Skip to main content
Top
Published in: Clinical and Translational Medicine 1/2017

Open Access 01-12-2017 | Review

Lipidomics and anti-trypanosomatid chemotherapy

Authors: Michael Biagiotti, Sedelia Dominguez, Nader Yamout, Rachel Zufferey

Published in: Clinical and Translational Medicine | Issue 1/2017

Login to get access

Abstract

Background

Trypanosomatids such as Leishmania, Trypanosoma brucei and Trypanosoma cruzi belong to the order Kinetoplastida and are the source of many significant human and animal diseases. Current treatment is unsatisfactory and is compromised by the rising appearance of drug resistant parasites. Novel and more effective chemotherapeutics are urgently needed to treat and prevent these devastating diseases, which relies on the identification of essential, parasite specific targets that are absent in the host. Lipids constitute essential components of the cell and carry out multiple critical functions from building blocks of biological membranes to regulatory roles in signal transduction, organellar biogenesis, energy storage, and virulence. The recent technological advances of lipidomics has facilitated the broadening of our knowledge in the field of cellular lipid content, structure, functions, and metabolic pathways.

Main body

This review highlights the application of lipidomics (i) in the characterization of the lipidome of kinetoplastid parasites or of their subcellular structure(s), (ii) in the identification of unique lipid species or metabolic pathways that can be targeted for novel drug therapies, (iii) as an analytic tool to gain a deeper insight into the roles of specific enzymes in lipid metabolism using genetically modified microorganisms, and (iv) in deciphering the mechanism of action of anti-microbial drugs on lipid metabolism. Lastly, an outlook stating where the field is evolving is presented.

Conclusion

Lipidomics has contributed to the expanding knowledge related to lipid metabolism, mechanism of drug action and resistance, and pathogen–host interaction of trypanosomatids, which provides a solid basis for the development of better anti-parasitic pharmaceuticals.
Literature
1.
go back to reference Lopes AH, Souto-Padron T, Dias FA, Gomes MT, Rodriges GC, Zimmermann LT et al (2010) Trypanosomatids: odd organisms, devastating diseases. Open Parasitol J 4:30–59CrossRef Lopes AH, Souto-Padron T, Dias FA, Gomes MT, Rodriges GC, Zimmermann LT et al (2010) Trypanosomatids: odd organisms, devastating diseases. Open Parasitol J 4:30–59CrossRef
2.
go back to reference Pereira MG, Nakayasu ES, Sant’Anna C, De Cicco NN, Atella GC, de Souza W et al (2011) Trypanosoma cruzi epimastigotes are able to store and mobilize high amounts of cholesterol in reservosome lipid inclusions. PLoS ONE 6(7):e22359CrossRefPubMedPubMedCentral Pereira MG, Nakayasu ES, Sant’Anna C, De Cicco NN, Atella GC, de Souza W et al (2011) Trypanosoma cruzi epimastigotes are able to store and mobilize high amounts of cholesterol in reservosome lipid inclusions. PLoS ONE 6(7):e22359CrossRefPubMedPubMedCentral
3.
go back to reference Zhang O, Wilson MC, Xu W, Hsu FF, Turk J, Kuhlmann FM et al (2009) Degradation of host sphingomyelin is essential for Leishmania virulence. PLoS Pathog 5(12):e1000692CrossRefPubMedPubMedCentral Zhang O, Wilson MC, Xu W, Hsu FF, Turk J, Kuhlmann FM et al (2009) Degradation of host sphingomyelin is essential for Leishmania virulence. PLoS Pathog 5(12):e1000692CrossRefPubMedPubMedCentral
4.
5.
go back to reference Ropert C, Gazzinelli RT (2000) Signaling of immune system cells by glycosylphosphatidylinositol (GPI) anchor and related structures derived from parasitic protozoa. Curr Opin Microbiol 3(4):395–403CrossRefPubMed Ropert C, Gazzinelli RT (2000) Signaling of immune system cells by glycosylphosphatidylinositol (GPI) anchor and related structures derived from parasitic protozoa. Curr Opin Microbiol 3(4):395–403CrossRefPubMed
6.
go back to reference Dorlo TP, Balasegaram M, Beijnen JH, de Vries PJ (2012) Miltefosine: a review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. J Antimicrob Chemother 67(11):2576–2597CrossRefPubMed Dorlo TP, Balasegaram M, Beijnen JH, de Vries PJ (2012) Miltefosine: a review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. J Antimicrob Chemother 67(11):2576–2597CrossRefPubMed
7.
go back to reference Loizides-Mangold U (2013) On the future of mass-spectrometry-based lipidomics. FEBS J 280(12):2817–2829CrossRefPubMed Loizides-Mangold U (2013) On the future of mass-spectrometry-based lipidomics. FEBS J 280(12):2817–2829CrossRefPubMed
8.
go back to reference Yang K, Han X (2016) Lipidomics: techniques, applications, and outcomes related to biomedical sciences. Trends Biochem Sci 41(11):954–969CrossRefPubMed Yang K, Han X (2016) Lipidomics: techniques, applications, and outcomes related to biomedical sciences. Trends Biochem Sci 41(11):954–969CrossRefPubMed
9.
go back to reference Zhao YY, Miao H, Cheng XL, Wei F (2015) Lipidomics: novel insight into the biochemical mechanism of lipid metabolism and dysregulation-associated disease. Chem Biol Interact 240:220–238CrossRefPubMed Zhao YY, Miao H, Cheng XL, Wei F (2015) Lipidomics: novel insight into the biochemical mechanism of lipid metabolism and dysregulation-associated disease. Chem Biol Interact 240:220–238CrossRefPubMed
10.
go back to reference Bouazizi-Ben Messaoud H, Guichard M, Lawton P, Delton I, Azzouz-Maache S (2017) Changes in lipid and fatty acid composition during intramacrophagic transformation of Leishmania donovani complex promastigotes into amastigotes. Lipids 52(5):433–441CrossRefPubMedPubMedCentral Bouazizi-Ben Messaoud H, Guichard M, Lawton P, Delton I, Azzouz-Maache S (2017) Changes in lipid and fatty acid composition during intramacrophagic transformation of Leishmania donovani complex promastigotes into amastigotes. Lipids 52(5):433–441CrossRefPubMedPubMedCentral
11.
