Skip to main content
Top
Published in: Clinical and Translational Medicine 1/2017

Open Access 01-12-2017 | Review

A current perspective on cancer immune therapy: step-by-step approach to constructing the magic bullet

Authors: Gabriele D’Errico, Heather L. Machado, Bruno Sainz Jr.

Published in: Clinical and Translational Medicine | Issue 1/2017

Login to get access

Abstract

Immunotherapy is the new trend in cancer treatment due to the selectivity, long lasting effects, and demonstrated improved overall survival and tolerance, when compared to patients treated with conventional chemotherapy. Despite these positive results, immunotherapy is still far from becoming the perfect magic bullet to fight cancer, largely due to the facts that immunotherapy is not effective in all patients nor in all cancer types. How and when will immunotherapy overcome these hurdles? In this review we take a step back to walk side by side with the pioneers of immunotherapy in order to understand what steps need to be taken today to make immunotherapy effective across all cancers. While early scientists, such as Coley, elicited an unselective but effective response against cancer, the search for selectivity pushed immunotherapy to the side in favor of drugs focused on targeting cancer cells. Fortunately, the modern era would revive the importance of the immune system in battling cancer by releasing the brakes or checkpoints (anti-CTLA-4 and anti-PD-1/PD-L1) that have been holding the immune system at bay. However, there are still many hurdles to overcome before immunotherapy becomes a universal cancer therapy. For example, we discuss how the redundant and complex nature of the immune system can impede tumor elimination by teeter tottering between different polarization states: one eliciting anti-cancer effects while the other promoting cancer growth and invasion. In addition, we highlight the incapacity of the immune system to choose between a fight or repair action with respect to tumor growth. Finally we combine these concepts to present a new way to think about the immune system and immune tolerance, by introducing two new metaphors, the “push the accelerator” and “repair the car” metaphors, to explain the current limitations associated with cancer immunotherapy.
Literature
3.
go back to reference Luqmani YA (2005) Mechanisms of drug resistance in cancer chemotherapy. Med Princ Pract 14(Suppl 1):35–48PubMed Luqmani YA (2005) Mechanisms of drug resistance in cancer chemotherapy. Med Princ Pract 14(Suppl 1):35–48PubMed
6.
go back to reference Burnet F, Fenner F (1949) The production of antibodies, 2nd edn. Macmillan, Melbourne Burnet F, Fenner F (1949) The production of antibodies, 2nd edn. Macmillan, Melbourne
8.
go back to reference McCarthy EF (2006) The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas. Iowa Orthop J 26:154–158PubMedPubMedCentral McCarthy EF (2006) The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas. Iowa Orthop J 26:154–158PubMedPubMedCentral
9.
go back to reference Steen S, Stephenson G (2008) Current treatment of soft tissue sarcoma. Proc (Bayl Univ Med Cent) 21:392–396 Steen S, Stephenson G (2008) Current treatment of soft tissue sarcoma. Proc (Bayl Univ Med Cent) 21:392–396
10.
go back to reference Alloatti A, Kotsias F, Magalhaes JG et al (2016) Dendritic cell maturation and cross-presentation: timing matters! Immunol Rev 272:97–108PubMedCrossRef Alloatti A, Kotsias F, Magalhaes JG et al (2016) Dendritic cell maturation and cross-presentation: timing matters! Immunol Rev 272:97–108PubMedCrossRef
11.
go back to reference Morelli AE, O’Connell PJ, Khanna A et al (2000) Preferential induction of Th1 responses by functionally mature hepatic (CD8alpha− and CD8alpha+) dendritic cells: association with conversion from liver transplant tolerance to acute rejection. Transplantation 69:2647–2657PubMedCrossRef Morelli AE, O’Connell PJ, Khanna A et al (2000) Preferential induction of Th1 responses by functionally mature hepatic (CD8alpha− and CD8alpha+) dendritic cells: association with conversion from liver transplant tolerance to acute rejection. Transplantation 69:2647–2657PubMedCrossRef
12.
go back to reference Agrawal S, Agrawal A, Said HM (2016) Biotin deficiency enhances the inflammatory response of human dendritic cells. Am J Physiol Cell Physiol 00141:02016 Agrawal S, Agrawal A, Said HM (2016) Biotin deficiency enhances the inflammatory response of human dendritic cells. Am J Physiol Cell Physiol 00141:02016
13.
