakoglobin recapitulates phenotype of arrhythmogenic right ventricular cardiomyopathy. J Clin Invest 116:2012–2021PubMedPubMedCentralCrossRef Garcia-Gras E, Lombardi R, Giocondo MJ, Willerson JT, Schneider MD et al (2006) Suppression of canonical Wnt/beta-catenin signaling by nuclear plakoglobin recapitulates phenotype of arrhythmogenic right ventricular cardiomyopathy. J Clin Invest 116:2012–2021PubMedPubMedCentralCrossRef
16.
go back to reference Djouadi F, Lecarpentier Y, Hebert JL, Charron P, Bastin J et al (2009) A potential link between peroxisome proliferator-activated receptor signalling and the pathogenesis of arrhythmogenic right ventricular cardiomyopathy. Cardiovasc Res 84:83–90PubMedCrossRef Djouadi F, Lecarpentier Y, Hebert JL, Charron P, Bastin J et al (2009) A potential link between peroxisome proliferator-activated receptor signalling and the pathogenesis of arrhythmogenic right ventricular cardiomyopathy. Cardiovasc Res 84:83–90PubMedCrossRef
17.
go back to reference Canalis E (2013) Wnt signalling in osteoporosis: mechanisms and novel therapeutic approaches. Nat Rev Endocrinol 9:575–583PubMedCrossRef Canalis E (2013) Wnt signalling in osteoporosis: mechanisms and novel therapeutic approaches. Nat Rev Endocrinol 9:575–583PubMedCrossRef
18.
go back to reference Rawadi G, Roman-Roman S (2005) Wnt signalling pathway: a new target for the treatment of osteoporosis. Expert Opin Ther Targets 9:1063–1077PubMedCrossRef Rawadi G, Roman-Roman S (2005) Wnt signalling pathway: a new target for the treatment of osteoporosis. Expert Opin Ther Targets 9:1063–1077PubMedCrossRef
19.
go back to reference Korvala J, Juppner H, Makitie O, Sochett E, Schnabel D et al (2012) Mutations in LRP5 cause primary osteoporosis without features of OI by reducing Wnt signaling activity. BMC Med Genet 13:26PubMedPubMedCentralCrossRef Korvala J, Juppner H, Makitie O, Sochett E, Schnabel D et al (2012) Mutations in LRP5 cause primary osteoporosis without features of OI by reducing Wnt signaling activity. BMC Med Genet 13:26PubMedPubMedCentralCrossRef
20.
go back to reference Vallee A, Lecarpentier Y (2016) Alzheimer disease: crosstalk between the canonical Wnt/beta-catenin pathway and PPARs alpha and gamma. Front Neurosci 10:459PubMedPubMedCentralCrossRef Vallee A, Lecarpentier Y (2016) Alzheimer disease: crosstalk between the canonical Wnt/beta-catenin pathway and PPARs alpha and gamma. Front Neurosci 10:459PubMedPubMedCentralCrossRef
21.
go back to reference Berwick DC, Harvey K (2012) The importance of Wnt signalling for neurodegeneration in Parkinson’s disease. Biochem Soc Trans 40:1123–1128PubMedCrossRef Berwick DC, Harvey K (2012) The importance of Wnt signalling for neurodegeneration in Parkinson’s disease. Biochem Soc Trans 40:1123–1128PubMedCrossRef
22.
go back to reference Gould TD, Manji HK (2002) The Wnt signaling pathway in bipolar disorder. Neuroscientist 8:497–511PubMedCrossRef Gould TD, Manji HK (2002) The Wnt signaling pathway in bipolar disorder. Neuroscientist 8:497–511PubMedCrossRef
24.
go back to reference Panaccione I, Napoletano F, Forte AM, Kotzalidis GD, Del Casale A et al (2013) Neurodevelopment in schizophrenia: the role of the wnt pathways. Curr Neuropharmacol 11:535–558PubMedPubMedCentralCrossRef Panaccione I, Napoletano F, Forte AM, Kotzalidis GD, Del Casale A et al (2013) Neurodevelopment in schizophrenia: the role of the wnt pathways. Curr Neuropharmacol 11:535–558PubMedPubMedCentralCrossRef
25.
go back to reference Lecarpentier Y, Krokidis X, Martin P, Pineau T, Hebert JL et al (2008) Increased entropy production in diaphragm muscle of PPAR alpha knockout mice. J Theor Biol 250:92–102PubMedCrossRef Lecarpentier Y, Krokidis X, Martin P, Pineau T, Hebert JL et al (2008) Increased entropy production in diaphragm muscle of PPAR alpha knockout mice. J Theor Biol 250:92–102PubMedCrossRef
26.
27.
go back to reference Igota S, Tosa M, Murakami M, Egawa S, Shimizu H et al (2013) Identification and characterization of Wnt signaling pathway in keloid pathogenesis. Int J Med Sci 10:344–354PubMedPubMedCentralCrossRef Igota S, Tosa M, Murakami M, Egawa S, Shimizu H et al (2013) Identification and characterization of Wnt signaling pathway in keloid pathogenesis. Int J Med Sci 10:344–354PubMedPubMedCentralCrossRef
28.
go back to reference Moon RT, Bowerman B, Boutros M, Perrimon N (2002) The promise and perils of Wnt signaling through beta-catenin. Science 296:1644–1646PubMedCrossRef Moon RT, Bowerman B, Boutros M, Perrimon N (2002) The promise and perils of Wnt signaling through beta-catenin. Science 296:1644–1646PubMedCrossRef
29.
go back to reference Moon RT, Kohn AD, De Ferrari GV, Kaykas A (2004) WNT and beta-catenin signalling: diseases and therapies. Nat Rev Genet 5:691–701PubMedCrossRef Moon RT, Kohn AD, De Ferrari GV, Kaykas A (2004) WNT and beta-catenin signalling: diseases and therapies. Nat Rev Genet 5:691–701PubMedCrossRef
31.
32.
go back to reference He TC, Sparks AB, Rago C, Hermeking H, Zawel L et al (1998) Identification of c-MYC as a target of the APC pathway. Science 281:1509–1512PubMedCrossRef He TC, Sparks AB, Rago C, Hermeking H, Zawel L et al (1998) Identification of c-MYC as a target of the APC pathway. Science 281:1509–1512PubMedCrossRef
33.
go back to reference Shtutman M, Zhurinsky J, Simcha I, Albanese C, D’Amico M et al (1999) The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci USA 96:5522–5527PubMedPubMedCentralCrossRef Shtutman M, Zhurinsky J, Simcha I, Albanese C, D’Amico M et al (1999) The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci USA 96:5522–5527PubMedPubMedCentralCrossRef
34.
go back to reference Angers S, Moon RT (2009) Proximal events in Wnt signal transduction. Nat Rev Mol Cell Biol 10:468–477PubMedCrossRef Angers S, Moon RT (2009) Proximal events in Wnt signal transduction. Nat Rev Mol Cell Biol 10:468–477PubMedCrossRef
35.
go back to reference Pate KT, Stringari C, Sprowl-Tanio S, Wang K, TeSlaa T et al (2014) Wnt signaling directs a metabolic program of glycolysis and angiogenesis in colon cancer. EMBO J 33:1454–1473PubMedPubMedCentral Pate KT, Stringari C, Sprowl-Tanio S, Wang K, TeSlaa T et al (2014) Wnt signaling directs a metabolic program of glycolysis and angiogenesis in colon cancer. EMBO J 33:1454–1473PubMedPubMedCentral
36.
