Skip to main content
Top
Published in: Molecular Neurodegeneration 1/2016

Open Access 01-12-2016 | Research article

Role of cytochrome c in α-synuclein radical formation: implications of α-synuclein in neuronal death in Maneb- and paraquat-induced model of Parkinson’s disease

Authors: Ashutosh Kumar, Douglas Ganini, Ronald P. Mason

Published in: Molecular Neurodegeneration | Issue 1/2016

Login to get access

Abstract

Background

The pathological features of Parkinson’s disease (PD) include an abnormal accumulation of α-synuclein in the surviving dopaminergic neurons. Though PD is multifactorial, several epidemiological reports show an increased incidence of PD with co-exposure to pesticides such as Maneb and paraquat (MP). In pesticide-related PD, mitochondrial dysfunction and α-synuclein oligomers have been strongly implicated, but the link between the two has not yet been understood. Similarly, the biological effects of α-synuclein or its radical chemistry in PD is largely unknown. Mitochondrial dysfunction during PD pathogenesis leads to release of cytochrome c in the cytosol. Once in the cytosol, cytochrome c has one of two fates: It either binds to apaf1 and initiates apoptosis or can act as a peroxidase. We hypothesized that as a peroxidase, cytochrome c leaked out from mitochondria can form radicals on α-synuclein and initiate its oligomerization.

Method

Samples from controls, and MP co-exposed wild-type and α-synuclein knockout mice were studied using immuno-spin trapping, confocal microscopy, immunohistochemistry, and microarray experiments.

Results

Experiments with MP co-exposed mice showed cytochrome c release in cytosol and its co-localization with α-synuclein. Subsequently, we used immuno-spin trapping method to detect the formation of α-synuclein radical in samples from an in vitro reaction mixture consisting of cytochrome c, α-synuclein, and hydrogen peroxide. These experiments indicated that cytochrome c plays a role in α-synuclein radical formation and oligomerization. Experiments with MP co-exposed α-synuclein knockout mice, in which cytochrome c-α synuclein co-localization and interaction cannot occur, mice showed diminished protein radical formation and neuronal death, compared to wild-type MP co-exposed mice. Microarray data from MP co-exposed wild-type and α-synuclein knockout mice further showed that the absence of α-synuclein per se or its co-localization with cytochrome c confers protection from MP co-exposure, as several important pathways were unaffected in α-synuclein knockout mice.