go back to reference Romagnani S (2000) T-cell subsets (Th1 versus Th2). Ann Allergy Asthma Immunol 85:9–18 (quiz 18, 21) PubMedCrossRef Romagnani S (2000) T-cell subsets (Th1 versus Th2). Ann Allergy Asthma Immunol 85:9–18 (quiz 18, 21) PubMedCrossRef
14.
go back to reference Chen J, Zurawski G, Zurawski S et al (2015) A novel vaccine for mantle cell lymphoma based on targeting cyclin D1 to dendritic cells via CD40. J Hematol Oncol 8:35PubMedPubMedCentralCrossRef Chen J, Zurawski G, Zurawski S et al (2015) A novel vaccine for mantle cell lymphoma based on targeting cyclin D1 to dendritic cells via CD40. J Hematol Oncol 8:35PubMedPubMedCentralCrossRef
15.
go back to reference Liston A (2011) Immunological tolerance 50 years after the Burnet Nobel Prize. Immunol Cell Biol 89:14–15PubMedCrossRef Liston A (2011) Immunological tolerance 50 years after the Burnet Nobel Prize. Immunol Cell Biol 89:14–15PubMedCrossRef
16.
go back to reference Billingham RE, Brent L, Medawar PB (1953) Actively acquired tolerance of foreign cells. Nature 172:603–606PubMedCrossRef Billingham RE, Brent L, Medawar PB (1953) Actively acquired tolerance of foreign cells. Nature 172:603–606PubMedCrossRef
18.
go back to reference Nossal GJ, Pike BL (1978) Mechanisms of clonal abortion tolerogenesis. I. Response of immature hapten-specific B lymphocytes. J Exp Med 148:1161–1170PubMedPubMedCentralCrossRef Nossal GJ, Pike BL (1978) Mechanisms of clonal abortion tolerogenesis. I. Response of immature hapten-specific B lymphocytes. J Exp Med 148:1161–1170PubMedPubMedCentralCrossRef
19.
go back to reference Marrack P, Kappler J (1990) T cell tolerance. Semin Immunol 2:45–49PubMed Marrack P, Kappler J (1990) T cell tolerance. Semin Immunol 2:45–49PubMed
20.
go back to reference Goodnow CC, Adelstein S, Basten A (1990) The need for central and peripheral tolerance in the B cell repertoire. Science 248:1373–1379PubMedCrossRef Goodnow CC, Adelstein S, Basten A (1990) The need for central and peripheral tolerance in the B cell repertoire. Science 248:1373–1379PubMedCrossRef
21.
go back to reference Le Douarin N, Corbel C, Bandeira A et al (1996) Evidence for a thymus-dependent form of tolerance that is not based on elimination or anergy of reactive T cells. Immunol Rev 149:35–53PubMedCrossRef Le Douarin N, Corbel C, Bandeira A et al (1996) Evidence for a thymus-dependent form of tolerance that is not based on elimination or anergy of reactive T cells. Immunol Rev 149:35–53PubMedCrossRef
22.
go back to reference Foley EJ (1953) Antigenic properties of methylcholanthrene-induced tumors in mice of the strain of origin. Cancer Res 13:835–837PubMed Foley EJ (1953) Antigenic properties of methylcholanthrene-induced tumors in mice of the strain of origin. Cancer Res 13:835–837PubMed
24.
go back to reference Hargraves MM (1969) Discovery of the LE cell and its morphology. Mayo Clin Proc 44:579–599PubMed Hargraves MM (1969) Discovery of the LE cell and its morphology. Mayo Clin Proc 44:579–599PubMed
25.
go back to reference DeLeo AB, Jay G, Appella E et al (1979) Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse. Proc Natl Acad Sci USA 76:2420–2424PubMedPubMedCentralCrossRef DeLeo AB, Jay G, Appella E et al (1979) Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse. Proc Natl Acad Sci USA 76:2420–2424PubMedPubMedCentralCrossRef
26.
go back to reference Boon T, Cerottini JC, Van den Eynde B et al (1994) Tumor antigens recognized by T lymphocytes. Annu Rev Immunol 12:337–365PubMedCrossRef Boon T, Cerottini JC, Van den Eynde B et al (1994) Tumor antigens recognized by T lymphocytes. Annu Rev Immunol 12:337–365PubMedCrossRef
27.