go back to reference Tyagi S, Gupta P, Saini AS, Kaushal C, Sharma S (2011) The peroxisome proliferator-activated receptor: a family of nuclear receptors role in various diseases. J Adv Pharm Technol Res 2:236–240PubMedPubMedCentralCrossRef Tyagi S, Gupta P, Saini AS, Kaushal C, Sharma S (2011) The peroxisome proliferator-activated receptor: a family of nuclear receptors role in various diseases. J Adv Pharm Technol Res 2:236–240PubMedPubMedCentralCrossRef
37.
go back to reference Elbrecht A, Chen Y, Cullinan CA, Hayes N, Leibowitz M et al (1996) Molecular cloning, expression and characterization of human peroxisome proliferator activated receptors gamma 1 and gamma 2. Biochem Biophys Res Commun 224:431–437PubMedCrossRef Elbrecht A, Chen Y, Cullinan CA, Hayes N, Leibowitz M et al (1996) Molecular cloning, expression and characterization of human peroxisome proliferator activated receptors gamma 1 and gamma 2. Biochem Biophys Res Commun 224:431–437PubMedCrossRef
38.
go back to reference Fajas L, Auboeuf D, Raspe E, Schoonjans K, Lefebvre AM et al (1997) The organization, promoter analysis, and expression of the human PPAR gamma gene. J Biol Chem 272:18779–18789PubMedCrossRef Fajas L, Auboeuf D, Raspe E, Schoonjans K, Lefebvre AM et al (1997) The organization, promoter analysis, and expression of the human PPAR gamma gene. J Biol Chem 272:18779–18789PubMedCrossRef
39.
go back to reference Desvergne B, Wahli W (1999) Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev 20:649–688PubMed Desvergne B, Wahli W (1999) Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev 20:649–688PubMed
40.
go back to reference Rangwala SM, Lazar MA (2004) Peroxisome proliferator-activated receptor gamma in diabetes and metabolism. Trends Pharmacol Sci 25:331–336PubMedCrossRef Rangwala SM, Lazar MA (2004) Peroxisome proliferator-activated receptor gamma in diabetes and metabolism. Trends Pharmacol Sci 25:331–336PubMedCrossRef
41.
42.
go back to reference Wang N, Yang G, Jia Z, Zhang H, Aoyagi T et al (2008) Vascular PPARgamma controls circadian variation in blood pressure and heart rate through Bmal1. Cell Metab 8:482–491PubMedCrossRef Wang N, Yang G, Jia Z, Zhang H, Aoyagi T et al (2008) Vascular PPARgamma controls circadian variation in blood pressure and heart rate through Bmal1. Cell Metab 8:482–491PubMedCrossRef
44.
go back to reference Ahmadian M, Suh JM, Hah N, Liddle C, Atkins AR et al (2013) PPARgamma signaling and metabolism: the good, the bad and the future. Nat Med 19:557–566PubMedCrossRef Ahmadian M, Suh JM, Hah N, Liddle C, Atkins AR et al (2013) PPARgamma signaling and metabolism: the good, the bad and the future. Nat Med 19:557–566PubMedCrossRef
45.
go back to reference Gerhold DL, Liu F, Jiang G, Li Z, Xu J et al (2002) Gene expression profile of adipocyte differentiation and its regulation by peroxisome proliferator-activated receptor-gamma agonists. Endocrinology 143:2106–2118 Gerhold DL, Liu F, Jiang G, Li Z, Xu J et al (2002) Gene expression profile of adipocyte differentiation and its regulation by peroxisome proliferator-activated receptor-gamma agonists. Endocrinology 143:2106–2118
46.
go back to reference Girnun GD, Domann FE, Moore SA, Robbins ME (2002) Identification of a functional peroxisome proliferator-activated receptor response element in the rat catalase promoter. Mol Endocrinol 16:2793–2801PubMedCrossRef Girnun GD, Domann FE, Moore SA, Robbins ME (2002) Identification of a functional peroxisome proliferator-activated receptor response element in the rat catalase promoter. Mol Endocrinol 16:2793–2801PubMedCrossRef
47.
go back to reference Sharma C, Pradeep A, Wong L, Rana A, Rana B (2004) Peroxisome proliferator-activated receptor gamma activation can regulate beta-catenin levels via a proteasome-mediated and adenomatous polyposis coli-independent pathway. J Biol Chem 279:35583–35594PubMedCrossRef Sharma C, Pradeep A, Wong L, Rana A, Rana B (2004) Peroxisome proliferator-activated receptor gamma activation can regulate beta-catenin levels via a proteasome-mediated and adenomatous polyposis coli-independent pathway. J Biol Chem 279:35583–35594PubMedCrossRef
48.
go back to reference Takada I, Kouzmenko AP, Kato S (2009) Wnt and PPARgamma signaling in osteoblastogenesis and adipogenesis. Nat Rev Rheumatol 5:442–447PubMedCrossRef Takada I, Kouzmenko AP, Kato S (2009) Wnt and PPARgamma signaling in osteoblastogenesis and adipogenesis. Nat Rev Rheumatol 5:442–447PubMedCrossRef
50.
go back to reference Liu J, Wang H, Zuo Y, Farmer SR (2006) Functional interaction between peroxisome proliferator-activated receptor gamma and beta-catenin. Mol Cell Biol 26:5827–5837PubMedPubMedCentralCrossRef Liu J, Wang H, Zuo Y, Farmer SR (2006) Functional interaction between peroxisome proliferator-activated receptor gamma and beta-catenin. Mol Cell Biol 26:5827–5837PubMedPubMedCentralCrossRef
51.
go back to reference Moldes M, Zuo Y, Morrison RF, Silva D, Park BH et al (2003) Peroxisome-proliferator-activated receptor gamma suppresses Wnt/beta-catenin signalling during adipogenesis. Biochem J 376:607–613PubMedPubMedCentralCrossRef Moldes M, Zuo Y, Morrison RF, Silva D, Park BH et al (2003) Peroxisome-proliferator-activated receptor gamma suppresses Wnt/beta-catenin signalling during adipogenesis. Biochem J 376:607–613PubMedPubMedCentralCrossRef
53.
54.
go back to reference Brabletz T, Hlubek F, Spaderna S, Schmalhofer O, Hiendlmeyer E et al (2005) Invasion and metastasis in colorectal cancer: epithelial-mesenchymal transition, mesenchymal–epithelial transition, stem cells and beta-catenin. Cells Tissues Organs 179:56–65PubMedCrossRef Brabletz T, Hlubek F, Spaderna S, Schmalhofer O, Hiendlmeyer E et al (2005) Invasion and metastasis in colorectal cancer: epithelial-mesenchymal transition, mesenchymal–epithelial transition, stem cells and beta-catenin. Cells Tissues Organs 179:56–65PubMedCrossRef
55.
go back to reference Klaus A, Birchmeier W (2008) Wnt signalling and its impact on development and cancer. Nat Rev Cancer 8:387–398PubMedCrossRef Klaus A, Birchmeier W (2008) Wnt signalling and its impact on development and cancer. Nat Rev Cancer 8:387–398PubMedCrossRef
58.
go back to reference Pinheiro C, Longatto-Filho A, Scapulatempo C, Ferreira L, Martins S et al (2008) Increased expression of monocarboxylate transporters 1, 2, and 4 in colorectal carcinomas. Virchows Arch 452:139–146PubMedCrossRef Pinheiro C, Longatto-Filho A, Scapulatempo C, Ferreira L, Martins S et al (2008) Increased expression of monocarboxylate transporters 1, 2, and 4 in colorectal carcinomas. Virchows Arch 452:139–146PubMedCrossRef
59.
go back to reference Roche TE, Baker JC, Yan X, Hiromasa Y, Gong X et al (2001) Distinct regulatory properties of pyruvate dehydrogenase kinase and phosphatase isoforms. Prog Nucleic Acid Res Mol Biol 70:33–75PubMedCrossRef Roche TE, Baker JC, Yan X, Hiromasa Y, Gong X et al (2001) Distinct regulatory properties of pyruvate dehydrogenase kinase and phosphatase isoforms. Prog Nucleic Acid Res Mol Biol 70:33–75PubMedCrossRef
60.