Conclusions

Altogether, these results show that peroxidase activity of cytochrome c contributes to α-synuclein radical formation and oligomerization, and that α-synuclein, through its co-localization with cytochrome c or on its own, affects several biological pathways which contribute to increased neuronal death in an MP-induced model of PD.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bezard E, Przedborski S. A tale on animal models of Parkinson’s disease. Mov Disord. 2011;26:993–1002.CrossRefPubMed Bezard E, Przedborski S. A tale on animal models of Parkinson’s disease. Mov Disord. 2011;26:993–1002.CrossRefPubMed
2.
3.
go back to reference Cicchetti F, Drouin-Ouellet J, Gross RE. Environmental toxins and Parkinson’s disease: what have we learned from pesticide-induced animal models? Trends Pharmacol Sci. 2009;30:475–83.CrossRefPubMed Cicchetti F, Drouin-Ouellet J, Gross RE. Environmental toxins and Parkinson’s disease: what have we learned from pesticide-induced animal models? Trends Pharmacol Sci. 2009;30:475–83.CrossRefPubMed
4.
5.
go back to reference Ryan SD, Dolatabadi N, Chan SF, Zhang X, Akhtar MW, Parker J, Soldner F, Sunico CR, Nagar S, Talantova M, et al. Isogenic human iPSC Parkinson’s model shows nitrosative stress-induced dysfunction in MEF2-PGC1alpha transcription. Cell. 2013;155:1351–64.CrossRefPubMedPubMedCentral Ryan SD, Dolatabadi N, Chan SF, Zhang X, Akhtar MW, Parker J, Soldner F, Sunico CR, Nagar S, Talantova M, et al. Isogenic human iPSC Parkinson’s model shows nitrosative stress-induced dysfunction in MEF2-PGC1alpha transcription. Cell. 2013;155:1351–64.CrossRefPubMedPubMedCentral
6.
go back to reference Kumar A, Singh BK, Ahmad I, Shukla S, Patel DK, Srivastava G, Kumar V, Pandey HP, Singh C. Involvement of NADPH oxidase and glutathione in zinc-induced dopaminergic neurodegeneration in rats: similarity with paraquat neurotoxicity. Brain Res. 2012;1438:48–64.CrossRefPubMed Kumar A, Singh BK, Ahmad I, Shukla S, Patel DK, Srivastava G, Kumar V, Pandey HP, Singh C. Involvement of NADPH oxidase and glutathione in zinc-induced dopaminergic neurodegeneration in rats: similarity with paraquat neurotoxicity. Brain Res. 2012;1438:48–64.CrossRefPubMed
7.
go back to reference Costello S, Cockburn M, Bronstein J, Zhang X, Ritz B. Parkinson’s disease and residential exposure to maneb and paraquat from agricultural applications in the central valley of California. Am J Epidemiol. 2009;169:919–26.CrossRefPubMedPubMedCentral Costello S, Cockburn M, Bronstein J, Zhang X, Ritz B. Parkinson’s disease and residential exposure to maneb and paraquat from agricultural applications in the central valley of California. Am J Epidemiol. 2009;169:919–26.CrossRefPubMedPubMedCentral
8.
go back to reference Wang A, Costello S, Cockburn M, Zhang X, Bronstein J, Ritz B. Parkinson’s disease risk from ambient exposure to pesticides. Eur J Epidemiol. 2011;26:547–55.CrossRefPubMedPubMedCentral Wang A, Costello S, Cockburn M, Zhang X, Bronstein J, Ritz B. Parkinson’s disease risk from ambient exposure to pesticides. Eur J Epidemiol. 2011;26:547–55.CrossRefPubMedPubMedCentral
9.
go back to reference Cicchetti F, Lapointe N, Roberge-Tremblay A, Saint-Pierre M, Jimenez L, Ficke BW, Gross RE. Systemic exposure to paraquat and maneb models early Parkinson’s disease in young adult rats. Neurobiol Dis. 2005;20:360–71.CrossRefPubMed Cicchetti F, Lapointe N, Roberge-Tremblay A, Saint-Pierre M, Jimenez L, Ficke BW, Gross RE. Systemic exposure to paraquat and maneb models early Parkinson’s disease in young adult rats. Neurobiol Dis. 2005;20:360–71.CrossRefPubMed