go back to reference Salmi M, Hellman J, Jalkanen S (1998) The role of two distinct endothelial molecules, vascular adhesion protein-1 and peripheral lymph node addressin, in the binding of lymphocyte subsets to human lymph nodes. J Immunol 160:5629–5636PubMed Salmi M, Hellman J, Jalkanen S (1998) The role of two distinct endothelial molecules, vascular adhesion protein-1 and peripheral lymph node addressin, in the binding of lymphocyte subsets to human lymph nodes. J Immunol 160:5629–5636PubMed
28.
go back to reference Steinman RM (2007) Lasker basic medical research award. Dendritic cells: versatile controllers of the immune system. Nat Med 13:1155–1159PubMedCrossRef Steinman RM (2007) Lasker basic medical research award. Dendritic cells: versatile controllers of the immune system. Nat Med 13:1155–1159PubMedCrossRef
30.
go back to reference Vasilevko V, Ghochikyan A, Holterman MJ et al (2002) CD80 (B7-1) and CD86 (B7-2) are functionally equivalent in the initiation and maintenance of CD4+ T-cell proliferation after activation with suboptimal doses of PHA. DNA Cell Biol 21:137–149PubMedCrossRef Vasilevko V, Ghochikyan A, Holterman MJ et al (2002) CD80 (B7-1) and CD86 (B7-2) are functionally equivalent in the initiation and maintenance of CD4+ T-cell proliferation after activation with suboptimal doses of PHA. DNA Cell Biol 21:137–149PubMedCrossRef
32.
go back to reference Schietinger A, Greenberg PD (2014) Tolerance and exhaustion: defining mechanisms of T cell dysfunction. Trends Immunol 35:51–60PubMedCrossRef Schietinger A, Greenberg PD (2014) Tolerance and exhaustion: defining mechanisms of T cell dysfunction. Trends Immunol 35:51–60PubMedCrossRef
34.
35.
go back to reference Mueller DL, Jenkins MK, Schwartz RH (1989) Clonal expansion versus functional clonal inactivation: a costimulatory signalling pathway determines the outcome of T cell antigen receptor occupancy. Annu Rev Immunol 7:445–480PubMedCrossRef Mueller DL, Jenkins MK, Schwartz RH (1989) Clonal expansion versus functional clonal inactivation: a costimulatory signalling pathway determines the outcome of T cell antigen receptor occupancy. Annu Rev Immunol 7:445–480PubMedCrossRef
36.
go back to reference Brunet JF, Denizot F, Luciani MF et al (1987) A new member of the immunoglobulin superfamily–CTLA-4. Nature 328:267–270PubMedCrossRef Brunet JF, Denizot F, Luciani MF et al (1987) A new member of the immunoglobulin superfamily–CTLA-4. Nature 328:267–270PubMedCrossRef
37.
go back to reference van der Merwe PA, Bodian DL, Daenke S et al (1997) CD80 (B7-1) binds both CD28 and CTLA-4 with a low affinity and very fast kinetics. J Exp Med 185:393–403PubMedPubMedCentralCrossRef van der Merwe PA, Bodian DL, Daenke S et al (1997) CD80 (B7-1) binds both CD28 and CTLA-4 with a low affinity and very fast kinetics. J Exp Med 185:393–403PubMedPubMedCentralCrossRef
39.
go back to reference Waterhouse P, Penninger JM, Timms E et al (1995) Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 270:985–988PubMedCrossRef Waterhouse P, Penninger JM, Timms E et al (1995) Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 270:985–988PubMedCrossRef
40.
go back to reference Leach DR, Krummel MF, Allison JP (1996) Enhancement of antitumor immunity by CTLA-4 blockade. Science 271:1734–1736PubMedCrossRef Leach DR, Krummel MF, Allison JP (1996) Enhancement of antitumor immunity by CTLA-4 blockade. Science 271:1734–1736PubMedCrossRef
41.
go back to reference van Elsas A, Hurwitz AA, Allison JP (1999) Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J Exp Med 190:355–366PubMedPubMedCentralCrossRef van Elsas A, Hurwitz AA, Allison JP (1999) Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J Exp Med 190:355–366PubMedPubMedCentralCrossRef
42.
go back to reference van Elsas A, Sutmuller RP, Hurwitz AA et al (2001) Elucidating the autoimmune and antitumor effector mechanisms of a treatment based on cytotoxic T lymphocyte antigen-4 blockade in combination with a B16 melanoma vaccine: comparison of prophylaxis and therapy. J Exp Med 194:481–489PubMedPubMedCentralCrossRef van Elsas A, Sutmuller RP, Hurwitz AA et al (2001) Elucidating the autoimmune and antitumor effector mechanisms of a treatment based on cytotoxic T lymphocyte antigen-4 blockade in combination with a B16 melanoma vaccine: comparison of prophylaxis and therapy. J Exp Med 194:481–489PubMedPubMedCentralCrossRef
43.
