Skip to main content
Top
Published in: Neurotoxicity Research 4/2013

01-05-2013 | Original Article

α-Synuclein Protects Neurons from Apoptosis Downstream of Free-Radical Production Through Modulation of the MAPK Signalling Pathway

Authors: Ruth E. J. Musgrove, Anna E. King, Tracey C. Dickson

Published in: Neurotoxicity Research | Issue 4/2013

Login to get access

Abstract

α-Synuclein is a pre-synaptic chaperone and its accumulation contributes to differential cell loss in Parkinson’s disease. Cytoplasmic expression of α-synuclein can directly modulate apoptotic pathways and contribute to cell survival, whereas induced over-expression of the protein causes oxidative stress through mitochondrial and cytosolic free-radical production. This study aimed to clarify the contribution of endogenous α-synuclein to oxidative stress and its association with cell death. Primary cortical neurons were derived from α-synuclein knock-out (Snca-/-) and wild-type (C57BL/6; WT) mice and treated with in vitro models of oxidative-stress, complex I inhibition and excitotoxicity. Mitochondrial free radical production was determined in isolated mitochondria derived from each mouse strain. Snca-/- derived cortical cultures were more susceptible (P < 0.05) to oxidative-stress, but not excitotoxicity. This result was determined by significant increases in cell death (Propidium-Iodide staining) after 6 h treatment in Snca-/- (45 % ± 2.7 SEM), relative to WT (33 % ± 3.9 SEM) cultures. α-Synuclein also confers significant (P < 0.05) resistance to low-dose (5 nM) rotenone toxicity, with a twofold reduction in cell death in WT, compared with Snca-/- cortical neurons. The expression of α-synuclein had no effect on cortical glutathione levels, or the production of reactive oxygen intermediates in isolated mitochondria. These data indicate that endogenous levels of α-synuclein confer resistance to oxidative stress downstream of free radical production and scavenging. The current data suggest that α-synuclein prevents cytochrome c release and apoptosis through inhibition of the MAPK signalling pathway.
Literature
go back to reference Alves Da Costa C, Paitel E, Vincent B, Checler F (2002) α-synuclein lowers p53-dependent apoptotic response of neuronal cells. Abolishment by 6-hydroxydopamine and implication for Parkinson’s disease. J Biol Chem 277(52):50980–50984PubMedCrossRef Alves Da Costa C, Paitel E, Vincent B, Checler F (2002) α-synuclein lowers p53-dependent apoptotic response of neuronal cells. Abolishment by 6-hydroxydopamine and implication for Parkinson’s disease. J Biol Chem 277(52):50980–50984PubMedCrossRef
go back to reference Alves Da Costa C, Dunys J, Brau F, Wilk S, Cappai R, Checler F (2006) 6-Hydroxydopamine but not 1-methyl-4-phenylpyridinium abolishes α-synuclein anti-apoptotic phenotype by inhibiting its proteasomal degradation and by promoting its aggregation. J Biol Chem 281(14):9824–9831PubMedCrossRef Alves Da Costa C, Dunys J, Brau F, Wilk S, Cappai R, Checler F (2006) 6-Hydroxydopamine but not 1-methyl-4-phenylpyridinium abolishes α-synuclein anti-apoptotic phenotype by inhibiting its proteasomal degradation and by promoting its aggregation. J Biol Chem 281(14):9824–9831PubMedCrossRef
go back to reference Bayir H, Kapralov AA, Jiang J, Huang Z, Tyurina YY, Tyurin VA, Zhao Q, Belikova NA, Vlasova II, Maeda A, Zhu J, Na HM, Mastroberardino PG, Sparvero LJ, Amoscato AA, Chu CT, Greenamyre JT, Kagan VE (2009) Peroxidase mechanism of lipid-dependent cross-linking of synuclein with cytochrome C: protection against apoptosis versus delayed oxidative stress in Parkinson disease. J Biol Chem 284:15951–15969PubMedCrossRef Bayir H, Kapralov AA, Jiang J, Huang Z, Tyurina YY, Tyurin VA, Zhao Q, Belikova NA, Vlasova II, Maeda A, Zhu J, Na HM, Mastroberardino PG, Sparvero LJ, Amoscato AA, Chu CT, Greenamyre JT, Kagan VE (2009) Peroxidase mechanism of lipid-dependent cross-linking of synuclein with cytochrome C: protection against apoptosis versus delayed oxidative stress in Parkinson disease. J Biol Chem 284:15951–15969PubMedCrossRef