10.
go back to reference Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. α-synuclein in Lewy bodies. Nature. 1997;388:839–40.CrossRefPubMed Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. α-synuclein in Lewy bodies. Nature. 1997;388:839–40.CrossRefPubMed
13.
go back to reference Gundersen V. Protein aggregation in Parkinson's disease. Acta Neurol Scand Suppl. 2010;82–87 Gundersen V. Protein aggregation in Parkinson's disease. Acta Neurol Scand Suppl. 2010;82–87
14.
go back to reference Franco MC, Ye Y, Refakis CA, Feldman JL, Stokes AL, Basso M, Melero Fernandez de Mera RM, Sparrow NA, Calingasan NY, Kiaei M, et al. Nitration of Hsp90 induces cell death. Proc Natl Acad Sci U S A. 2013;110:E1102–1111.CrossRefPubMedPubMedCentral Franco MC, Ye Y, Refakis CA, Feldman JL, Stokes AL, Basso M, Melero Fernandez de Mera RM, Sparrow NA, Calingasan NY, Kiaei M, et al. Nitration of Hsp90 induces cell death. Proc Natl Acad Sci U S A. 2013;110:E1102–1111.CrossRefPubMedPubMedCentral
15.
go back to reference Kumar A, Leinisch F, Kadiiska MB, Corbett J, Mason RP. Formation and Implications of α-Synuclein Radical in Maneb- and Paraquat-Induced Models of Parkinson’s Disease. Mol Neurobiol. 2015;53(5):2983–94.CrossRefPubMed Kumar A, Leinisch F, Kadiiska MB, Corbett J, Mason RP. Formation and Implications of α-Synuclein Radical in Maneb- and Paraquat-Induced Models of Parkinson’s Disease. Mol Neurobiol. 2015;53(5):2983–94.CrossRefPubMed
16.
go back to reference Thiruchelvam M, Richfield EK, Baggs RB, Tank AW, Cory-Slechta DA. The nigrostriatal dopaminergic system as a preferential target of repeated exposures to combined paraquat and maneb: implications for Parkinson’s disease. J Neurosci. 2000;20:9207–14.PubMed Thiruchelvam M, Richfield EK, Baggs RB, Tank AW, Cory-Slechta DA. The nigrostriatal dopaminergic system as a preferential target of repeated exposures to combined paraquat and maneb: implications for Parkinson’s disease. J Neurosci. 2000;20:9207–14.PubMed
17.
go back to reference Purisai MG, McCormack AL, Cumine S, Li J, Isla MZ, Di Monte DA. Microglial activation as a priming event leading to paraquat-induced dopaminergic cell degeneration. Neurobiol Dis. 2007;25:392–400.CrossRefPubMed Purisai MG, McCormack AL, Cumine S, Li J, Isla MZ, Di Monte DA. Microglial activation as a priming event leading to paraquat-induced dopaminergic cell degeneration. Neurobiol Dis. 2007;25:392–400.CrossRefPubMed
18.
go back to reference Dixit A, Srivastava G, Verma D, Mishra M, Singh PK, Prakash O, Singh MP. Minocycline, levodopa and MnTMPyP induced changes in the mitochondrial proteome profile of MPTP and maneb and paraquat mice models of Parkinson’s disease. Biochim Biophys Acta. 1832;2013:1227–40. Dixit A, Srivastava G, Verma D, Mishra M, Singh PK, Prakash O, Singh MP. Minocycline, levodopa and MnTMPyP induced changes in the mitochondrial proteome profile of MPTP and maneb and paraquat mice models of Parkinson’s disease. Biochim Biophys Acta. 1832;2013:1227–40.
19.
go back to reference Dettmer U, Selkoe D, Bartels T. New insights into cellular α-synuclein homeostasis in health and disease. Curr Opin Neurobiol. 2015;36:15–22.CrossRefPubMed Dettmer U, Selkoe D, Bartels T. New insights into cellular α-synuclein homeostasis in health and disease. Curr Opin Neurobiol. 2015;36:15–22.CrossRefPubMed
20.
go back to reference Camilleri A, Vassallo N. The Centrality of Mitochondria in the Pathogenesis and Treatment of Parkinson's Disease. CNS Neurosci Ther. 2014;20(7):591–602.CrossRefPubMed Camilleri A, Vassallo N. The Centrality of Mitochondria in the Pathogenesis and Treatment of Parkinson's Disease. CNS Neurosci Ther. 2014;20(7):591–602.CrossRefPubMed