go back to reference Lute KD, May KF Jr, Lu P et al (2005) Human CTLA4 knock-in mice unravel the quantitative link between tumor immunity and autoimmunity induced by anti-CTLA-4 antibodies. Blood 106:3127–3133PubMedPubMedCentralCrossRef Lute KD, May KF Jr, Lu P et al (2005) Human CTLA4 knock-in mice unravel the quantitative link between tumor immunity and autoimmunity induced by anti-CTLA-4 antibodies. Blood 106:3127–3133PubMedPubMedCentralCrossRef
44.
go back to reference Keler T, Halk E, Vitale L et al (2003) Activity and safety of CTLA-4 blockade combined with vaccines in cynomolgus macaques. J Immunol 171:6251–6259PubMedCrossRef Keler T, Halk E, Vitale L et al (2003) Activity and safety of CTLA-4 blockade combined with vaccines in cynomolgus macaques. J Immunol 171:6251–6259PubMedCrossRef
45.
46.
go back to reference Latchman Y, Wood CR, Chernova T et al (2001) PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol 2:261–268PubMedCrossRef Latchman Y, Wood CR, Chernova T et al (2001) PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol 2:261–268PubMedCrossRef
47.
go back to reference Dong H, Zhu G, Tamada K et al (1999) B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med 5:1365–1369PubMedCrossRef Dong H, Zhu G, Tamada K et al (1999) B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med 5:1365–1369PubMedCrossRef
48.
go back to reference Ishida Y, Agata Y, Shibahara K et al (1992) Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 11:3887–3895PubMedPubMedCentral Ishida Y, Agata Y, Shibahara K et al (1992) Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 11:3887–3895PubMedPubMedCentral
49.
go back to reference Agata Y, Kawasaki A, Nishimura H et al (1996) Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int Immunol 8:765–772PubMedCrossRef Agata Y, Kawasaki A, Nishimura H et al (1996) Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int Immunol 8:765–772PubMedCrossRef
50.
go back to reference Francisco LM, Salinas VH, Brown KE et al (2009) PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J Exp Med 206:3015–3029PubMedPubMedCentralCrossRef Francisco LM, Salinas VH, Brown KE et al (2009) PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J Exp Med 206:3015–3029PubMedPubMedCentralCrossRef
51.
go back to reference Jin HT, Ahmed R, Okazaki T (2011) Role of PD-1 in regulating T-cell immunity. Curr Top Microbiol Immunol 350:17–37PubMed Jin HT, Ahmed R, Okazaki T (2011) Role of PD-1 in regulating T-cell immunity. Curr Top Microbiol Immunol 350:17–37PubMed
52.
go back to reference Sheppard KA, Fitz LJ, Lee JM et al (2004) PD-1 inhibits T-cell receptor induced phosphorylation of the ZAP70/CD3zeta signalosome and downstream signaling to PKCtheta. FEBS Lett 574:37–41PubMedCrossRef Sheppard KA, Fitz LJ, Lee JM et al (2004) PD-1 inhibits T-cell receptor induced phosphorylation of the ZAP70/CD3zeta signalosome and downstream signaling to PKCtheta. FEBS Lett 574:37–41PubMedCrossRef
53.
go back to reference Barber DL, Wherry EJ, Masopust D et al (2006) Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439:682–687PubMedCrossRef Barber DL, Wherry EJ, Masopust D et al (2006) Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439:682–687PubMedCrossRef
54.
go back to reference Dong H, Strome SE, Salomao DR et al (2002) Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8:793–800PubMedCrossRef Dong H, Strome SE, Salomao DR et al (2002) Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8:793–800PubMedCrossRef
55.
go back to reference Niezgoda A, Niezgoda P, Czajkowski R (2015) Novel approaches to treatment of advanced melanoma: a review on targeted therapy and immunotherapy. Biomed Res Int 2015:851387PubMedPubMedCentralCrossRef Niezgoda A, Niezgoda P, Czajkowski R (2015) Novel approaches to treatment of advanced melanoma: a review on targeted therapy and immunotherapy. Biomed Res Int 2015:851387PubMedPubMedCentralCrossRef
56.