go back to reference Roberts CW, McLeod R, Rice DW, Ginger M, Chance ML, Goad LJ (2003) Fatty acid and sterol metabolism: potential antimicrobial targets in apicomplexan and trypanosomatid parasitic protozoa. Mol Biochem Parasitol 126(2):129–142CrossRefPubMed Roberts CW, McLeod R, Rice DW, Ginger M, Chance ML, Goad LJ (2003) Fatty acid and sterol metabolism: potential antimicrobial targets in apicomplexan and trypanosomatid parasitic protozoa. Mol Biochem Parasitol 126(2):129–142CrossRefPubMed
12.
go back to reference Hsu FF, Kuhlmann FM, Turk J, Beverley SM (2014) Multiple-stage linear ion-trap with high resolution mass spectrometry towards complete structural characterization of phosphatidylethanolamines containing cyclopropane fatty acyl chain in Leishmania infantum. J Mass Spectrom 49(3):201–209CrossRefPubMedPubMedCentral Hsu FF, Kuhlmann FM, Turk J, Beverley SM (2014) Multiple-stage linear ion-trap with high resolution mass spectrometry towards complete structural characterization of phosphatidylethanolamines containing cyclopropane fatty acyl chain in Leishmania infantum. J Mass Spectrom 49(3):201–209CrossRefPubMedPubMedCentral
13.
go back to reference Grogan DW, Cronan JE Jr (1997) Cyclopropane ring formation in membrane lipids of bacteria. Microbiol Mol Biol Rev 61(4):429–441PubMedPubMedCentral Grogan DW, Cronan JE Jr (1997) Cyclopropane ring formation in membrane lipids of bacteria. Microbiol Mol Biol Rev 61(4):429–441PubMedPubMedCentral
14.
go back to reference Peacock CS, Seeger K, Harris D, Murphy L, Ruiz JC, Quail MA et al (2007) Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nat Genet 39(7):839–847CrossRefPubMedPubMedCentral Peacock CS, Seeger K, Harris D, Murphy L, Ruiz JC, Quail MA et al (2007) Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nat Genet 39(7):839–847CrossRefPubMedPubMedCentral
15.
go back to reference Patnaik PK, Field MC, Menon AK, Cross GA, Yee MC, Butikofer P (1993) Molecular species analysis of phospholipids from Trypanosoma brucei bloodstream and procyclic forms. Mol Biochem Parasitol 58(1):97–105CrossRefPubMed Patnaik PK, Field MC, Menon AK, Cross GA, Yee MC, Butikofer P (1993) Molecular species analysis of phospholipids from Trypanosoma brucei bloodstream and procyclic forms. Mol Biochem Parasitol 58(1):97–105CrossRefPubMed
16.
go back to reference Richmond GS, Gibellini F, Young SA, Major L, Denton H, Lilley A et al (2010) Lipidomic analysis of bloodstream and procyclic form Trypanosoma brucei. Parasitology 137(9):1357–1392CrossRefPubMedPubMedCentral Richmond GS, Gibellini F, Young SA, Major L, Denton H, Lilley A et al (2010) Lipidomic analysis of bloodstream and procyclic form Trypanosoma brucei. Parasitology 137(9):1357–1392CrossRefPubMedPubMedCentral
17.
go back to reference Guther ML, Lee S, Tetley L, Acosta-Serrano A, Ferguson MA (2006) GPI-anchored proteins and free GPI glycolipids of procyclic form Trypanosoma brucei are nonessential for growth, are required for colonization of the tsetse fly, and are not the only components of the surface coat. Mol Biol Cell 17(12):5265–5274CrossRefPubMedPubMedCentral Guther ML, Lee S, Tetley L, Acosta-Serrano A, Ferguson MA (2006) GPI-anchored proteins and free GPI glycolipids of procyclic form Trypanosoma brucei are nonessential for growth, are required for colonization of the tsetse fly, and are not the only components of the surface coat. Mol Biol Cell 17(12):5265–5274CrossRefPubMedPubMedCentral
19.
go back to reference Vaughan S (2010) Assembly of the flagellum and its role in cell morphogenesis in Trypanosoma brucei. Curr Opin Microbiol 13(4):453–458CrossRefPubMed Vaughan S (2010) Assembly of the flagellum and its role in cell morphogenesis in Trypanosoma brucei. Curr Opin Microbiol 13(4):453–458CrossRefPubMed
20.
go back to reference Serricchio M, Schmid AW, Steinmann ME, Sigel E, Rauch M, Julkowska D et al (2015) Flagellar membranes are rich in raft-forming phospholipids. Biol Open 4(9):1143–1153CrossRefPubMedPubMedCentral Serricchio M, Schmid AW, Steinmann ME, Sigel E, Rauch M, Julkowska D et al (2015) Flagellar membranes are rich in raft-forming phospholipids. Biol Open 4(9):1143–1153CrossRefPubMedPubMedCentral
21.
go back to reference Opperdoes FR, Borst P (1977) Localization of nine glycolytic enzymes in a microbody-like organelle in Trypanosoma brucei: the glycosome. FEBS Lett 80(2):360–364CrossRefPubMed Opperdoes FR, Borst P (1977) Localization of nine glycolytic enzymes in a microbody-like organelle in Trypanosoma brucei: the glycosome. FEBS Lett 80(2):360–364CrossRefPubMed
22.
go back to reference Haanstra JR, Gonzalez-Marcano EB, Gualdron-Lopez M, Michels PA (2016) Biogenesis, maintenance and dynamics of glycosomes in trypanosomatid parasites. Biochim Biophys Acta 1863(5):1038–1048CrossRefPubMed Haanstra JR, Gonzalez-Marcano EB, Gualdron-Lopez M, Michels PA (2016) Biogenesis, maintenance and dynamics of glycosomes in trypanosomatid parasites. Biochim Biophys Acta 1863(5):1038–1048CrossRefPubMed
23.
go back to reference Michels PA, Bringaud F, Herman M, Hannaert V (2006) Metabolic functions of glycosomes in trypanosomatids. Biochim Biophys Acta 1763(12):1463–1477CrossRefPubMed Michels PA, Bringaud F, Herman M, Hannaert V (2006) Metabolic functions of glycosomes in trypanosomatids. Biochim Biophys Acta 1763(12):1463–1477CrossRefPubMed
24.
go back to reference Colasante C, Voncken F, Manful T, Ruppert T, Tielens AG, van Hellemond JJ et al (2013) Proteins and lipids of glycosomal membranes from Leishmania tarentolae and Trypanosoma brucei. F1000Res 2:27PubMedPubMedCentral Colasante C, Voncken F, Manful T, Ruppert T, Tielens AG, van Hellemond JJ et al (2013) Proteins and lipids of glycosomal membranes from Leishmania tarentolae and Trypanosoma brucei. F1000Res 2:27PubMedPubMedCentral
25.