21.
go back to reference Andrekopoulos C, Zhang H, Joseph J, Kalivendi S, Kalyanaraman B. Bicarbonate enhances α-synuclein oligomerization and nitration: intermediacy of carbonate radical anion and nitrogen dioxide radical. Biochem J. 2004;378:435–47.CrossRefPubMedPubMedCentral Andrekopoulos C, Zhang H, Joseph J, Kalivendi S, Kalyanaraman B. Bicarbonate enhances α-synuclein oligomerization and nitration: intermediacy of carbonate radical anion and nitrogen dioxide radical. Biochem J. 2004;378:435–47.CrossRefPubMedPubMedCentral
23.
go back to reference Drolet RE, Behrouz B, Lookingland KJ, Goudreau JL. Mice lacking α-synuclein have an attenuated loss of striatal dopamine following prolonged chronic MPTP administration. Neurotoxicology. 2004;25:761–9.CrossRefPubMed Drolet RE, Behrouz B, Lookingland KJ, Goudreau JL. Mice lacking α-synuclein have an attenuated loss of striatal dopamine following prolonged chronic MPTP administration. Neurotoxicology. 2004;25:761–9.CrossRefPubMed
24.
go back to reference Wills J, Credle J, Oaks AW, Duka V, Lee JH, Jones J, Sidhu A. Paraquat, but not maneb, induces synucleinopathy and tauopathy in striata of mice through inhibition of proteasomal and autophagic pathways. PLoS One. 2012;7(1):e30745.CrossRefPubMedPubMedCentral Wills J, Credle J, Oaks AW, Duka V, Lee JH, Jones J, Sidhu A. Paraquat, but not maneb, induces synucleinopathy and tauopathy in striata of mice through inhibition of proteasomal and autophagic pathways. PLoS One. 2012;7(1):e30745.CrossRefPubMedPubMedCentral
25.
go back to reference Winner B, Jappelli R, Maji SK, Desplats PA, Boyer L, Aigner S, Hetzer C, Loher T, Vilar M, Campioni S, et al. In vivo demonstration that α-synuclein oligomers are toxic. Proc Natl Acad Sci U S A. 2011;108:4194–9.CrossRefPubMedPubMedCentral Winner B, Jappelli R, Maji SK, Desplats PA, Boyer L, Aigner S, Hetzer C, Loher T, Vilar M, Campioni S, et al. In vivo demonstration that α-synuclein oligomers are toxic. Proc Natl Acad Sci U S A. 2011;108:4194–9.CrossRefPubMedPubMedCentral
26.
go back to reference Lashuel HA, Overk CR, Oueslati A, Masliah E. The many faces of α-synuclein: from structure and toxicity to therapeutic target. Nat Rev Neurosci. 2013;14:38–48.CrossRefPubMedPubMedCentral Lashuel HA, Overk CR, Oueslati A, Masliah E. The many faces of α-synuclein: from structure and toxicity to therapeutic target. Nat Rev Neurosci. 2013;14:38–48.CrossRefPubMedPubMedCentral
27.
go back to reference Martinez-Vicente M, Talloczy Z, Kaushik S, Massey AC, Mazzulli J, Mosharov EV, Hodara R, Fredenburg R, Wu DC, Follenzi A, et al. Dopamine-modified α-synuclein blocks chaperone-mediated autophagy. J Clin Invest. 2008;118:777–88.PubMedPubMedCentral Martinez-Vicente M, Talloczy Z, Kaushik S, Massey AC, Mazzulli J, Mosharov EV, Hodara R, Fredenburg R, Wu DC, Follenzi A, et al. Dopamine-modified α-synuclein blocks chaperone-mediated autophagy. J Clin Invest. 2008;118:777–88.PubMedPubMedCentral
28.
go back to reference Bayir H, Kapralov AA, Jiang JF, Huang ZT, Tyurina YY, Tyurin VA, Zhao Q, Belikova NA, Vlasova II, Maeda A, et al. Peroxidase mechanism of lipid-dependent cross-linking of synuclein with cytochrome c: protection against apoptosis versus delayed oxidative stress in parkinson disease. J Biol Chem. 2009;284:15951–69.CrossRefPubMedPubMedCentral Bayir H, Kapralov AA, Jiang JF, Huang ZT, Tyurina YY, Tyurin VA, Zhao Q, Belikova NA, Vlasova II, Maeda A, et al. Peroxidase mechanism of lipid-dependent cross-linking of synuclein with cytochrome c: protection against apoptosis versus delayed oxidative stress in parkinson disease. J Biol Chem. 2009;284:15951–69.CrossRefPubMedPubMedCentral