go back to reference Topalian SL, Sznol M, McDermott DF et al (2014) Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol 32:1020–1030PubMedPubMedCentralCrossRef Topalian SL, Sznol M, McDermott DF et al (2014) Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol 32:1020–1030PubMedPubMedCentralCrossRef
57.
go back to reference Keating GM (2016) Nivolumab: a review in advanced nonsquamous non-small cell lung cancer. Drugs 76:969–978PubMedCrossRef Keating GM (2016) Nivolumab: a review in advanced nonsquamous non-small cell lung cancer. Drugs 76:969–978PubMedCrossRef
58.
go back to reference Larkin J, Chiarion-Sileni V, Gonzalez R et al (2015) Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 373:23–34PubMedCrossRef Larkin J, Chiarion-Sileni V, Gonzalez R et al (2015) Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 373:23–34PubMedCrossRef
59.
go back to reference Kantoff PW, Higano CS, Shore ND et al (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363:411–422PubMedCrossRef Kantoff PW, Higano CS, Shore ND et al (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363:411–422PubMedCrossRef
60.
go back to reference Lutz ER, Wu AA, Bigelow E et al (2014) Immunotherapy converts nonimmunogenic pancreatic tumors into immunogenic foci of immune regulation. Cancer Immunol Res 2:616–631PubMedPubMedCentralCrossRef Lutz ER, Wu AA, Bigelow E et al (2014) Immunotherapy converts nonimmunogenic pancreatic tumors into immunogenic foci of immune regulation. Cancer Immunol Res 2:616–631PubMedPubMedCentralCrossRef
61.
go back to reference Nummer D, Suri-Payer E, Schmitz-Winnenthal H et al (2007) Role of tumor endothelium in CD4+ CD25+ regulatory T cell infiltration of human pancreatic carcinoma. J Natl Cancer Inst 99:1188–1199PubMedCrossRef Nummer D, Suri-Payer E, Schmitz-Winnenthal H et al (2007) Role of tumor endothelium in CD4+ CD25+ regulatory T cell infiltration of human pancreatic carcinoma. J Natl Cancer Inst 99:1188–1199PubMedCrossRef
62.
go back to reference Sainz B Jr, Carron E, Vallespinos M et al (2016) Cancer stem cells and macrophages: implications in tumor biology and therapeutic strategies. Mediat Inflamm 2016:9012369CrossRef Sainz B Jr, Carron E, Vallespinos M et al (2016) Cancer stem cells and macrophages: implications in tumor biology and therapeutic strategies. Mediat Inflamm 2016:9012369CrossRef
63.
go back to reference Bui JD, Uppaluri R, Hsieh CS et al (2006) Comparative analysis of regulatory and effector T cells in progressively growing versus rejecting tumors of similar origins. Cancer Res 66:7301–7309PubMedCrossRef Bui JD, Uppaluri R, Hsieh CS et al (2006) Comparative analysis of regulatory and effector T cells in progressively growing versus rejecting tumors of similar origins. Cancer Res 66:7301–7309PubMedCrossRef
64.
go back to reference Diller ML, Kudchadkar RR, Delman KA et al (2016) Balancing inflammation: the link between Th17 and regulatory T cells. Mediat Inflamm 2016:6309219CrossRef Diller ML, Kudchadkar RR, Delman KA et al (2016) Balancing inflammation: the link between Th17 and regulatory T cells. Mediat Inflamm 2016:6309219CrossRef
65.
go back to reference Shaw TJ, Martin P (2016) Wound repair: a showcase for cell plasticity and migration. Curr Opin Cell Biol 42:29–37PubMedCrossRef Shaw TJ, Martin P (2016) Wound repair: a showcase for cell plasticity and migration. Curr Opin Cell Biol 42:29–37PubMedCrossRef
66.
go back to reference DuPage M, Bluestone JA (2016) Harnessing the plasticity of CD4(+) T cells to treat immune-mediated disease. Nat Rev Immunol 16:149–163PubMedCrossRef DuPage M, Bluestone JA (2016) Harnessing the plasticity of CD4(+) T cells to treat immune-mediated disease. Nat Rev Immunol 16:149–163PubMedCrossRef
70.
go back to reference Mantovani A, Cassatella MA, Costantini C et al (2011) Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol 11:519–531PubMedCrossRef Mantovani A, Cassatella MA, Costantini C et al (2011) Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol 11:519–531PubMedCrossRef
71.