go back to reference Voncken F, van Hellemond JJ, Pfisterer I, Maier A, Hillmer S, Clayton C (2003) Depletion of GIM5 causes cellular fragility, a decreased glycosome number, and reduced levels of ether-linked phospholipids in trypanosomes. J Biol Chem 278(37):35299–35310CrossRefPubMed Voncken F, van Hellemond JJ, Pfisterer I, Maier A, Hillmer S, Clayton C (2003) Depletion of GIM5 causes cellular fragility, a decreased glycosome number, and reduced levels of ether-linked phospholipids in trypanosomes. J Biol Chem 278(37):35299–35310CrossRefPubMed
26.
go back to reference Butikofer P, Greganova E, Liu YC, Edwards IJ, Lehane MJ, Acosta-Serrano A (2010) Lipid remodelling of glycosylphosphatidylinositol (GPI) glycoconjugates in procyclic-form trypanosomes: biosynthesis and processing of GPIs revisited. Biochem J. 428(3):409–418CrossRefPubMed Butikofer P, Greganova E, Liu YC, Edwards IJ, Lehane MJ, Acosta-Serrano A (2010) Lipid remodelling of glycosylphosphatidylinositol (GPI) glycoconjugates in procyclic-form trypanosomes: biosynthesis and processing of GPIs revisited. Biochem J. 428(3):409–418CrossRefPubMed
27.
go back to reference Greganova E, Butikofer P, Acosta-Serrano A (2010) The protease resistant surface (PRS) glycoconjugate from Trypanosoma congolense has an inositol-acylated glycosylphosphatidylinositol anchor, containing a significant proportion of myristate at the sn-2 position. Mol Biochem Parasitol 171(1):50–54CrossRefPubMed Greganova E, Butikofer P, Acosta-Serrano A (2010) The protease resistant surface (PRS) glycoconjugate from Trypanosoma congolense has an inositol-acylated glycosylphosphatidylinositol anchor, containing a significant proportion of myristate at the sn-2 position. Mol Biochem Parasitol 171(1):50–54CrossRefPubMed
28.
go back to reference Nett IR, Mehlert A, Lamont D, Ferguson MA (2010) Application of electrospray mass spectrometry to the structural determination of glycosylphosphatidylinositol membrane anchors. Glycobiology 20(5):576–585CrossRefPubMedPubMedCentral Nett IR, Mehlert A, Lamont D, Ferguson MA (2010) Application of electrospray mass spectrometry to the structural determination of glycosylphosphatidylinositol membrane anchors. Glycobiology 20(5):576–585CrossRefPubMedPubMedCentral
29.
go back to reference Hovel-Miner G, Mugnier M, Papavasiliou FN, Pinger J, Schulz D (2015) A host–pathogen interaction reduced to first principles: antigenic variation in T. brucei. Results Probl Cell Differ 57:23–46CrossRefPubMed Hovel-Miner G, Mugnier M, Papavasiliou FN, Pinger J, Schulz D (2015) A host–pathogen interaction reduced to first principles: antigenic variation in T. brucei. Results Probl Cell Differ 57:23–46CrossRefPubMed
31.
go back to reference Schwede A, Carrington M (2010) Bloodstream form Trypanosome plasma membrane proteins: antigenic variation and invariant antigens. Parasitology 137(14):2029–2039CrossRefPubMed Schwede A, Carrington M (2010) Bloodstream form Trypanosome plasma membrane proteins: antigenic variation and invariant antigens. Parasitology 137(14):2029–2039CrossRefPubMed
32.
go back to reference Freire-de-Lima L, Fonseca LM, Oeltmann T, Mendonca-Previato L, Previato JO (2015) The trans-sialidase, the major Trypanosoma cruzi virulence factor: three decades of studies. Glycobiology 25(11):1142–1149CrossRefPubMed Freire-de-Lima L, Fonseca LM, Oeltmann T, Mendonca-Previato L, Previato JO (2015) The trans-sialidase, the major Trypanosoma cruzi virulence factor: three decades of studies. Glycobiology 25(11):1142–1149CrossRefPubMed
33.
go back to reference Ruiz Rde C, Rigoni VL, Gonzalez J, Yoshida N (1993) The 35/50 kDa surface antigen of Trypanosoma cruzi metacyclic trypomastigotes, an adhesion molecule involved in host cell invasion. Parasite Immunol 15(2):121–125CrossRefPubMed Ruiz Rde C, Rigoni VL, Gonzalez J, Yoshida N (1993) The 35/50 kDa surface antigen of Trypanosoma cruzi metacyclic trypomastigotes, an adhesion molecule involved in host cell invasion. Parasite Immunol 15(2):121–125CrossRefPubMed
34.
go back to reference Yoshida N, Mortara RA, Araguth MF, Gonzalez JC, Russo M (1989) Metacyclic neutralizing effect of monoclonal antibody 10D8 directed to the 35- and 50-kilodalton surface glycoconjugates of Trypanosoma cruzi. Infect Immun 57(6):1663–1667PubMedPubMedCentral Yoshida N, Mortara RA, Araguth MF, Gonzalez JC, Russo M (1989) Metacyclic neutralizing effect of monoclonal antibody 10D8 directed to the 35- and 50-kilodalton surface glycoconjugates of Trypanosoma cruzi. Infect Immun 57(6):1663–1667PubMedPubMedCentral
35.
go back to reference Serrano AA, Schenkman S, Yoshida N, Mehlert A, Richardson JM, Ferguson MA (1995) The lipid structure of the glycosylphosphatidylinositol-anchored mucin-like sialic acid acceptors of Trypanosoma cruzi changes during parasite differentiation from epimastigotes to infective metacyclic trypomastigote forms. J Biol Chem 270(45):27244–27253CrossRefPubMed Serrano AA, Schenkman S, Yoshida N, Mehlert A, Richardson JM, Ferguson MA (1995) The lipid structure of the glycosylphosphatidylinositol-anchored mucin-like sialic acid acceptors of Trypanosoma cruzi changes during parasite differentiation from epimastigotes to infective metacyclic trypomastigote forms. J Biol Chem 270(45):27244–27253CrossRefPubMed
36.