go back to reference Koukourakis MI, Giatromanolaki A, Harris AL, Sivridis E (2006) Comparison of metabolic pathways between cancer cells and stromal cells in colorectal carcinomas: a metabolic survival role for tumor-associated stroma. Cancer Res 66:632–637PubMedCrossRef Koukourakis MI, Giatromanolaki A, Harris AL, Sivridis E (2006) Comparison of metabolic pathways between cancer cells and stromal cells in colorectal carcinomas: a metabolic survival role for tumor-associated stroma. Cancer Res 66:632–637PubMedCrossRef
61.
go back to reference Wigfield SM, Winter SC, Giatromanolaki A, Taylor J, Koukourakis ML et al (2008) PDK-1 regulates lactate production in hypoxia and is associated with poor prognosis in head and neck squamous cancer. Br J Cancer 98:1975–1984PubMedPubMedCentralCrossRef Wigfield SM, Winter SC, Giatromanolaki A, Taylor J, Koukourakis ML et al (2008) PDK-1 regulates lactate production in hypoxia and is associated with poor prognosis in head and neck squamous cancer. Br J Cancer 98:1975–1984PubMedPubMedCentralCrossRef
62.
go back to reference Baumunk D, Reichelt U, Hildebrandt J, Krause H, Ebbing J et al (2013) Expression parameters of the metabolic pathway genes pyruvate dehydrogenase kinase-1 (PDK-1) and DJ-1/PARK7 in renal cell carcinoma (RCC). World J Urol 31:1191–1196PubMedCrossRef Baumunk D, Reichelt U, Hildebrandt J, Krause H, Ebbing J et al (2013) Expression parameters of the metabolic pathway genes pyruvate dehydrogenase kinase-1 (PDK-1) and DJ-1/PARK7 in renal cell carcinoma (RCC). World J Urol 31:1191–1196PubMedCrossRef
63.
go back to reference Hunt TK, Aslam RS, Beckert S, Wagner S, Ghani QP et al (2007) Aerobically derived lactate stimulates revascularization and tissue repair via redox mechanisms. Antioxid Redox Signal 9:1115–1124PubMedPubMedCentralCrossRef Hunt TK, Aslam RS, Beckert S, Wagner S, Ghani QP et al (2007) Aerobically derived lactate stimulates revascularization and tissue repair via redox mechanisms. Antioxid Redox Signal 9:1115–1124PubMedPubMedCentralCrossRef
64.
go back to reference DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7:11–20PubMedCrossRef DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7:11–20PubMedCrossRef
65.
go back to reference Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033PubMedPubMedCentralCrossRef Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033PubMedPubMedCentralCrossRef
66.
go back to reference McFate T, Mohyeldin A, Lu H, Thakar J, Henriques J et al (2008) Pyruvate dehydrogenase complex activity controls metabolic and malignant phenotype in cancer cells. J Biol Chem 283:22700–22708PubMedPubMedCentralCrossRef McFate T, Mohyeldin A, Lu H, Thakar J, Henriques J et al (2008) Pyruvate dehydrogenase complex activity controls metabolic and malignant phenotype in cancer cells. J Biol Chem 283:22700–22708PubMedPubMedCentralCrossRef
67.
go back to reference Sutendra G, Dromparis P, Kinnaird A, Stenson TH, Haromy A et al (2013) Mitochondrial activation by inhibition of PDKII suppresses HIF1a signaling and angiogenesis in cancer. Oncogene 32:1638–1650PubMedCrossRef Sutendra G, Dromparis P, Kinnaird A, Stenson TH, Haromy A et al (2013) Mitochondrial activation by inhibition of PDKII suppresses HIF1a signaling and angiogenesis in cancer. Oncogene 32:1638–1650PubMedCrossRef
68.
go back to reference Abbot EL, McCormack JG, Reynet C, Hassall DG, Buchan KW et al (2005) Diverging regulation of pyruvate dehydrogenase kinase isoform gene expression in cultured human muscle cells. FEBS J 272:3004–3014PubMedCrossRef Abbot EL, McCormack JG, Reynet C, Hassall DG, Buchan KW et al (2005) Diverging regulation of pyruvate dehydrogenase kinase isoform gene expression in cultured human muscle cells. FEBS J 272:3004–3014PubMedCrossRef
69.
go back to reference Zhang S, Hulver MW, McMillan RP, Cline MA, Gilbert ER (2014) The pivotal role of pyruvate dehydrogenase kinases in metabolic flexibility. Nutr Metab (Lond) 11:10CrossRef Zhang S, Hulver MW, McMillan RP, Cline MA, Gilbert ER (2014) The pivotal role of pyruvate dehydrogenase kinases in metabolic flexibility. Nutr Metab (Lond) 11:10CrossRef
71.
go back to reference Osthus RC, Shim H, Kim S, Li Q, Reddy R et al (2000) Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J Biol Chem 275:21797–21800PubMedCrossRef Osthus RC, Shim H, Kim S, Li Q, Reddy R et al (2000) Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J Biol Chem 275:21797–21800PubMedCrossRef
72.
go back to reference van de Wetering M, Sancho E, Verweij C, de Lau W, Oving I et al (2002) The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111:241–250PubMedCrossRef van de Wetering M, Sancho E, Verweij C, de Lau W, Oving I et al (2002) The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111:241–250PubMedCrossRef
75.
go back to reference Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY et al (2008) Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci USA 105:18782–18787PubMedPubMedCentralCrossRef Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY et al (2008) Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci USA 105:18782–18787PubMedPubMedCentralCrossRef
77.
go back to reference Kim JW, Gao P, Liu YC, Semenza GL, Dang CV (2007) Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Mol Cell Biol 27:7381–7393PubMedPubMedCentralCrossRef Kim JW, Gao P, Liu YC, Semenza GL, Dang CV (2007) Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Mol Cell Biol 27:7381–7393PubMedPubMedCentralCrossRef
79.
go back to reference Prigogine I, Nicolis G (1971) Biological order, structure and instabilities. Q Rev Biophys 4:107–148PubMedCrossRef Prigogine I, Nicolis G (1971) Biological order, structure and instabilities. Q Rev Biophys 4:107–148PubMedCrossRef
80.
go back to reference Mor I, Cheung EC, Vousden KH (2011) Control of glycolysis through regulation of PFK1: old friends and recent additions. Cold Spring Harb Symp Quant Biol 76:211–216PubMedCrossRef Mor I, Cheung EC, Vousden KH (2011) Control of glycolysis through regulation of PFK1: old friends and recent additions. Cold Spring Harb Symp Quant Biol 76:211–216PubMedCrossRef
81.
go back to reference Chocarro-Calvo A, Garcia-Martinez JM, Ardila-Gonzalez S, De la Vieja A, Garcia-Jimenez C (2013) Glucose-induced beta-catenin acetylation enhances Wnt signaling in cancer. Mol Cell 49:474–486PubMedCrossRef Chocarro-Calvo A, Garcia-Martinez JM, Ardila-Gonzalez S, De la Vieja A, Garcia-Jimenez C (2013) Glucose-induced beta-catenin acetylation enhances Wnt signaling in cancer. Mol Cell 49:474–486PubMedCrossRef
82.
go back to reference Aguilera O, Munoz-Sagastibelza M, Torrejon B, Borrero-Palacios A, Del Puerto-Nevado L et al (2016) Vitamin C uncouples the Warburg metabolic switch in KRAS mutant colon cancer. Oncotarget 7:47954–47965PubMedPubMedCentral Aguilera O, Munoz-Sagastibelza M, Torrejon B, Borrero-Palacios A, Del Puerto-Nevado L et al (2016) Vitamin C uncouples the Warburg metabolic switch in KRAS mutant colon cancer. Oncotarget 7:47954–47965PubMedPubMedCentral
84.