go back to reference Steinman RM (2007) Dendritic cells: understanding immunogenicity. Eur J Immunol 37(Suppl 1):S53–S60PubMedCrossRef Steinman RM (2007) Dendritic cells: understanding immunogenicity. Eur J Immunol 37(Suppl 1):S53–S60PubMedCrossRef
72.
go back to reference Fujii S, Liu K, Smith C et al (2004) The linkage of innate to adaptive immunity via maturing dendritic cells in vivo requires CD40 ligation in addition to antigen presentation and CD80/86 costimulation. J Exp Med 199:1607–1618PubMedPubMedCentralCrossRef Fujii S, Liu K, Smith C et al (2004) The linkage of innate to adaptive immunity via maturing dendritic cells in vivo requires CD40 ligation in addition to antigen presentation and CD80/86 costimulation. J Exp Med 199:1607–1618PubMedPubMedCentralCrossRef
74.
go back to reference Lee JI, Ganster RW, Geller DA et al (1999) Cyclosporine A inhibits the expression of costimulatory molecules on in vitro-generated dendritic cells: association with reduced nuclear translocation of nuclear factor kappa B. Transplantation 68:1255–1263PubMedCrossRef Lee JI, Ganster RW, Geller DA et al (1999) Cyclosporine A inhibits the expression of costimulatory molecules on in vitro-generated dendritic cells: association with reduced nuclear translocation of nuclear factor kappa B. Transplantation 68:1255–1263PubMedCrossRef
75.
go back to reference Penna G, Adorini L (2000) 1 alpha, 25-dihydroxyvitamin D3 inhibits differentiation, maturation, activation, and survival of dendritic cells leading to impaired alloreactive T cell activation. J Immunol 164:2405–2411PubMedCrossRef Penna G, Adorini L (2000) 1 alpha, 25-dihydroxyvitamin D3 inhibits differentiation, maturation, activation, and survival of dendritic cells leading to impaired alloreactive T cell activation. J Immunol 164:2405–2411PubMedCrossRef
76.
go back to reference Gordon S, Martinez FO (2010) Alternative activation of macrophages: mechanism and functions. Immunity 32:593–604PubMedCrossRef Gordon S, Martinez FO (2010) Alternative activation of macrophages: mechanism and functions. Immunity 32:593–604PubMedCrossRef
77.
go back to reference Kidd JF, Pilkington MF, Schell MJ et al (2002) Paclitaxel affects cytosolic calcium signals by opening the mitochondrial permeability transition pore. J Biol Chem 277:6504–6510PubMedCrossRef Kidd JF, Pilkington MF, Schell MJ et al (2002) Paclitaxel affects cytosolic calcium signals by opening the mitochondrial permeability transition pore. J Biol Chem 277:6504–6510PubMedCrossRef
78.
go back to reference Sica A, Schioppa T, Mantovani A et al (2006) Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer 42:717–727PubMedCrossRef Sica A, Schioppa T, Mantovani A et al (2006) Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer 42:717–727PubMedCrossRef
79.
go back to reference Rath M, Muller I, Kropf P et al (2014) Metabolism via arginase or nitric oxide synthase: two competing arginine pathways in macrophages. Front Immunol 5:532PubMedPubMedCentralCrossRef Rath M, Muller I, Kropf P et al (2014) Metabolism via arginase or nitric oxide synthase: two competing arginine pathways in macrophages. Front Immunol 5:532PubMedPubMedCentralCrossRef
80.
go back to reference Golpon HA, Fadok VA, Taraseviciene-Stewart L et al (2004) Life after corpse engulfment: phagocytosis of apoptotic cells leads to VEGF secretion and cell growth. FASEB J 18:1716–1718PubMed Golpon HA, Fadok VA, Taraseviciene-Stewart L et al (2004) Life after corpse engulfment: phagocytosis of apoptotic cells leads to VEGF secretion and cell growth. FASEB J 18:1716–1718PubMed
81.
go back to reference Zhao Y, Zhou FL, Li WP et al (2016) Slit2Robo1 signaling promotes the adhesion, invasion and migration of tongue carcinoma cells via upregulating matrix metalloproteinases 2 and 9, and downregulating Ecadherin. Mol Med Rep 14:1901–1906PubMedPubMedCentral Zhao Y, Zhou FL, Li WP et al (2016) Slit2Robo1 signaling promotes the adhesion, invasion and migration of tongue carcinoma cells via upregulating matrix metalloproteinases 2 and 9, and downregulating Ecadherin. Mol Med Rep 14:1901–1906PubMedPubMedCentral
82.