go back to reference Smith SW, Lester RL (1974) Inositol phosphorylceramide, a novel substance and the chief member of a major group of yeast sphingolipids containing a single inositol phosphate. J Biol Chem 249(11):3395–3405PubMed Smith SW, Lester RL (1974) Inositol phosphorylceramide, a novel substance and the chief member of a major group of yeast sphingolipids containing a single inositol phosphate. J Biol Chem 249(11):3395–3405PubMed
37.
go back to reference Kaneshiro ES, Jayasimhulu K, Lester RL (1986) Characterization of inositol lipids from Leishmania donovani promastigotes: identification of an inositol sphingophospholipid. J Lipid Res 27(12):1294–1303PubMed Kaneshiro ES, Jayasimhulu K, Lester RL (1986) Characterization of inositol lipids from Leishmania donovani promastigotes: identification of an inositol sphingophospholipid. J Lipid Res 27(12):1294–1303PubMed
38.
go back to reference Zhang K, Hsu FF, Scott DA, Docampo R, Turk J, Beverley SM (2005) Leishmania salvage and remodelling of host sphingolipids in amastigote survival and acidocalcisome biogenesis. Mol Microbiol 55(5):1566–1578CrossRefPubMedPubMedCentral Zhang K, Hsu FF, Scott DA, Docampo R, Turk J, Beverley SM (2005) Leishmania salvage and remodelling of host sphingolipids in amastigote survival and acidocalcisome biogenesis. Mol Microbiol 55(5):1566–1578CrossRefPubMedPubMedCentral
39.
go back to reference Zhang K, Showalter M, Revollo J, Hsu FF, Turk J, Beverley SM (2003) Sphingolipids are essential for differentiation but not growth in Leishmania. EMBO J 22(22):6016–6026CrossRefPubMedPubMedCentral Zhang K, Showalter M, Revollo J, Hsu FF, Turk J, Beverley SM (2003) Sphingolipids are essential for differentiation but not growth in Leishmania. EMBO J 22(22):6016–6026CrossRefPubMedPubMedCentral
40.
go back to reference Denny PW, Goulding D, Ferguson MA, Smith DF (2004) Sphingolipid-free Leishmania are defective in membrane trafficking, differentiation and infectivity. Mol Microbiol 52(2):313–327CrossRefPubMed Denny PW, Goulding D, Ferguson MA, Smith DF (2004) Sphingolipid-free Leishmania are defective in membrane trafficking, differentiation and infectivity. Mol Microbiol 52(2):313–327CrossRefPubMed
41.
go back to reference Zhang K, Pompey JM, Hsu FF, Key P, Bandhuvula P, Saba JD et al (2007) Redirection of sphingolipid metabolism toward de novo synthesis of ethanolamine in Leishmania. EMBO J 26(4):1094–1104CrossRefPubMedPubMedCentral Zhang K, Pompey JM, Hsu FF, Key P, Bandhuvula P, Saba JD et al (2007) Redirection of sphingolipid metabolism toward de novo synthesis of ethanolamine in Leishmania. EMBO J 26(4):1094–1104CrossRefPubMedPubMedCentral
42.
go back to reference Singh BN, Costello CE, Beach DH, Holz GG Jr (1988) Di-O-alkylglycerol, mono-O-alkylglycerol and ceramide inositol phosphates of Leishmania mexicana mexicana promastigotes. Biochem Biophys Res Commun 157(3):1239–1246CrossRefPubMed Singh BN, Costello CE, Beach DH, Holz GG Jr (1988) Di-O-alkylglycerol, mono-O-alkylglycerol and ceramide inositol phosphates of Leishmania mexicana mexicana promastigotes. Biochem Biophys Res Commun 157(3):1239–1246CrossRefPubMed
43.
go back to reference Hsu FF, Turk J, Zhang K, Beverley SM (2007) Characterization of inositol phosphorylceramides from Leishmania major by tandem mass spectrometry with electrospray ionization. J Am Soc Mass Spectrom 18(9):1591–1604CrossRefPubMedPubMedCentral Hsu FF, Turk J, Zhang K, Beverley SM (2007) Characterization of inositol phosphorylceramides from Leishmania major by tandem mass spectrometry with electrospray ionization. J Am Soc Mass Spectrom 18(9):1591–1604CrossRefPubMedPubMedCentral
44.
go back to reference Zufferey R, Mamoun CB (2002) Choline transport in Leishmania major promastigotes and its inhibition by choline and phosphocholine analogs. Mol Biochem Parasitol 125(1–2):127–134CrossRefPubMed Zufferey R, Mamoun CB (2002) Choline transport in Leishmania major promastigotes and its inhibition by choline and phosphocholine analogs. Mol Biochem Parasitol 125(1–2):127–134CrossRefPubMed
45.
go back to reference Sutterwala SS, Hsu FF, Sevova ES, Schwartz KJ, Zhang K, Key P et al (2008) Developmentally regulated sphingolipid synthesis in African trypanosomes. Mol Microbiol 70(2):281–296CrossRefPubMedPubMedCentral Sutterwala SS, Hsu FF, Sevova ES, Schwartz KJ, Zhang K, Key P et al (2008) Developmentally regulated sphingolipid synthesis in African trypanosomes. Mol Microbiol 70(2):281–296CrossRefPubMedPubMedCentral
46.
go back to reference Vacchina P, Tripodi KE, Escalante AM, Uttaro AD (2012) Characterization of bifunctional sphingolipid Delta4-desaturases/C4-hydroxylases of trypanosomatids by liquid chromatography-electrospray tandem mass spectrometry. Mol Biochem Parasitol 184(1):29–38CrossRefPubMed Vacchina P, Tripodi KE, Escalante AM, Uttaro AD (2012) Characterization of bifunctional sphingolipid Delta4-desaturases/C4-hydroxylases of trypanosomatids by liquid chromatography-electrospray tandem mass spectrometry. Mol Biochem Parasitol 184(1):29–38CrossRefPubMed
47.
go back to reference Pessi G, Choi JY, Reynolds JM, Voelker DR, Mamoun CB (2005) In vivo evidence for the specificity of Plasmodium falciparum phosphoethanolamine methyltransferase and its coupling to the Kennedy pathway. J Biol Chem 280(13):12461–12466CrossRefPubMed Pessi G, Choi JY, Reynolds JM, Voelker DR, Mamoun CB (2005) In vivo evidence for the specificity of Plasmodium falciparum phosphoethanolamine methyltransferase and its coupling to the Kennedy pathway. J Biol Chem 280(13):12461–12466CrossRefPubMed
48.