go back to reference Bax BE, Bloxam DL (1997) Energy metabolism and glycolysis in human placental trophoblast cells during differentiation. Biochim Biophys Acta 1319:283–292PubMedCrossRef Bax BE, Bloxam DL (1997) Energy metabolism and glycolysis in human placental trophoblast cells during differentiation. Biochim Biophys Acta 1319:283–292PubMedCrossRef
85.
go back to reference Feller AC, Schneider H, Schmidt D, Parwaresch MR (1985) Myofibroblast as a major cellular constituent of villous stroma in human placenta. Placenta 6:405–415PubMedCrossRef Feller AC, Schneider H, Schmidt D, Parwaresch MR (1985) Myofibroblast as a major cellular constituent of villous stroma in human placenta. Placenta 6:405–415PubMedCrossRef
86.
go back to reference Chiavegato A, Bochaton-Piallat ML, D’Amore E, Sartore S, Gabbiani G (1995) Expression of myosin heavy chain isoforms in mammary epithelial cells and in myofibroblasts from different fibrotic settings during neoplasia. Virchows Arch 426:77–86PubMedCrossRef Chiavegato A, Bochaton-Piallat ML, D’Amore E, Sartore S, Gabbiani G (1995) Expression of myosin heavy chain isoforms in mammary epithelial cells and in myofibroblasts from different fibrotic settings during neoplasia. Virchows Arch 426:77–86PubMedCrossRef
87.
go back to reference Matsumura S, Sakurai K, Shinomiya T, Fujitani N, Key K et al (2011) Biochemical and immunohistochemical characterization of the isoforms of myosin and actin in human placenta. Placenta 32:347–355PubMedCrossRef Matsumura S, Sakurai K, Shinomiya T, Fujitani N, Key K et al (2011) Biochemical and immunohistochemical characterization of the isoforms of myosin and actin in human placenta. Placenta 32:347–355PubMedCrossRef
88.
go back to reference Lecarpentier Y, Claes V, Lecarpentier E, Guerin C, Hebert JL et al (2014) Ultraslow myosin molecular motors of placental contractile stem villi in humans. PLoS ONE 9:e108814PubMedPubMedCentralCrossRef Lecarpentier Y, Claes V, Lecarpentier E, Guerin C, Hebert JL et al (2014) Ultraslow myosin molecular motors of placental contractile stem villi in humans. PLoS ONE 9:e108814PubMedPubMedCentralCrossRef
89.
go back to reference Lecarpentier Y, Claes V, Hebert JL, Krokidis X, Blanc FX et al (2015) Statistical mechanics of the human placenta: a stationary state of a near-equilibrium system in a linear regime. PLoS ONE 10:e0142471PubMedPubMedCentralCrossRef Lecarpentier Y, Claes V, Hebert JL, Krokidis X, Blanc FX et al (2015) Statistical mechanics of the human placenta: a stationary state of a near-equilibrium system in a linear regime. PLoS ONE 10:e0142471PubMedPubMedCentralCrossRef
90.
go back to reference Carthy JM, Garmaroudi FS, Luo Z, McManus BM (2011) Wnt3a induces myofibroblast differentiation by upregulating TGF-beta signaling through SMAD2 in a beta-catenin-dependent manner. PLoS ONE 6:e19809PubMedPubMedCentralCrossRef Carthy JM, Garmaroudi FS, Luo Z, McManus BM (2011) Wnt3a induces myofibroblast differentiation by upregulating TGF-beta signaling through SMAD2 in a beta-catenin-dependent manner. PLoS ONE 6:e19809PubMedPubMedCentralCrossRef
91.
go back to reference Bernard K, Logsdon NJ, Ravi S, Xie N, Persons BP et al (2015) Metabolic reprogramming is required for myofibroblast contractility and differentiation. J Biol Chem 290:25427–25438PubMedPubMedCentralCrossRef Bernard K, Logsdon NJ, Ravi S, Xie N, Persons BP et al (2015) Metabolic reprogramming is required for myofibroblast contractility and differentiation. J Biol Chem 290:25427–25438PubMedPubMedCentralCrossRef
95.
go back to reference Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H et al (1997) Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 275:1787–1790PubMedCrossRef Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H et al (1997) Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 275:1787–1790PubMedCrossRef
97.
go back to reference Sarraf P, Mueller E, Smith WM, Wright HM, Kum JB et al (1999) Loss-of-function mutations in PPAR gamma associated with human colon cancer. Mol Cell 3:799–804PubMedCrossRef Sarraf P, Mueller E, Smith WM, Wright HM, Kum JB et al (1999) Loss-of-function mutations in PPAR gamma associated with human colon cancer. Mol Cell 3:799–804PubMedCrossRef
98.
go back to reference Girnun GD, Smith WM, Drori S, Sarraf P, Mueller E et al (2002) APC-dependent suppression of colon carcinogenesis by PPAR gamma. Proc Natl Acad Sci USA 99:13771–13776PubMedPubMedCentralCrossRef Girnun GD, Smith WM, Drori S, Sarraf P, Mueller E et al (2002) APC-dependent suppression of colon carcinogenesis by PPAR gamma. Proc Natl Acad Sci USA 99:13771–13776PubMedPubMedCentralCrossRef
99.
go back to reference Brockman JA, Gupta RA, Dubois RN (1998) Activation of PPAR gamma leads to inhibition of anchorage-independent growth of human colorectal cancer cells. Gastroenterology 115:1049–1055PubMedCrossRef Brockman JA, Gupta RA, Dubois RN (1998) Activation of PPAR gamma leads to inhibition of anchorage-independent growth of human colorectal cancer cells. Gastroenterology 115:1049–1055PubMedCrossRef
100.
go back to reference Shimada T, Kojima K, Yoshiura K, Hiraishi H, Terano A (2002) Characteristics of the peroxisome proliferator activated receptor gamma (PPARgamma) ligand induced apoptosis in colon cancer cells. Gut 50:658–664PubMedPubMedCentralCrossRef Shimada T, Kojima K, Yoshiura K, Hiraishi H, Terano A (2002) Characteristics of the peroxisome proliferator activated receptor gamma (PPARgamma) ligand induced apoptosis in colon cancer cells. Gut 50:658–664PubMedPubMedCentralCrossRef
101.
go back to reference Osawa E, Nakajima A, Wada K, Ishimine S, Fujisawa N et al (2003) Peroxisome proliferator-activated receptor gamma ligands suppress colon carcinogenesis induced by azoxymethane in mice. Gastroenterology 124:361–367PubMedCrossRef Osawa E, Nakajima A, Wada K, Ishimine S, Fujisawa N et al (2003) Peroxisome proliferator-activated receptor gamma ligands suppress colon carcinogenesis induced by azoxymethane in mice. Gastroenterology 124:361–367PubMedCrossRef
102.
go back to reference Cesario RM, Stone J, Yen WC, Bissonnette RP, Lamph WW (2006) Differentiation and growth inhibition mediated via the RXR: PPAR gamma heterodimer in colon cancer. Cancer Lett 240:225–233PubMedCrossRef Cesario RM, Stone J, Yen WC, Bissonnette RP, Lamph WW (2006) Differentiation and growth inhibition mediated via the RXR: PPAR gamma heterodimer in colon cancer. Cancer Lett 240:225–233PubMedCrossRef
103.