29.
30.
go back to reference Jang B, Han S. Biochemical properties of cytochrome c nitrated by peroxynitrite. Biochimie. 2006;88:53–8.CrossRefPubMed Jang B, Han S. Biochemical properties of cytochrome c nitrated by peroxynitrite. Biochimie. 2006;88:53–8.CrossRefPubMed
31.
go back to reference Chen YR, Deterding LJ, Sturgeon BE, Tomer KB, Mason RP. Protein oxidation of cytochrome c by reactive halogen species enhances its peroxidase activity. J Biol Chem. 2002;277:29781–91.CrossRefPubMed Chen YR, Deterding LJ, Sturgeon BE, Tomer KB, Mason RP. Protein oxidation of cytochrome c by reactive halogen species enhances its peroxidase activity. J Biol Chem. 2002;277:29781–91.CrossRefPubMed
32.
go back to reference Chen YR, Chen CL, Chen W, Zweier JL, Augusto O, Radi R, Mason RP. Formation of protein tyrosine ortho-semiquinone radical and nitrotyrosine from cytochrome c-derived tyrosyl radical. J Biol Chem. 2004;279:18054–62.CrossRefPubMed Chen YR, Chen CL, Chen W, Zweier JL, Augusto O, Radi R, Mason RP. Formation of protein tyrosine ortho-semiquinone radical and nitrotyrosine from cytochrome c-derived tyrosyl radical. J Biol Chem. 2004;279:18054–62.CrossRefPubMed
33.
go back to reference Hashimoto M, Takeda A, Hsu LJ, Takenouchi T, Masliah E. Role of cytochrome c as a stimulator of α-synuclein aggregation in Lewy body disease. J Biol Chem. 1999;274:28849–52.CrossRefPubMed Hashimoto M, Takeda A, Hsu LJ, Takenouchi T, Masliah E. Role of cytochrome c as a stimulator of α-synuclein aggregation in Lewy body disease. J Biol Chem. 1999;274:28849–52.CrossRefPubMed
35.
go back to reference Kahle PJ, Neumann M, Ozmen L, Muller V, Jacobsen H, Schindzielorz A, Okochi M, Leimer U, van Der Putten H, Probst A, et al. Subcellular localization of wild-type and Parkinson's disease-associated mutant alpha -synuclein in human and transgenic mouse brain. J Neurosci. 2000;20:6365–73.PubMed Kahle PJ, Neumann M, Ozmen L, Muller V, Jacobsen H, Schindzielorz A, Okochi M, Leimer U, van Der Putten H, Probst A, et al. Subcellular localization of wild-type and Parkinson's disease-associated mutant alpha -synuclein in human and transgenic mouse brain. J Neurosci. 2000;20:6365–73.PubMed
36.
go back to reference Emmanouilidou E, Minakaki G, Keramioti MV, Xylaki M, Balafas E, Chrysanthou-Piterou M, Kloukina I, Vekrellis K. GABA transmission via ATP-dependent K+ channels regulates α-synuclein secretion in mouse striatum. Brain. 2016;139:871–90.CrossRefPubMed Emmanouilidou E, Minakaki G, Keramioti MV, Xylaki M, Balafas E, Chrysanthou-Piterou M, Kloukina I, Vekrellis K. GABA transmission via ATP-dependent K+ channels regulates α-synuclein secretion in mouse striatum. Brain. 2016;139:871–90.CrossRefPubMed
37.
go back to reference Tanji K, Miki Y, Maruyama A, Mori F, Mimura J, Itoh K, Kamitani T, Wakabayashi K. The role of NUB1 in α-synuclein degradation in Lewy body disease model mice. Biochem Biophys Res Commun. 2016;470:635–42.CrossRefPubMed Tanji K, Miki Y, Maruyama A, Mori F, Mimura J, Itoh K, Kamitani T, Wakabayashi K. The role of NUB1 in α-synuclein degradation in Lewy body disease model mice. Biochem Biophys Res Commun. 2016;470:635–42.CrossRefPubMed
38.