go back to reference Pessi G, Kociubinski G, Mamoun CB (2004) A pathway for phosphatidylcholine biosynthesis in Plasmodium falciparum involving phosphoethanolamine methylation. Proc Natl Acad Sci USA 101(16):6206–6211CrossRefPubMedPubMedCentral Pessi G, Kociubinski G, Mamoun CB (2004) A pathway for phosphatidylcholine biosynthesis in Plasmodium falciparum involving phosphoethanolamine methylation. Proc Natl Acad Sci USA 101(16):6206–6211CrossRefPubMedPubMedCentral
49.
go back to reference Bibis SS, Dahlstrom K, Zhu T, Zufferey R (2014) Characterization of Leishmania major phosphatidylethanolamine methyltransferases LmjPEM1 and LmjPEM2 and their inhibition by choline analogs. Mol Biochem Parasitol 196(2):90–99CrossRefPubMedPubMedCentral Bibis SS, Dahlstrom K, Zhu T, Zufferey R (2014) Characterization of Leishmania major phosphatidylethanolamine methyltransferases LmjPEM1 and LmjPEM2 and their inhibition by choline analogs. Mol Biochem Parasitol 196(2):90–99CrossRefPubMedPubMedCentral
50.
go back to reference Gibellini F, Hunter WN, Smith TK (2009) The ethanolamine branch of the Kennedy pathway is essential in the bloodstream form of Trypanosoma brucei. Mol Microbiol 73(5):826–843CrossRefPubMedPubMedCentral Gibellini F, Hunter WN, Smith TK (2009) The ethanolamine branch of the Kennedy pathway is essential in the bloodstream form of Trypanosoma brucei. Mol Microbiol 73(5):826–843CrossRefPubMedPubMedCentral
51.
go back to reference Farine L, Jelk J, Choi JY, Voelker DR, Nunes J, Smith TK et al (2017) Phosphatidylserine synthase 2 and phosphatidylserine decarboxylase are essential for aminophospholipid synthesis in Trypanosoma brucei. Mol Microbiol 104(3):412–427CrossRefPubMedPubMedCentral Farine L, Jelk J, Choi JY, Voelker DR, Nunes J, Smith TK et al (2017) Phosphatidylserine synthase 2 and phosphatidylserine decarboxylase are essential for aminophospholipid synthesis in Trypanosoma brucei. Mol Microbiol 104(3):412–427CrossRefPubMedPubMedCentral
52.
go back to reference Farine L, Butikofer P (2013) The ins and outs of phosphatidylethanolamine synthesis in Trypanosoma brucei. Biochim Biophys Acta 1831(3):533–542CrossRefPubMed Farine L, Butikofer P (2013) The ins and outs of phosphatidylethanolamine synthesis in Trypanosoma brucei. Biochim Biophys Acta 1831(3):533–542CrossRefPubMed
53.
go back to reference Serricchio M, Butikofer P (2011) Trypanosoma brucei: a model micro-organism to study eukaryotic phospholipid biosynthesis. FEBS J 278(7):1035–1046CrossRefPubMed Serricchio M, Butikofer P (2011) Trypanosoma brucei: a model micro-organism to study eukaryotic phospholipid biosynthesis. FEBS J 278(7):1035–1046CrossRefPubMed
54.
go back to reference van Hellemond JJ, Tielens AG (2006) Adaptations in the lipid metabolism of the protozoan parasite Trypanosoma brucei. FEBS Lett 580(23):5552–5558CrossRefPubMed van Hellemond JJ, Tielens AG (2006) Adaptations in the lipid metabolism of the protozoan parasite Trypanosoma brucei. FEBS Lett 580(23):5552–5558CrossRefPubMed
55.
go back to reference Signorell A, Rauch M, Jelk J, Ferguson MA, Butikofer P (2008) Phosphatidylethanolamine in Trypanosoma brucei is organized in two separate pools and is synthesized exclusively by the Kennedy pathway. J Biol Chem 283(35):23636–23644CrossRefPubMedPubMedCentral Signorell A, Rauch M, Jelk J, Ferguson MA, Butikofer P (2008) Phosphatidylethanolamine in Trypanosoma brucei is organized in two separate pools and is synthesized exclusively by the Kennedy pathway. J Biol Chem 283(35):23636–23644CrossRefPubMedPubMedCentral
56.
go back to reference Gonzalez-Salgado A, Steinmann ME, Greganova E, Rauch M, Maser P, Sigel E et al (2012) Myo-Inositol uptake is essential for bulk inositol phospholipid but not glycosylphosphatidylinositol synthesis in Trypanosoma brucei. J Biol Chem 287(16):13313–13323CrossRefPubMedPubMedCentral Gonzalez-Salgado A, Steinmann ME, Greganova E, Rauch M, Maser P, Sigel E et al (2012) Myo-Inositol uptake is essential for bulk inositol phospholipid but not glycosylphosphatidylinositol synthesis in Trypanosoma brucei. J Biol Chem 287(16):13313–13323CrossRefPubMedPubMedCentral
57.
go back to reference Martin KL, Smith TK (2006) The glycosylphosphatidylinositol (GPI) biosynthetic pathway of bloodstream-form Trypanosoma brucei is dependent on the de novo synthesis of inositol. Mol Microbiol 61(1):89–105CrossRefPubMedPubMedCentral Martin KL, Smith TK (2006) The glycosylphosphatidylinositol (GPI) biosynthetic pathway of bloodstream-form Trypanosoma brucei is dependent on the de novo synthesis of inositol. Mol Microbiol 61(1):89–105CrossRefPubMedPubMedCentral
58.
go back to reference Gonzalez-Salgado A, Steinmann M, Major LL, Sigel E, Reymond JL, Smith TK et al (2015) Trypanosoma brucei bloodstream forms depend upon uptake of myo-Inositol for Golgi complex phosphatidylinositol synthesis and normal cell growth. Eukaryot Cell 14(6):616–624CrossRefPubMedPubMedCentral Gonzalez-Salgado A, Steinmann M, Major LL, Sigel E, Reymond JL, Smith TK et al (2015) Trypanosoma brucei bloodstream forms depend upon uptake of myo-Inositol for Golgi complex phosphatidylinositol synthesis and normal cell growth. Eukaryot Cell 14(6):616–624CrossRefPubMedPubMedCentral
60.