go back to reference Sarraf P, Mueller E, Jones D, King FJ, DeAngelo DJ et al (1998) Differentiation and reversal of malignant changes in colon cancer through PPARgamma. Nat Med 4:1046–1052PubMedCrossRef Sarraf P, Mueller E, Jones D, King FJ, DeAngelo DJ et al (1998) Differentiation and reversal of malignant changes in colon cancer through PPARgamma. Nat Med 4:1046–1052PubMedCrossRef
104.
go back to reference Grommes C, Landreth GE, Heneka MT (2004) Antineoplastic effects of peroxisome proliferator-activated receptor gamma agonists. Lancet Oncol 5:419–429PubMedCrossRef Grommes C, Landreth GE, Heneka MT (2004) Antineoplastic effects of peroxisome proliferator-activated receptor gamma agonists. Lancet Oncol 5:419–429PubMedCrossRef
105.
go back to reference McAlpine CA, Barak Y, Matise I, Cormier RT (2006) Intestinal-specific PPARgamma deficiency enhances tumorigenesis in ApcMin/+ mice. Int J Cancer 119:2339–2346PubMedCrossRef McAlpine CA, Barak Y, Matise I, Cormier RT (2006) Intestinal-specific PPARgamma deficiency enhances tumorigenesis in ApcMin/+ mice. Int J Cancer 119:2339–2346PubMedCrossRef
106.
go back to reference Mueller E, Sarraf P, Tontonoz P, Evans RM, Martin KJ et al (1998) Terminal differentiation of human breast cancer through PPAR gamma. Mol Cell 1:465–470PubMedCrossRef Mueller E, Sarraf P, Tontonoz P, Evans RM, Martin KJ et al (1998) Terminal differentiation of human breast cancer through PPAR gamma. Mol Cell 1:465–470PubMedCrossRef
107.
go back to reference Clay CE, Namen AM, Atsumi G, Willingham MC, High KP et al (1999) Influence of J series prostaglandins on apoptosis and tumorigenesis of breast cancer cells. Carcinogenesis 20:1905–1911PubMedCrossRef Clay CE, Namen AM, Atsumi G, Willingham MC, High KP et al (1999) Influence of J series prostaglandins on apoptosis and tumorigenesis of breast cancer cells. Carcinogenesis 20:1905–1911PubMedCrossRef
108.
go back to reference Pignatelli M, Cocca C, Santos A, Perez-Castillo A (2003) Enhancement of BRCA1 gene expression by the peroxisome proliferator-activated receptor gamma in the MCF-7 breast cancer cell line. Oncogene 22:5446–5450PubMedCrossRef Pignatelli M, Cocca C, Santos A, Perez-Castillo A (2003) Enhancement of BRCA1 gene expression by the peroxisome proliferator-activated receptor gamma in the MCF-7 breast cancer cell line. Oncogene 22:5446–5450PubMedCrossRef
109.
go back to reference Elstner E, Muller C, Koshizuka K, Williamson EA, Park D et al (1998) Ligands for peroxisome proliferator-activated receptorgamma and retinoic acid receptor inhibit growth and induce apoptosis of human breast cancer cells in vitro and in BNX mice. Proc Natl Acad Sci USA 95:8806–8811PubMedPubMedCentralCrossRef Elstner E, Muller C, Koshizuka K, Williamson EA, Park D et al (1998) Ligands for peroxisome proliferator-activated receptorgamma and retinoic acid receptor inhibit growth and induce apoptosis of human breast cancer cells in vitro and in BNX mice. Proc Natl Acad Sci USA 95:8806–8811PubMedPubMedCentralCrossRef
110.
go back to reference Inoue K, Kawahito Y, Tsubouchi Y, Kohno M, Yoshimura R et al (2001) Expression of peroxisome proliferator-activated receptor gamma in renal cell carcinoma and growth inhibition by its agonists. Biochem Biophys Res Commun 287:727–732PubMedCrossRef Inoue K, Kawahito Y, Tsubouchi Y, Kohno M, Yoshimura R et al (2001) Expression of peroxisome proliferator-activated receptor gamma in renal cell carcinoma and growth inhibition by its agonists. Biochem Biophys Res Commun 287:727–732PubMedCrossRef
111.
go back to reference Guan YF, Zhang YH, Breyer RM, Davis L, Breyer MD (1999) Expression of peroxisome proliferator-activated receptor gamma (PPARgamma) in human transitional bladder cancer and its role in inducing cell death. Neoplasia 1:330–339PubMedPubMedCentralCrossRef Guan YF, Zhang YH, Breyer RM, Davis L, Breyer MD (1999) Expression of peroxisome proliferator-activated receptor gamma (PPARgamma) in human transitional bladder cancer and its role in inducing cell death. Neoplasia 1:330–339PubMedPubMedCentralCrossRef
112.
go back to reference Lodillinsky C, Umerez MS, Jasnis MA, Casabe A, Sandes E et al (2006) Bacillus Calmette-Guerin induces the expression of peroxisome proliferator-activated receptor gamma in bladder cancer cells. Int J Mol Med 17:269–273PubMed Lodillinsky C, Umerez MS, Jasnis MA, Casabe A, Sandes E et al (2006) Bacillus Calmette-Guerin induces the expression of peroxisome proliferator-activated receptor gamma in bladder cancer cells. Int J Mol Med 17:269–273PubMed
113.
go back to reference Radhakrishnan SK, Gartel AL (2005) The PPAR-gamma agonist pioglitazone post-transcriptionally induces p21 in PC3 prostate cancer but not in other cell lines. Cell Cycle 4:582–584PubMedCrossRef Radhakrishnan SK, Gartel AL (2005) The PPAR-gamma agonist pioglitazone post-transcriptionally induces p21 in PC3 prostate cancer but not in other cell lines. Cell Cycle 4:582–584PubMedCrossRef
114.
go back to reference Mueller E, Smith M, Sarraf P, Kroll T, Aiyer A et al (2000) Effects of ligand activation of peroxisome proliferator-activated receptor gamma in human prostate cancer. Proc Natl Acad Sci USA 97:10990–10995PubMedPubMedCentralCrossRef Mueller E, Smith M, Sarraf P, Kroll T, Aiyer A et al (2000) Effects of ligand activation of peroxisome proliferator-activated receptor gamma in human prostate cancer. Proc Natl Acad Sci USA 97:10990–10995PubMedPubMedCentralCrossRef
115.
go back to reference Yang FG, Zhang ZW, Xin DQ, Shi CJ, Wu JP et al (2005) Peroxisome proliferator-activated receptor gamma ligands induce cell cycle arrest and apoptosis in human renal carcinoma cell lines. Acta Pharmacol Sin 26:753–761PubMedCrossRef Yang FG, Zhang ZW, Xin DQ, Shi CJ, Wu JP et al (2005) Peroxisome proliferator-activated receptor gamma ligands induce cell cycle arrest and apoptosis in human renal carcinoma cell lines. Acta Pharmacol Sin 26:753–761PubMedCrossRef
116.
go back to reference Tsubouchi Y, Sano H, Kawahito Y, Mukai S, Yamada R et al (2000) Inhibition of human lung cancer cell growth by the peroxisome proliferator-activated receptor-gamma agonists through induction of apoptosis. Biochem Biophys Res Commun 270:400–405PubMedCrossRef Tsubouchi Y, Sano H, Kawahito Y, Mukai S, Yamada R et al (2000) Inhibition of human lung cancer cell growth by the peroxisome proliferator-activated receptor-gamma agonists through induction of apoptosis. Biochem Biophys Res Commun 270:400–405PubMedCrossRef
117.
go back to reference Lee SY, Hur GY, Jung KH, Jung HC, Kim JH et al (2006) PPAR-gamma agonist increase gefitinib’s antitumor activity through PTEN expression. Lung Cancer 51:297–301PubMedCrossRef Lee SY, Hur GY, Jung KH, Jung HC, Kim JH et al (2006) PPAR-gamma agonist increase gefitinib’s antitumor activity through PTEN expression. Lung Cancer 51:297–301PubMedCrossRef
118.