go back to reference Brehm N, Rau K, Kurz A, Gispert S, Auburger G. Age-Related Changes of 14-3-3 Isoforms in Midbrain of A53T-SNCA Overexpressing Mice. J Parkinsons Dis. 2015;5:595–604.CrossRefPubMed Brehm N, Rau K, Kurz A, Gispert S, Auburger G. Age-Related Changes of 14-3-3 Isoforms in Midbrain of A53T-SNCA Overexpressing Mice. J Parkinsons Dis. 2015;5:595–604.CrossRefPubMed
40.
go back to reference Kumar A, Ahmad I, Shukla S, Singh BK, Patel DK, Pandey HP, Singh C. Effect of zinc and paraquat co-exposure on neurodegeneration: Modulation of oxidative stress and expression of metallothioneins, toxicant responsive and transporter genes in rats. Free Radical Res. 2010;44:950–65.CrossRef Kumar A, Ahmad I, Shukla S, Singh BK, Patel DK, Pandey HP, Singh C. Effect of zinc and paraquat co-exposure on neurodegeneration: Modulation of oxidative stress and expression of metallothioneins, toxicant responsive and transporter genes in rats. Free Radical Res. 2010;44:950–65.CrossRef
41.
go back to reference Srivastava G, Dixit A, Yadav S, Patel DK, Prakash O, Singh MP. Resveratrol potentiates cytochrome P450 2 d22-mediated neuroprotection in maneb- and paraquat-induced parkinsonism in the mouse. Free Radical Bio Med. 2012;52:1294–306.CrossRef Srivastava G, Dixit A, Yadav S, Patel DK, Prakash O, Singh MP. Resveratrol potentiates cytochrome P450 2 d22-mediated neuroprotection in maneb- and paraquat-induced parkinsonism in the mouse. Free Radical Bio Med. 2012;52:1294–306.CrossRef
42.
go back to reference Mason RP. Using anti-5,5-dimethyl-1-pyrroline N-oxide (anti-DMPO) to detect protein radicals in time and space with immuno-spin trapping. Free Radical Bio Med. 2004;36:1214–23.CrossRef Mason RP. Using anti-5,5-dimethyl-1-pyrroline N-oxide (anti-DMPO) to detect protein radicals in time and space with immuno-spin trapping. Free Radical Bio Med. 2004;36:1214–23.CrossRef
43.
go back to reference Kang J, Lemaire HG, Unterbeck A, Salbaum JM, Masters CL, Grzeschik KH, Multhaup G, Beyreuther K, Muller-Hill B. The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. Nature. 1987;325:733–6.CrossRefPubMed Kang J, Lemaire HG, Unterbeck A, Salbaum JM, Masters CL, Grzeschik KH, Multhaup G, Beyreuther K, Muller-Hill B. The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. Nature. 1987;325:733–6.CrossRefPubMed
44.
go back to reference Bhattacharjee S, Deterding LJ, Jiang J, Bonini MG, Tomer KB, Ramirez DC, Mason RP. Electron transfer between a tyrosyl radical and a cysteine residue in hemoproteins: spin trapping analysis. J Am Chem Soc. 2007;129:13493–501.CrossRefPubMed Bhattacharjee S, Deterding LJ, Jiang J, Bonini MG, Tomer KB, Ramirez DC, Mason RP. Electron transfer between a tyrosyl radical and a cysteine residue in hemoproteins: spin trapping analysis. J Am Chem Soc. 2007;129:13493–501.CrossRefPubMed
45.
go back to reference Chavarria C, Souza JM. Oxidation and nitration of α-synuclein and their implications in neurodegenerative diseases. Arch Biochem Biophys. 2013;533:25–32.CrossRefPubMed Chavarria C, Souza JM. Oxidation and nitration of α-synuclein and their implications in neurodegenerative diseases. Arch Biochem Biophys. 2013;533:25–32.CrossRefPubMed
46.
go back to reference Fauvet B, Mbefo MK, Fares MB, Desobry C, Michael S, Ardah MT, Tsika E, Coune P, Prudent M, Lion N, et al. α-Synuclein in central nervous system and from erythrocytes, mammalian cells, and Escherichia coli exists predominantly as disordered monomer. J Biol Chem. 2012;287:15345–64.CrossRefPubMedPubMedCentral Fauvet B, Mbefo MK, Fares MB, Desobry C, Michael S, Ardah MT, Tsika E, Coune P, Prudent M, Lion N, et al. α-Synuclein in central nervous system and from erythrocytes, mammalian cells, and Escherichia coli exists predominantly as disordered monomer. J Biol Chem. 2012;287:15345–64.CrossRefPubMedPubMedCentral