go back to reference Zufferey R, Allen S, Barron T, Sullivan DR, Denny PW, Almeida IC et al (2003) Ether phospholipids and glycosylinositolphospholipids are not required for amastigote virulence or for inhibition of macrophage activation by Leishmania major. J Biol Chem 278(45):44708–44718CrossRefPubMed Zufferey R, Allen S, Barron T, Sullivan DR, Denny PW, Almeida IC et al (2003) Ether phospholipids and glycosylinositolphospholipids are not required for amastigote virulence or for inhibition of macrophage activation by Leishmania major. J Biol Chem 278(45):44708–44718CrossRefPubMed
61.
go back to reference Zufferey R, Al-Ani GK, Dunlap K (2009) Leishmania dihydroxyacetonephosphate acyltransferase LmDAT is important for ether lipid biosynthesis but not for the integrity of detergent resistant membranes. Mol Biochem Parasitol 168(2):177–185CrossRefPubMedPubMedCentral Zufferey R, Al-Ani GK, Dunlap K (2009) Leishmania dihydroxyacetonephosphate acyltransferase LmDAT is important for ether lipid biosynthesis but not for the integrity of detergent resistant membranes. Mol Biochem Parasitol 168(2):177–185CrossRefPubMedPubMedCentral
62.
go back to reference Patel N, Pirani KA, Zhu T, Cheung-See-Kit M, Lee S, Chen DG et al (2016) The glycerol-3-phosphate acyltransferase TbGAT is dispensable for viability and the synthesis of glycerolipids in Trypanosoma brucei. J Eukaryot Microbiol 63(5):598–609CrossRefPubMed Patel N, Pirani KA, Zhu T, Cheung-See-Kit M, Lee S, Chen DG et al (2016) The glycerol-3-phosphate acyltransferase TbGAT is dispensable for viability and the synthesis of glycerolipids in Trypanosoma brucei. J Eukaryot Microbiol 63(5):598–609CrossRefPubMed
63.
go back to reference Zufferey R, Pirani KA, Cheung-See-Kit M, Lee SS, Williams TA, Chen DG, et al. The Trypanosoma brucei dihydroxyacetonephosphate acyltransferase TbDAT is dispensable for normal growth but important for synthesis of ether glycerophospholipids. Plos ONE 2017 (in press) Zufferey R, Pirani KA, Cheung-See-Kit M, Lee SS, Williams TA, Chen DG, et al. The Trypanosoma brucei dihydroxyacetonephosphate acyltransferase TbDAT is dispensable for normal growth but important for synthesis of ether glycerophospholipids. Plos ONE 2017 (in press)
64.
go back to reference Richmond GS, Smith TK (2007) The role and characterization of phospholipase A1 in mediating lysophosphatidylcholine synthesis in Trypanosoma brucei. Biochem J. 405(2):319–329CrossRefPubMedPubMedCentral Richmond GS, Smith TK (2007) The role and characterization of phospholipase A1 in mediating lysophosphatidylcholine synthesis in Trypanosoma brucei. Biochem J. 405(2):319–329CrossRefPubMedPubMedCentral
65.
go back to reference Lee SH, Stephens JL, Englund PT (2007) A fatty-acid synthesis mechanism specialized for parasitism. Nat Rev Microbiol 5(4):287–297CrossRefPubMed Lee SH, Stephens JL, Englund PT (2007) A fatty-acid synthesis mechanism specialized for parasitism. Nat Rev Microbiol 5(4):287–297CrossRefPubMed
66.
go back to reference Guler JL, Kriegova E, Smith TK, Lukes J, Englund PT (2008) Mitochondrial fatty acid synthesis is required for normal mitochondrial morphology and function in Trypanosoma brucei. Mol Microbiol 67(5):1125–1142CrossRefPubMedPubMedCentral Guler JL, Kriegova E, Smith TK, Lukes J, Englund PT (2008) Mitochondrial fatty acid synthesis is required for normal mitochondrial morphology and function in Trypanosoma brucei. Mol Microbiol 67(5):1125–1142CrossRefPubMedPubMedCentral
67.
go back to reference Allmann S, Mazet M, Ziebart N, Bouyssou G, Fouillen L, Dupuy JW et al (2014) Triacylglycerol storage in lipid droplets in procyclic Trypanosoma brucei. PLoS ONE 9(12):e114628CrossRefPubMedPubMedCentral Allmann S, Mazet M, Ziebart N, Bouyssou G, Fouillen L, Dupuy JW et al (2014) Triacylglycerol storage in lipid droplets in procyclic Trypanosoma brucei. PLoS ONE 9(12):e114628CrossRefPubMedPubMedCentral
68.
go back to reference Urbina JA (1997) Lipid biosynthesis pathways as chemotherapeutic targets in kinetoplastid parasites. Parasitology 114(Suppl):S91–S99PubMed Urbina JA (1997) Lipid biosynthesis pathways as chemotherapeutic targets in kinetoplastid parasites. Parasitology 114(Suppl):S91–S99PubMed
69.
go back to reference Rakotomanga M, Blanc S, Gaudin K, Chaminade P, Loiseau PM (2007) Miltefosine affects lipid metabolism in Leishmania donovani promastigotes. Antimicrob Agents Chemother 51(4):1425–1430CrossRefPubMedPubMedCentral Rakotomanga M, Blanc S, Gaudin K, Chaminade P, Loiseau PM (2007) Miltefosine affects lipid metabolism in Leishmania donovani promastigotes. Antimicrob Agents Chemother 51(4):1425–1430CrossRefPubMedPubMedCentral
70.
go back to reference Shaw CD, Lonchamp J, Downing T, Imamura H, Freeman TM, Cotton JA et al (2016) In vitro selection of miltefosine resistance in promastigotes of Leishmania donovani from Nepal: genomic and metabolomic characterization. Mol Microbiol 99(6):1134–1148CrossRefPubMedPubMedCentral Shaw CD, Lonchamp J, Downing T, Imamura H, Freeman TM, Cotton JA et al (2016) In vitro selection of miltefosine resistance in promastigotes of Leishmania donovani from Nepal: genomic and metabolomic characterization. Mol Microbiol 99(6):1134–1148CrossRefPubMedPubMedCentral
71.
go back to reference Imbert L, Gaudin M, Libong D, Touboul D, Abreu S, Loiseau PM et al (2012) Comparison of electrospray ionization, atmospheric pressure chemical ionization and atmospheric pressure photoionization for a lipidomic analysis of Leishmania donovani. J Chromatogr A 1242:75–83CrossRefPubMed Imbert L, Gaudin M, Libong D, Touboul D, Abreu S, Loiseau PM et al (2012) Comparison of electrospray ionization, atmospheric pressure chemical ionization and atmospheric pressure photoionization for a lipidomic analysis of Leishmania donovani. J Chromatogr A 1242:75–83CrossRefPubMed
72.