go back to reference Jakubowska K, Pryczynicz A, Januszewska J et al (2016) Expressions of matrix metalloproteinases 2, 7, and 9 in carcinogenesis of pancreatic ductal adenocarcinoma. Dis Markers 2016:9895721PubMedPubMedCentralCrossRef Jakubowska K, Pryczynicz A, Januszewska J et al (2016) Expressions of matrix metalloproteinases 2, 7, and 9 in carcinogenesis of pancreatic ductal adenocarcinoma. Dis Markers 2016:9895721PubMedPubMedCentralCrossRef
83.
go back to reference Huber S, Hoffmann R, Muskens F et al (2010) Alternatively activated macrophages inhibit T-cell proliferation by Stat6-dependent expression of PD-L2. Blood 116:3311–3320PubMedCrossRef Huber S, Hoffmann R, Muskens F et al (2010) Alternatively activated macrophages inhibit T-cell proliferation by Stat6-dependent expression of PD-L2. Blood 116:3311–3320PubMedCrossRef
84.
go back to reference Zhang L, Conejo-Garcia JR, Katsaros D et al (2003) Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 348:203–213PubMedCrossRef Zhang L, Conejo-Garcia JR, Katsaros D et al (2003) Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 348:203–213PubMedCrossRef
85.
86.
go back to reference Sato E, Olson SH, Ahn J et al (2005) Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci USA 102:18538–18543PubMedPubMedCentralCrossRef Sato E, Olson SH, Ahn J et al (2005) Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci USA 102:18538–18543PubMedPubMedCentralCrossRef
87.
go back to reference Li X, Kostareli E, Suffner J et al (2010) Efficient Treg depletion induces T-cell infiltration and rejection of large tumors. Eur J Immunol 40:3325–3335PubMedCrossRef Li X, Kostareli E, Suffner J et al (2010) Efficient Treg depletion induces T-cell infiltration and rejection of large tumors. Eur J Immunol 40:3325–3335PubMedCrossRef
88.
go back to reference Bonavita E, Galdiero MR, Jaillon S et al (2015) Phagocytes as corrupted policemen in cancer-related inflammation. Adv Cancer Res 128:141–171PubMedCrossRef Bonavita E, Galdiero MR, Jaillon S et al (2015) Phagocytes as corrupted policemen in cancer-related inflammation. Adv Cancer Res 128:141–171PubMedCrossRef
90.
go back to reference Beaman KD, Jaiswal MK, Katara GK et al (2016) Pregnancy is a model for tumors, not transplantation. Am J Reprod Immunol 76:3–7PubMedCrossRef Beaman KD, Jaiswal MK, Katara GK et al (2016) Pregnancy is a model for tumors, not transplantation. Am J Reprod Immunol 76:3–7PubMedCrossRef
91.
go back to reference Vakkila J, Lotze MT (2004) Inflammation and necrosis promote tumour growth. Nat Rev Immunol 4:641–648PubMedCrossRef Vakkila J, Lotze MT (2004) Inflammation and necrosis promote tumour growth. Nat Rev Immunol 4:641–648PubMedCrossRef
92.
93.
go back to reference Iyer SS, Pulskens WP, Sadler JJ et al (2009) Necrotic cells trigger a sterile inflammatory response through the Nlrp3 inflammasome. Proc Natl Acad Sci USA 106:20388–20393PubMedPubMedCentralCrossRef Iyer SS, Pulskens WP, Sadler JJ et al (2009) Necrotic cells trigger a sterile inflammatory response through the Nlrp3 inflammasome. Proc Natl Acad Sci USA 106:20388–20393PubMedPubMedCentralCrossRef
94.
95.