go back to reference Yao CJ, Lai GM, Chan CF, Cheng AL, Yang YY et al (2006) Dramatic synergistic anticancer effect of clinically achievable doses of lovastatin and troglitazone. Int J Cancer 118:773–779PubMedCrossRef Yao CJ, Lai GM, Chan CF, Cheng AL, Yang YY et al (2006) Dramatic synergistic anticancer effect of clinically achievable doses of lovastatin and troglitazone. Int J Cancer 118:773–779PubMedCrossRef
119.
go back to reference Sato H, Ishihara S, Kawashima K, Moriyama N, Suetsugu H et al (2000) Expression of peroxisome proliferator-activated receptor (PPAR)gamma in gastric cancer and inhibitory effects of PPARgamma agonists. Br J Cancer 83:1394–1400PubMedPubMedCentralCrossRef Sato H, Ishihara S, Kawashima K, Moriyama N, Suetsugu H et al (2000) Expression of peroxisome proliferator-activated receptor (PPAR)gamma in gastric cancer and inhibitory effects of PPARgamma agonists. Br J Cancer 83:1394–1400PubMedPubMedCentralCrossRef
120.
go back to reference Takahashi N, Okumura T, Motomura W, Fujimoto Y, Kawabata I et al (1999) Activation of PPARgamma inhibits cell growth and induces apoptosis in human gastric cancer cells. FEBS Lett 455:135–139PubMedCrossRef Takahashi N, Okumura T, Motomura W, Fujimoto Y, Kawabata I et al (1999) Activation of PPARgamma inhibits cell growth and induces apoptosis in human gastric cancer cells. FEBS Lett 455:135–139PubMedCrossRef
121.
go back to reference Lu J, Imamura K, Nomura S, Mafune K, Nakajima A et al (2005) Chemopreventive effect of peroxisome proliferator-activated receptor gamma on gastric carcinogenesis in mice. Cancer Res 65:4769–4774PubMedCrossRef Lu J, Imamura K, Nomura S, Mafune K, Nakajima A et al (2005) Chemopreventive effect of peroxisome proliferator-activated receptor gamma on gastric carcinogenesis in mice. Cancer Res 65:4769–4774PubMedCrossRef
122.
go back to reference Liao SY, Zeng ZR, Leung WK, Zhou SZ, Chen B et al (2006) Peroxisome proliferator-activated receptor-gamma Pro12Ala polymorphism, Helicobacter pylori infection and non-cardia gastric carcinoma in Chinese. Aliment Pharmacol Ther 23:289–294PubMedCrossRef Liao SY, Zeng ZR, Leung WK, Zhou SZ, Chen B et al (2006) Peroxisome proliferator-activated receptor-gamma Pro12Ala polymorphism, Helicobacter pylori infection and non-cardia gastric carcinoma in Chinese. Aliment Pharmacol Ther 23:289–294PubMedCrossRef
123.
go back to reference Saez E, Tontonoz P, Nelson MC, Alvarez JG, Ming UT et al (1998) Activators of the nuclear receptor PPARgamma enhance colon polyp formation. Nat Med 4:1058–1061PubMedCrossRef Saez E, Tontonoz P, Nelson MC, Alvarez JG, Ming UT et al (1998) Activators of the nuclear receptor PPARgamma enhance colon polyp formation. Nat Med 4:1058–1061PubMedCrossRef
124.
go back to reference Lefebvre AM, Chen I, Desreumaux P, Najib J, Fruchart JC et al (1998) Activation of the peroxisome proliferator-activated receptor gamma promotes the development of colon tumors in C57BL/6 J-APCMin/+ mice. Nat Med 4:1053–1057PubMedCrossRef Lefebvre AM, Chen I, Desreumaux P, Najib J, Fruchart JC et al (1998) Activation of the peroxisome proliferator-activated receptor gamma promotes the development of colon tumors in C57BL/6 J-APCMin/+ mice. Nat Med 4:1053–1057PubMedCrossRef
125.
go back to reference Yang K, Fan KH, Lamprecht SA, Edelmann W, Kopelovich L et al (2005) Peroxisome proliferator-activated receptor gamma agonist troglitazone induces colon tumors in normal C57BL/6 J mice and enhances colonic carcinogenesis in Apc1638 N/+ Mlh1 ± double mutant mice. Int J Cancer 116:495–499PubMedCrossRef Yang K, Fan KH, Lamprecht SA, Edelmann W, Kopelovich L et al (2005) Peroxisome proliferator-activated receptor gamma agonist troglitazone induces colon tumors in normal C57BL/6 J mice and enhances colonic carcinogenesis in Apc1638 N/+ Mlh1 ± double mutant mice. Int J Cancer 116:495–499PubMedCrossRef
126.
go back to reference Kulke MH, Demetri GD, Sharpless NE, Ryan DP, Shivdasani R et al (2002) A phase II study of troglitazone, an activator of the PPARgamma receptor, in patients with chemotherapy-resistant metastatic colorectal cancer. Cancer J 8:395–399PubMedCrossRef Kulke MH, Demetri GD, Sharpless NE, Ryan DP, Shivdasani R et al (2002) A phase II study of troglitazone, an activator of the PPARgamma receptor, in patients with chemotherapy-resistant metastatic colorectal cancer. Cancer J 8:395–399PubMedCrossRef
127.
go back to reference Venkata NG, Robinson JA, Cabot PJ, Davis B, Monteith GR et al (2006) Mono(2-ethylhexyl)phthalate and mono-n-butyl phthalate activation of peroxisome proliferator activated-receptors alpha and gamma in breast. Toxicol Lett 163:224–234PubMedCrossRef Venkata NG, Robinson JA, Cabot PJ, Davis B, Monteith GR et al (2006) Mono(2-ethylhexyl)phthalate and mono-n-butyl phthalate activation of peroxisome proliferator activated-receptors alpha and gamma in breast. Toxicol Lett 163:224–234PubMedCrossRef
128.
go back to reference Saez E, Rosenfeld J, Livolsi A, Olson P, Lombardo E et al (2004) PPAR gamma signaling exacerbates mammary gland tumor development. Genes Dev 18:528–540PubMedPubMedCentralCrossRef Saez E, Rosenfeld J, Livolsi A, Olson P, Lombardo E et al (2004) PPAR gamma signaling exacerbates mammary gland tumor development. Genes Dev 18:528–540PubMedPubMedCentralCrossRef
129.
go back to reference Cui Y, Miyoshi K, Claudio E, Siebenlist UK, Gonzalez FJ et al (2002) Loss of the peroxisome proliferation-activated receptor gamma (PPARgamma) does not affect mammary development and propensity for tumor formation but leads to reduced fertility. J Biol Chem 277:17830–17835PubMedCrossRef Cui Y, Miyoshi K, Claudio E, Siebenlist UK, Gonzalez FJ et al (2002) Loss of the peroxisome proliferation-activated receptor gamma (PPARgamma) does not affect mammary development and propensity for tumor formation but leads to reduced fertility. J Biol Chem 277:17830–17835PubMedCrossRef
130.
go back to reference Papadaki I, Mylona E, Giannopoulou I, Markaki S, Keramopoulos A et al (2005) PPARgamma expression in breast cancer: clinical value and correlation with ERbeta. Histopathology 46:37–42PubMedCrossRef Papadaki I, Mylona E, Giannopoulou I, Markaki S, Keramopoulos A et al (2005) PPARgamma expression in breast cancer: clinical value and correlation with ERbeta. Histopathology 46:37–42PubMedCrossRef
131.