go back to reference Imbert L, Ramos RG, Libong D, Abreu S, Loiseau PM, Chaminade P (2012) Identification of phospholipid species affected by miltefosine action in Leishmania donovani cultures using LC–ELSD, LC–ESI/MS, and multivariate data analysis. Anal Bioanal Chem 402(3):1169–1182CrossRefPubMed Imbert L, Ramos RG, Libong D, Abreu S, Loiseau PM, Chaminade P (2012) Identification of phospholipid species affected by miltefosine action in Leishmania donovani cultures using LC–ELSD, LC–ESI/MS, and multivariate data analysis. Anal Bioanal Chem 402(3):1169–1182CrossRefPubMed
73.
go back to reference Mondelaers A, Sanchez-Canete MP, Hendrickx S, Eberhardt E, Garcia-Hernandez R, Lachaud L et al (2016) Genomic and molecular characterization of miltefosine resistance in Leishmania infantum strains with either natural or acquired resistance through experimental selection of intracellular amastigotes. PLoS ONE 11(4):e0154101CrossRefPubMedPubMedCentral Mondelaers A, Sanchez-Canete MP, Hendrickx S, Eberhardt E, Garcia-Hernandez R, Lachaud L et al (2016) Genomic and molecular characterization of miltefosine resistance in Leishmania infantum strains with either natural or acquired resistance through experimental selection of intracellular amastigotes. PLoS ONE 11(4):e0154101CrossRefPubMedPubMedCentral
74.
go back to reference Frezard F, Demicheli C, Ribeiro RR (2009) Pentavalent antimonials: new perspectives for old drugs. Molecules 14(7):2317–2336CrossRefPubMed Frezard F, Demicheli C, Ribeiro RR (2009) Pentavalent antimonials: new perspectives for old drugs. Molecules 14(7):2317–2336CrossRefPubMed
76.
go back to reference Mathur R, Das RP, Ranjan A, Shaha C (2015) Elevated ergosterol protects Leishmania parasites against antimony-generated stress. FASEB J. 29(10):4201–4213CrossRefPubMed Mathur R, Das RP, Ranjan A, Shaha C (2015) Elevated ergosterol protects Leishmania parasites against antimony-generated stress. FASEB J. 29(10):4201–4213CrossRefPubMed
77.
go back to reference de Azevedo AF, Dutra JL, Santos ML, Santos Dde A, Alves PB, de Moura TR et al (2014) Fatty acid profiles in Leishmania spp. isolates with natural resistance to nitric oxide and trivalent antimony. Parasitol Res 113(1):19–27CrossRefPubMed de Azevedo AF, Dutra JL, Santos ML, Santos Dde A, Alves PB, de Moura TR et al (2014) Fatty acid profiles in Leishmania spp. isolates with natural resistance to nitric oxide and trivalent antimony. Parasitol Res 113(1):19–27CrossRefPubMed
78.
go back to reference t’Kindt R, Scheltema RA, Jankevics A, Brunker K, Rijal S, Dujardin JC et al (2010) Metabolomics to unveil and understand phenotypic diversity between pathogen populations. PLoS Negl Trop Dis 4(11):e904CrossRefPubMedPubMedCentral t’Kindt R, Scheltema RA, Jankevics A, Brunker K, Rijal S, Dujardin JC et al (2010) Metabolomics to unveil and understand phenotypic diversity between pathogen populations. PLoS Negl Trop Dis 4(11):e904CrossRefPubMedPubMedCentral
79.
go back to reference Ferrins L, Rahmani R, Sykes ML, Jones AJ, Avery VM, Teston E et al (2013) 3-(Oxazolo[4,5-b]pyridin-2-yl)anilides as a novel class of potent inhibitors for the kinetoplastid Trypanosoma brucei, the causative agent for human African trypanosomiasis. Eur J Med Chem 66:450–465CrossRefPubMed Ferrins L, Rahmani R, Sykes ML, Jones AJ, Avery VM, Teston E et al (2013) 3-(Oxazolo[4,5-b]pyridin-2-yl)anilides as a novel class of potent inhibitors for the kinetoplastid Trypanosoma brucei, the causative agent for human African trypanosomiasis. Eur J Med Chem 66:450–465CrossRefPubMed
80.
go back to reference Stoessel D, Nowell CJ, Jones AJ, Ferrine L, Ellis KM, Riely J et al (2016) Metabolomics and lipidomics reveal perturbation of sphingolipid metabolism by a novel anti-trypanosomal 3-(oxazolo[4,5-b]pyridine-2-yl)anilide. Metabolomics. 12:1–14CrossRef Stoessel D, Nowell CJ, Jones AJ, Ferrine L, Ellis KM, Riely J et al (2016) Metabolomics and lipidomics reveal perturbation of sphingolipid metabolism by a novel anti-trypanosomal 3-(oxazolo[4,5-b]pyridine-2-yl)anilide. Metabolomics. 12:1–14CrossRef
81.
go back to reference Castro EV, Yoneyama KG, Haapalainen EF, Toledo MS, Takahashi HK, Straus AH (2013) Myriocin, a serine palmitoyltransferase inhibitor, blocks cytokinesis in Leishmania (Viannia) braziliensis promastigotes. J Eukaryot Microbiol 60(4):377–387CrossRefPubMed Castro EV, Yoneyama KG, Haapalainen EF, Toledo MS, Takahashi HK, Straus AH (2013) Myriocin, a serine palmitoyltransferase inhibitor, blocks cytokinesis in Leishmania (Viannia) braziliensis promastigotes. J Eukaryot Microbiol 60(4):377–387CrossRefPubMed
82.
go back to reference Andrade-Neto VV, Pereira TM, Canto-Cavalheiro M, Torres-Santos EC (2016) Imipramine alters the sterol profile in Leishmania amazonensis and increases its sensitivity to miconazole. Parasit Vectors. 9:183CrossRefPubMedPubMedCentral Andrade-Neto VV, Pereira TM, Canto-Cavalheiro M, Torres-Santos EC (2016) Imipramine alters the sterol profile in Leishmania amazonensis and increases its sensitivity to miconazole. Parasit Vectors. 9:183CrossRefPubMedPubMedCentral
83.