96.
go back to reference Okada M, Adachi S, Imai T et al (2004) A novel mechanism for imatinib mesylate-induced cell death of BCR-ABL-positive human leukemic cells: caspase-independent, necrosis-like programmed cell death mediated by serine protease activity. Blood 103:2299–2307PubMedCrossRef Okada M, Adachi S, Imai T et al (2004) A novel mechanism for imatinib mesylate-induced cell death of BCR-ABL-positive human leukemic cells: caspase-independent, necrosis-like programmed cell death mediated by serine protease activity. Blood 103:2299–2307PubMedCrossRef
98.
go back to reference Ferguson TA, Herndon J, Elzey B et al (2002) Uptake of apoptotic antigen-coupled cells by lymphoid dendritic cells and cross-priming of CD8(+) T cells produce active immune unresponsiveness. J Immunol 168:5589–5595PubMedCrossRef Ferguson TA, Herndon J, Elzey B et al (2002) Uptake of apoptotic antigen-coupled cells by lymphoid dendritic cells and cross-priming of CD8(+) T cells produce active immune unresponsiveness. J Immunol 168:5589–5595PubMedCrossRef
99.
go back to reference Griffith TS, Kazama H, VanOosten RL et al (2007) Apoptotic cells induce tolerance by generating helpless CD8+ T cells that produce TRAIL. J Immunol 178:2679–2687PubMedCrossRef Griffith TS, Kazama H, VanOosten RL et al (2007) Apoptotic cells induce tolerance by generating helpless CD8+ T cells that produce TRAIL. J Immunol 178:2679–2687PubMedCrossRef
100.
go back to reference Tomimori Y, Ikawa Y, Oyaizu N (2000) Ultraviolet-irradiated apoptotic lymphocytes produce interleukin-10 by themselves. Immunol Lett 71:49–54PubMedCrossRef Tomimori Y, Ikawa Y, Oyaizu N (2000) Ultraviolet-irradiated apoptotic lymphocytes produce interleukin-10 by themselves. Immunol Lett 71:49–54PubMedCrossRef
101.
go back to reference Weigert A, Tzieply N, von Knethen A et al (2007) Tumor cell apoptosis polarizes macrophages role of sphingosine-1-phosphate. Mol Biol Cell 18:3810–3819PubMedPubMedCentralCrossRef Weigert A, Tzieply N, von Knethen A et al (2007) Tumor cell apoptosis polarizes macrophages role of sphingosine-1-phosphate. Mol Biol Cell 18:3810–3819PubMedPubMedCentralCrossRef
102.
go back to reference Williams CA, Harry RA, McLeod JD (2008) Apoptotic cells induce dendritic cell-mediated suppression via interferon-gamma-induced IDO. Immunology 124:89–101PubMedPubMedCentralCrossRef Williams CA, Harry RA, McLeod JD (2008) Apoptotic cells induce dendritic cell-mediated suppression via interferon-gamma-induced IDO. Immunology 124:89–101PubMedPubMedCentralCrossRef
103.
go back to reference Nakahashi-Oda C, Udayanga KG, Nakamura Y et al (2016) Apoptotic epithelial cells control the abundance of Treg cells at barrier surfaces. Nat Immunol 17:441–450PubMedCrossRef Nakahashi-Oda C, Udayanga KG, Nakamura Y et al (2016) Apoptotic epithelial cells control the abundance of Treg cells at barrier surfaces. Nat Immunol 17:441–450PubMedCrossRef
104.
go back to reference Kleinclauss F, Perruche S, Masson E et al (2006) Intravenous apoptotic spleen cell infusion induces a TGF-beta-dependent regulatory T-cell expansion. Cell Death Differ 13:41–52PubMedPubMedCentralCrossRef Kleinclauss F, Perruche S, Masson E et al (2006) Intravenous apoptotic spleen cell infusion induces a TGF-beta-dependent regulatory T-cell expansion. Cell Death Differ 13:41–52PubMedPubMedCentralCrossRef
105.
go back to reference Wu C, Zhang Y, Jiang Y et al (2013) Apoptotic cell administration enhances pancreatic islet engraftment by induction of regulatory T cells and tolerogenic dendritic cells. Cell Mol Immunol 10:393–402PubMedPubMedCentralCrossRef Wu C, Zhang Y, Jiang Y et al (2013) Apoptotic cell administration enhances pancreatic islet engraftment by induction of regulatory T cells and tolerogenic dendritic cells. Cell Mol Immunol 10:393–402PubMedPubMedCentralCrossRef
Metadata
Title
A current perspective on cancer immune therapy: step-by-step approach to constructing the magic bullet
Authors
Gabriele D’Errico
Heather L. Machado
Bruno Sainz Jr.
Publication date
01-12-2017
Publisher
Springer Berlin Heidelberg
Published in
Clinical and Translational Medicine / Issue 1/2017
Electronic ISSN: 2001-1326
DOI
https://doi.org/10.1186/s40169-016-0130-5

Other articles of this Issue 1/2017

Clinical and Translational Medicine 1/2017 Go to the issue