go back to reference Burstein HJ, Demetri GD, Mueller E, Sarraf P, Spiegelman BM et al (2003) Use of the peroxisome proliferator-activated receptor (PPAR) gamma ligand troglitazone as treatment for refractory breast cancer: a phase II study. Breast Cancer Res Treat 79:391–397PubMedCrossRef Burstein HJ, Demetri GD, Mueller E, Sarraf P, Spiegelman BM et al (2003) Use of the peroxisome proliferator-activated receptor (PPAR) gamma ligand troglitazone as treatment for refractory breast cancer: a phase II study. Breast Cancer Res Treat 79:391–397PubMedCrossRef
132.
go back to reference Seargent JM, Yates EA, Gill JH (2004) GW9662, a potent antagonist of PPARgamma, inhibits growth of breast tumour cells and promotes the anticancer effects of the PPARgamma agonist rosiglitazone, independently of PPARgamma activation. Br J Pharmacol 143:933–937PubMedPubMedCentralCrossRef Seargent JM, Yates EA, Gill JH (2004) GW9662, a potent antagonist of PPARgamma, inhibits growth of breast tumour cells and promotes the anticancer effects of the PPARgamma agonist rosiglitazone, independently of PPARgamma activation. Br J Pharmacol 143:933–937PubMedPubMedCentralCrossRef
133.
go back to reference Egerod FL, Nielsen HS, Iversen L, Thorup I, Storgaard T et al (2005) Biomarkers for early effects of carcinogenic dual-acting PPAR agonists in rat urinary bladder urothelium in vivo. Biomarkers 10:295–309PubMedCrossRef Egerod FL, Nielsen HS, Iversen L, Thorup I, Storgaard T et al (2005) Biomarkers for early effects of carcinogenic dual-acting PPAR agonists in rat urinary bladder urothelium in vivo. Biomarkers 10:295–309PubMedCrossRef
134.
go back to reference Yoshimura R, Matsuyama M, Segawa Y, Hase T, Mitsuhashi M et al (2003) Expression of peroxisome proliferator-activated receptors (PPARs) in human urinary bladder carcinoma and growth inhibition by its agonists. Int J Cancer 104:597–602PubMedCrossRef Yoshimura R, Matsuyama M, Segawa Y, Hase T, Mitsuhashi M et al (2003) Expression of peroxisome proliferator-activated receptors (PPARs) in human urinary bladder carcinoma and growth inhibition by its agonists. Int J Cancer 104:597–602PubMedCrossRef
135.
go back to reference Lea MA, Sura M, Desbordes C (2004) Inhibition of cell proliferation by potential peroxisome proliferator-activated receptor (PPAR) gamma agonists and antagonists. Anticancer Res 24:2765–2771PubMed Lea MA, Sura M, Desbordes C (2004) Inhibition of cell proliferation by potential peroxisome proliferator-activated receptor (PPAR) gamma agonists and antagonists. Anticancer Res 24:2765–2771PubMed
136.
go back to reference Simons AL, Orcutt KP, Madsen JM, Scarbrough PM, Spitz DR (2012) Oxidative stress in cancer biology and therapy. In: Spitz DR, Dornfeld KJ, Krishnan J, Gius D (eds) Oxidative Stress in Applied Research and Clinical Practice. Humana Press, New York. doi:10.1007/978-1-61779-397-4 Simons AL, Orcutt KP, Madsen JM, Scarbrough PM, Spitz DR (2012) Oxidative stress in cancer biology and therapy. In: Spitz DR, Dornfeld KJ, Krishnan J, Gius D (eds) Oxidative Stress in Applied Research and Clinical Practice. Humana Press, New York. doi:10.​1007/​978-1-61779-397-4
137.
138.
go back to reference Nicholson KM, Anderson NG (2002) The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal 14:381–395PubMedCrossRef Nicholson KM, Anderson NG (2002) The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal 14:381–395PubMedCrossRef
142.
go back to reference Castellone MD, Teramoto H, Williams BO, Druey KM, Gutkind JS (2005) Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin-beta-catenin signaling axis. Science 310:1504–1510PubMedCrossRef Castellone MD, Teramoto H, Williams BO, Druey KM, Gutkind JS (2005) Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin-beta-catenin signaling axis. Science 310:1504–1510PubMedCrossRef
143.
go back to reference Shao J, Jung C, Liu C, Sheng H (2005) Prostaglandin E2 Stimulates the beta-catenin/T cell factor-dependent transcription in colon cancer. J Biol Chem 280:26565–26572PubMedCrossRef Shao J, Jung C, Liu C, Sheng H (2005) Prostaglandin E2 Stimulates the beta-catenin/T cell factor-dependent transcription in colon cancer. J Biol Chem 280:26565–26572PubMedCrossRef
144.
go back to reference Ricchi P, Zarrilli R, Di Palma A, Acquaviva AM (2003) Nonsteroidal anti-inflammatory drugs in colorectal cancer: from prevention to therapy. Br J Cancer 88:803–807PubMedPubMedCentralCrossRef Ricchi P, Zarrilli R, Di Palma A, Acquaviva AM (2003) Nonsteroidal anti-inflammatory drugs in colorectal cancer: from prevention to therapy. Br J Cancer 88:803–807PubMedPubMedCentralCrossRef
145.
go back to reference Goessling W, North TE, Loewer S, Lord AM, Lee S et al (2009) Genetic interaction of PGE2 and Wnt signaling regulates developmental specification of stem cells and regeneration. Cell 136:1136–1147PubMedPubMedCentralCrossRef Goessling W, North TE, Loewer S, Lord AM, Lee S et al (2009) Genetic interaction of PGE2 and Wnt signaling regulates developmental specification of stem cells and regeneration. Cell 136:1136–1147PubMedPubMedCentralCrossRef
146.
go back to reference Li L, Kim HT, Nellore A, Patsoukis N, Petkova V et al (2014) Prostaglandin E2 promotes survival of naive UCB T cells via the Wnt/beta-catenin pathway and alters immune reconstitution after UCBT. Blood Cancer J 4:e178PubMedPubMedCentralCrossRef Li L, Kim HT, Nellore A, Patsoukis N, Petkova V et al (2014) Prostaglandin E2 promotes survival of naive UCB T cells via the Wnt/beta-catenin pathway and alters immune reconstitution after UCBT. Blood Cancer J 4:e178PubMedPubMedCentralCrossRef
147.
go back to reference Wong CT, Ahmad E, Li H, Crawford DA (2014) Prostaglandin E2 alters Wnt-dependent migration and proliferation in neuroectodermal stem cells: implications for autism spectrum disorders. Cell Commun Signal 12:19PubMedPubMedCentralCrossRef Wong CT, Ahmad E, Li H, Crawford DA (2014) Prostaglandin E2 alters Wnt-dependent migration and proliferation in neuroectodermal stem cells: implications for autism spectrum disorders. Cell Commun Signal 12:19PubMedPubMedCentralCrossRef
148.
149.
go back to reference Mendez M, LaPointe MC (2003) PPARgamma inhibition of cyclooxygenase-2, PGE2 synthase, and inducible nitric oxide synthase in cardiac myocytes. Hypertension 42:844–850PubMedCrossRef Mendez M, LaPointe MC (2003) PPARgamma inhibition of cyclooxygenase-2, PGE2 synthase, and inducible nitric oxide synthase in cardiac myocytes. Hypertension 42:844–850PubMedCrossRef
151.
go back to reference Goodwin BC (1965) Oscillatory behavior in enzymatic control processes. Adv Enzyme Regul 3:425–438PubMedCrossRef Goodwin BC (1965) Oscillatory behavior in enzymatic control processes. Adv Enzyme Regul 3:425–438PubMedCrossRef
152.
go back to reference Hardin PE, Hall JC, Rosbash M (1990) Feedback of the drosophila period gene product on circadian cycling of its messenger RNA levels. Nature 343:536–540PubMedCrossRef Hardin PE, Hall JC, Rosbash M (1990) Feedback of the drosophila period gene product on circadian cycling of its messenger RNA levels. Nature 343:536–540PubMedCrossRef
153.