go back to reference Torres-Santos EC, Sampaio-Santos MI, Buckner FS, Yokoyama K, Gelb M, Urbina JA et al (2009) Altered sterol profile induced in Leishmania amazonensis by a natural dihydroxymethoxylated chalcone. J Antimicrob Chemother 63(3):469–472CrossRefPubMedPubMedCentral Torres-Santos EC, Sampaio-Santos MI, Buckner FS, Yokoyama K, Gelb M, Urbina JA et al (2009) Altered sterol profile induced in Leishmania amazonensis by a natural dihydroxymethoxylated chalcone. J Antimicrob Chemother 63(3):469–472CrossRefPubMedPubMedCentral
84.
go back to reference Leaver DJ, Patkar P, Singha UK, Miller MB, Haubrich BA, Chaudhuri M et al (2015) Fluorinated sterols are suicide inhibitors of ergosterol biosynthesis and growth in Trypanosoma brucei. Chem Biol 22(10):1374–1383CrossRefPubMedPubMedCentral Leaver DJ, Patkar P, Singha UK, Miller MB, Haubrich BA, Chaudhuri M et al (2015) Fluorinated sterols are suicide inhibitors of ergosterol biosynthesis and growth in Trypanosoma brucei. Chem Biol 22(10):1374–1383CrossRefPubMedPubMedCentral
85.
go back to reference Liendo A, Visbal G, Piras MM, Piras R, Urbina JA (1999) Sterol composition and biosynthesis in Trypanosoma cruzi amastigotes. Mol Biochem Parasitol 104(1):81–91CrossRefPubMed Liendo A, Visbal G, Piras MM, Piras R, Urbina JA (1999) Sterol composition and biosynthesis in Trypanosoma cruzi amastigotes. Mol Biochem Parasitol 104(1):81–91CrossRefPubMed
86.
go back to reference Garzoni LR, Caldera A, Meirelles Mde N, de Castro SL, Docampo R, Meints GA et al (2004) Selective in vitro effects of the farnesyl pyrophosphate synthase inhibitor risedronate on Trypanosoma cruzi. Int J Antimicrob Agents 23(3):273–285CrossRefPubMed Garzoni LR, Caldera A, Meirelles Mde N, de Castro SL, Docampo R, Meints GA et al (2004) Selective in vitro effects of the farnesyl pyrophosphate synthase inhibitor risedronate on Trypanosoma cruzi. Int J Antimicrob Agents 23(3):273–285CrossRefPubMed
88.
go back to reference Docampo R, Moreno SN (2001) Bisphosphonates as chemotherapeutic agents against trypanosomatid and apicomplexan parasites. Curr Drug Targets Infect Disord 1(1):51–61CrossRefPubMed Docampo R, Moreno SN (2001) Bisphosphonates as chemotherapeutic agents against trypanosomatid and apicomplexan parasites. Curr Drug Targets Infect Disord 1(1):51–61CrossRefPubMed
89.
go back to reference Melo RC, D’Avila H, Wan HC, Bozza PT, Dvorak AM, Weller PF (2011) Lipid bodies in inflammatory cells: structure, function, and current imaging techniques. J Histochem Cytochem 59(5):540–556CrossRefPubMedPubMedCentral Melo RC, D’Avila H, Wan HC, Bozza PT, Dvorak AM, Weller PF (2011) Lipid bodies in inflammatory cells: structure, function, and current imaging techniques. J Histochem Cytochem 59(5):540–556CrossRefPubMedPubMedCentral
90.
go back to reference Saka HA, Valdivia R (2012) Emerging roles for lipid droplets in immunity and host–pathogen interactions. Annu Rev Cell Dev Biol 28:411–437CrossRefPubMed Saka HA, Valdivia R (2012) Emerging roles for lipid droplets in immunity and host–pathogen interactions. Annu Rev Cell Dev Biol 28:411–437CrossRefPubMed
91.
go back to reference Bozza PT, Bakker-Abreu I, Navarro-Xavier RA, Bandeira-Melo C (2011) Lipid body function in eicosanoid synthesis: an update. Prostaglandins Leukot Essent Fatty Acids 85(5):205–213CrossRefPubMed Bozza PT, Bakker-Abreu I, Navarro-Xavier RA, Bandeira-Melo C (2011) Lipid body function in eicosanoid synthesis: an update. Prostaglandins Leukot Essent Fatty Acids 85(5):205–213CrossRefPubMed
92.
go back to reference Toledo DA, Roque NR, Teixeira L, Milan-Garces EA, Carneiro AB, Almeida MR et al (2016) Lipid body organelles within the parasite Trypanosoma cruzi: a role for intracellular arachidonic acid metabolism. PLoS ONE 11(8):e0160433CrossRefPubMedPubMedCentral Toledo DA, Roque NR, Teixeira L, Milan-Garces EA, Carneiro AB, Almeida MR et al (2016) Lipid body organelles within the parasite Trypanosoma cruzi: a role for intracellular arachidonic acid metabolism. PLoS ONE 11(8):e0160433CrossRefPubMedPubMedCentral
93.
go back to reference Caughey GE, Pouliot M, Cleland LG, James MJ (1997) Regulation of tumor necrosis factor-alpha and IL-1 beta synthesis by thromboxane A2 in nonadherent human monocytes. J Immunol. 158(1):351–358PubMed Caughey GE, Pouliot M, Cleland LG, James MJ (1997) Regulation of tumor necrosis factor-alpha and IL-1 beta synthesis by thromboxane A2 in nonadherent human monocytes. J Immunol. 158(1):351–358PubMed
94.
go back to reference Ashton AW, Mukherjee S, Nagajyothi FN, Huang H, Braunstein VL, Desruisseaux MS et al (2007) Thromboxane A2 is a key regulator of pathogenesis during Trypanosoma cruzi infection. J Exp Med 204(4):929–940CrossRefPubMedPubMedCentral Ashton AW, Mukherjee S, Nagajyothi FN, Huang H, Braunstein VL, Desruisseaux MS et al (2007) Thromboxane A2 is a key regulator of pathogenesis during Trypanosoma cruzi infection. J Exp Med 204(4):929–940CrossRefPubMedPubMedCentral
Metadata
Title
Lipidomics and anti-trypanosomatid chemotherapy
Authors
Michael Biagiotti
Sedelia Dominguez
Nader Yamout
Rachel Zufferey
Publication date
01-12-2017
Publisher
Springer Berlin Heidelberg
Published in
Clinical and Translational Medicine / Issue 1/2017
Electronic ISSN: 2001-1326
DOI
https://doi.org/10.1186/s40169-017-0160-7

Other articles of this Issue 1/2017

Clinical and Translational Medicine 1/2017 Go to the issue