47.
go back to reference Souza JM, Giasson BI, Chen Q, Lee VM, Ischiropoulos H. Dityrosine cross-linking promotes formation of stable α-synuclein polymers. Implication of nitrative and oxidative stress in the pathogenesis of neurodegenerative synucleinopathies. J Biol Chem. 2000;275:18344–9.CrossRefPubMed Souza JM, Giasson BI, Chen Q, Lee VM, Ischiropoulos H. Dityrosine cross-linking promotes formation of stable α-synuclein polymers. Implication of nitrative and oxidative stress in the pathogenesis of neurodegenerative synucleinopathies. J Biol Chem. 2000;275:18344–9.CrossRefPubMed
48.
go back to reference Jakes R, Spillantini MG, Goedert M. Identification of two distinct synucleins from human brain. FEBS Lett. 1994;345:27–32.CrossRefPubMed Jakes R, Spillantini MG, Goedert M. Identification of two distinct synucleins from human brain. FEBS Lett. 1994;345:27–32.CrossRefPubMed
49.
go back to reference Kim NH, Jeong MS, Choi SY, Kang JH. Oxidative modification of cytochrome c by hydrogen peroxide. Mol Cells. 2006;22:220–7.PubMed Kim NH, Jeong MS, Choi SY, Kang JH. Oxidative modification of cytochrome c by hydrogen peroxide. Mol Cells. 2006;22:220–7.PubMed
50.
51.
go back to reference Musgrove RE, King AE, Dickson TC. α-Synuclein protects neurons from apoptosis downstream of free-radical production through modulation of the MAPK signalling pathway. Neurotox Res. 2013;23:358–69.CrossRefPubMed Musgrove RE, King AE, Dickson TC. α-Synuclein protects neurons from apoptosis downstream of free-radical production through modulation of the MAPK signalling pathway. Neurotox Res. 2013;23:358–69.CrossRefPubMed
53.
go back to reference Winslow AR, Chen CW, Corrochano S, Acevedo-Arozena A, Gordon DE, Peden AA, Lichtenberg M, Menzies FM, Ravikumar B, Imarisio S, et al. α-Synuclein impairs macroautophagy: implications for Parkinson's disease. J Cell Biol. 2010;190:1023–37.CrossRefPubMedPubMedCentral Winslow AR, Chen CW, Corrochano S, Acevedo-Arozena A, Gordon DE, Peden AA, Lichtenberg M, Menzies FM, Ravikumar B, Imarisio S, et al. α-Synuclein impairs macroautophagy: implications for Parkinson's disease. J Cell Biol. 2010;190:1023–37.CrossRefPubMedPubMedCentral
54.
go back to reference Kachroo A, Irizarry MC, Schwarzschild MA. Caffeine protects against combined paraquat and maneb-induced dopaminergic neuron degeneration. Exp Neurol. 2010;223:657–61.CrossRefPubMedPubMedCentral Kachroo A, Irizarry MC, Schwarzschild MA. Caffeine protects against combined paraquat and maneb-induced dopaminergic neuron degeneration. Exp Neurol. 2010;223:657–61.CrossRefPubMedPubMedCentral
55.
go back to reference Singhal NK, Srivastava G, Patel DK, Jain SK, Singh MP. Melatonin or silymarin reduces maneb- and paraquat-induced Parkinson’s disease phenotype in the mouse. J Pineal Res. 2011;50:97–109.PubMed Singhal NK, Srivastava G, Patel DK, Jain SK, Singh MP. Melatonin or silymarin reduces maneb- and paraquat-induced Parkinson’s disease phenotype in the mouse. J Pineal Res. 2011;50:97–109.PubMed
Metadata
Title
Role of cytochrome c in α-synuclein radical formation: implications of α-synuclein in neuronal death in Maneb- and paraquat-induced model of Parkinson’s disease
Authors
Ashutosh Kumar
Douglas Ganini
Ronald P. Mason
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Molecular Neurodegeneration / Issue 1/2016
Electronic ISSN: 1750-1326
DOI
https://doi.org/10.1186/s13024-016-0135-y

Other articles of this Issue 1/2016

Molecular Neurodegeneration 1/2016 Go to the issue