154.
go back to reference Gekakis N, Staknis D, Nguyen HB, Davis FC, Wilsbacher LD et al (1998) Role of the CLOCK protein in the mammalian circadian mechanism. Science 280:1564–1569PubMedCrossRef Gekakis N, Staknis D, Nguyen HB, Davis FC, Wilsbacher LD et al (1998) Role of the CLOCK protein in the mammalian circadian mechanism. Science 280:1564–1569PubMedCrossRef
155.
go back to reference Hogenesch JB, Gu YZ, Jain S, Bradfield CA (1998) The basic-helix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors. Proc Natl Acad Sci USA 95:5474–5479PubMedPubMedCentralCrossRef Hogenesch JB, Gu YZ, Jain S, Bradfield CA (1998) The basic-helix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors. Proc Natl Acad Sci USA 95:5474–5479PubMedPubMedCentralCrossRef
156.
157.
158.
go back to reference Sahar S, Sassone-Corsi P (2009) Metabolism and cancer: the circadian clock connection. Nat Rev Cancer 9:886–896PubMedCrossRef Sahar S, Sassone-Corsi P (2009) Metabolism and cancer: the circadian clock connection. Nat Rev Cancer 9:886–896PubMedCrossRef
159.
161.
go back to reference Paschos GK, Ibrahim S, Song WL, Kunieda T, Grant G et al (2012) Obesity in mice with adipocyte-specific deletion of clock component Arntl. Nat Med 18:1768–1777PubMedPubMedCentralCrossRef Paschos GK, Ibrahim S, Song WL, Kunieda T, Grant G et al (2012) Obesity in mice with adipocyte-specific deletion of clock component Arntl. Nat Med 18:1768–1777PubMedPubMedCentralCrossRef
162.
go back to reference Yang X, Wood PA, Ansell CM, Ohmori M, Oh EY et al (2009) Beta-catenin induces beta-TrCP-mediated PER2 degradation altering circadian clock gene expression in intestinal mucosa of ApcMin/+ mice. J Biochem 145:289–297PubMedCrossRef Yang X, Wood PA, Ansell CM, Ohmori M, Oh EY et al (2009) Beta-catenin induces beta-TrCP-mediated PER2 degradation altering circadian clock gene expression in intestinal mucosa of ApcMin/+ mice. J Biochem 145:289–297PubMedCrossRef
163.
go back to reference Winter SL, Bosnoyan-Collins L, Pinnaduwage D, Andrulis IL (2007) Expression of the circadian clock genes Per1 and Per2 in sporadic and familial breast tumors. Neoplasia 9:797–800PubMedPubMedCentralCrossRef Winter SL, Bosnoyan-Collins L, Pinnaduwage D, Andrulis IL (2007) Expression of the circadian clock genes Per1 and Per2 in sporadic and familial breast tumors. Neoplasia 9:797–800PubMedPubMedCentralCrossRef
165.
go back to reference Suzuki T, Sato F, Kondo J, Liu Y, Kusumi T et al (2008) Period is involved in the proliferation of human pancreatic MIA-PaCa2 cancer cells by TNF-alpha. Biomed Res 29:99–103PubMedCrossRef Suzuki T, Sato F, Kondo J, Liu Y, Kusumi T et al (2008) Period is involved in the proliferation of human pancreatic MIA-PaCa2 cancer cells by TNF-alpha. Biomed Res 29:99–103PubMedCrossRef
166.
go back to reference Mostafaie N, Kallay E, Sauerzapf E, Bonner E, Kriwanek S et al (2009) Correlated downregulation of estrogen receptor beta and the circadian clock gene Per1 in human colorectal cancer. Mol Carcinog 48:642–647PubMedCrossRef Mostafaie N, Kallay E, Sauerzapf E, Bonner E, Kriwanek S et al (2009) Correlated downregulation of estrogen receptor beta and the circadian clock gene Per1 in human colorectal cancer. Mol Carcinog 48:642–647PubMedCrossRef
167.
go back to reference Yang MY, Yang WC, Lin PM, Hsu JF, Hsiao HH et al (2011) Altered expression of circadian clock genes in human chronic myeloid leukemia. J Biol Rhythms 26:136–148PubMedCrossRef Yang MY, Yang WC, Lin PM, Hsu JF, Hsiao HH et al (2011) Altered expression of circadian clock genes in human chronic myeloid leukemia. J Biol Rhythms 26:136–148PubMedCrossRef
168.
go back to reference Fujioka A, Takashima N, Shigeyoshi Y (2006) Circadian rhythm generation in a glioma cell line. Biochem Biophys Res Commun 346:169–174PubMedCrossRef Fujioka A, Takashima N, Shigeyoshi Y (2006) Circadian rhythm generation in a glioma cell line. Biochem Biophys Res Commun 346:169–174PubMedCrossRef
169.
go back to reference Xia HC, Niu ZF, Ma H, Cao SZ, Hao SC et al (2010) Deregulated expression of the Per1 and Per2 in human gliomas. Can J Neurol Sci 37:365–370PubMedCrossRef Xia HC, Niu ZF, Ma H, Cao SZ, Hao SC et al (2010) Deregulated expression of the Per1 and Per2 in human gliomas. Can J Neurol Sci 37:365–370PubMedCrossRef
171.
go back to reference Yang X, Downes M, Yu RT, Bookout AL, He W et al (2006) Nuclear receptor expression links the circadian clock to metabolism. Cell 126:801–810PubMedCrossRef Yang X, Downes M, Yu RT, Bookout AL, He W et al (2006) Nuclear receptor expression links the circadian clock to metabolism. Cell 126:801–810PubMedCrossRef
172.
go back to reference Yang G, Jia Z, Aoyagi T, McClain D, Mortensen RM et al (2012) Systemic PPARgamma deletion impairs circadian rhythms of behavior and metabolism. PLoS ONE 7:e38117PubMedPubMedCentralCrossRef Yang G, Jia Z, Aoyagi T, McClain D, Mortensen RM et al (2012) Systemic PPARgamma deletion impairs circadian rhythms of behavior and metabolism. PLoS ONE 7:e38117PubMedPubMedCentralCrossRef
173.
go back to reference Liu C, Li S, Liu T, Borjigin J, Lin JD (2007) Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism. Nature 447:477–481PubMedCrossRef Liu C, Li S, Liu T, Borjigin J, Lin JD (2007) Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism. Nature 447:477–481PubMedCrossRef
174.
go back to reference Tan Z, Luo X, Xiao L, Tang M, Bode AM et al (2016) The role of PGC1alpha in cancer metabolism and its therapeutic implications. Mol Cancer Ther 15:774–782PubMedCrossRef Tan Z, Luo X, Xiao L, Tang M, Bode AM et al (2016) The role of PGC1alpha in cancer metabolism and its therapeutic implications. Mol Cancer Ther 15:774–782PubMedCrossRef
175.
Metadata
Title
Thermodynamics in cancers: opposing interactions between PPAR gamma and the canonical WNT/beta-catenin pathway
Authors
Yves Lecarpentier
Victor Claes
Alexandre Vallée
Jean-Louis Hébert
Publication date
01-12-2017
Publisher
Springer Berlin Heidelberg
Published in
Clinical and Translational Medicine / Issue 1/2017
Electronic ISSN: 2001-1326
DOI
https://doi.org/10.1186/s40169-017-0144-7