go back to reference Bekris LM, Mata IF, Zabetian CP (2010) The genetics of Parkinson disease. J Geriatr Psychiatry Neurol 23(4):228–242PubMedCrossRef Bekris LM, Mata IF, Zabetian CP (2010) The genetics of Parkinson disease. J Geriatr Psychiatry Neurol 23(4):228–242PubMedCrossRef
go back to reference Cain K (2003) Chemical-Induced Apoptosis: Formation of the Apaf-1 Apoptosome. Drug Met Rev 35(4):337–363CrossRef Cain K (2003) Chemical-Induced Apoptosis: Formation of the Apaf-1 Apoptosome. Drug Met Rev 35(4):337–363CrossRef
go back to reference Choi WS, Palmiter RD, Xia Z (2011) Loss of mitochondrial complex I activity potentiates dopamine neuron death induced by microtubule dysfunction in a Parkinson’s disease model. J Cell Biol 192(5):873–882PubMedCrossRef Choi WS, Palmiter RD, Xia Z (2011) Loss of mitochondrial complex I activity potentiates dopamine neuron death induced by microtubule dysfunction in a Parkinson’s disease model. J Cell Biol 192(5):873–882PubMedCrossRef
go back to reference Cooper AA, Gitler AD, Cashikar A, Haynes CM, Hill KJ, Bhullar B, Liu K, Xu K, Strathearn KE, Liu F, Cao S, Caldwell KA, Caldwell GA, Marsischky G, Kolodner RD, Labaer J, Rochet JC, Bonini NM, Lindquist S (2006) α-Synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science 313(5785):324–328PubMedCrossRef Cooper AA, Gitler AD, Cashikar A, Haynes CM, Hill KJ, Bhullar B, Liu K, Xu K, Strathearn KE, Liu F, Cao S, Caldwell KA, Caldwell GA, Marsischky G, Kolodner RD, Labaer J, Rochet JC, Bonini NM, Lindquist S (2006) α-Synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science 313(5785):324–328PubMedCrossRef
go back to reference da Costa CA, Ancolio K, Checler F (2000) Wild-type but not Parkinson’s disease-related ala-53-Thr mutant α-synuclein protects neuronal cells from apoptotic stimuli. J Biol Chem 275(31):24065–24069PubMedCrossRef da Costa CA, Ancolio K, Checler F (2000) Wild-type but not Parkinson’s disease-related ala-53-Thr mutant α-synuclein protects neuronal cells from apoptotic stimuli. J Biol Chem 275(31):24065–24069PubMedCrossRef
go back to reference Damiano M, Starkov A, Petri S, Kipiani K, Kiaei M, Mattiazzi M, Flint Beal M, Manfredi G (2006) Neural mitochondrial Ca2+ capacity impairment precedes the onset of motor symptoms in G93A Cu/Zn-superoxide dismutase mutant mice. J Neurochem 96(5):1349–1361PubMedCrossRef Damiano M, Starkov A, Petri S, Kipiani K, Kiaei M, Mattiazzi M, Flint Beal M, Manfredi G (2006) Neural mitochondrial Ca2+ capacity impairment precedes the onset of motor symptoms in G93A Cu/Zn-superoxide dismutase mutant mice. J Neurochem 96(5):1349–1361PubMedCrossRef
go back to reference Dauer W, Kholodilov N, Vila M, Trillat AC, Goodchild R, Larsen KE, Staal R, Tieu K, Schmitz Y, Yuan CA, Rocha M, Jackson-Lewis V, Hersch S, Sulzer D, Przedborski S, Burke R, Hen R (2002) Resistance of α-synuclein null mice to the Parkinsonian neurotoxin MPTP. Proc Natl Acad Sci USA 99(22):14524–14529PubMedCrossRef Dauer W, Kholodilov N, Vila M, Trillat AC, Goodchild R, Larsen KE, Staal R, Tieu K, Schmitz Y, Yuan CA, Rocha M, Jackson-Lewis V, Hersch S, Sulzer D, Przedborski S, Burke R, Hen R (2002) Resistance of α-synuclein null mice to the Parkinsonian neurotoxin MPTP. Proc Natl Acad Sci USA 99(22):14524–14529PubMedCrossRef
go back to reference Davey GP, Peuchen S, Clark JB (1998) Energy thresholds in brain mitochondria. Potential involvement in neurodegeneration. J Biol Chem 273(21):12753–12757PubMedCrossRef Davey GP, Peuchen S, Clark JB (1998) Energy thresholds in brain mitochondria. Potential involvement in neurodegeneration. J Biol Chem 273(21):12753–12757PubMedCrossRef
go back to reference Davies P, Wang X, Sarell CJ, Drewett A, Marken F, Viles JH, Brown DR (2010) The synucleins are a family of redox-active copper binding proteins. Biochemistry [Epub ahead of print] Davies P, Wang X, Sarell CJ, Drewett A, Marken F, Viles JH, Brown DR (2010) The synucleins are a family of redox-active copper binding proteins. Biochemistry [Epub ahead of print]
go back to reference Devi L, Raghavendran V, Prabhu BM, Avadhani NG, Anandatheerthavarada HK (2008) Mitochondrial import and accumulation of α-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J Biol Chem 283(14):9089–9100PubMedCrossRef Devi L, Raghavendran V, Prabhu BM, Avadhani NG, Anandatheerthavarada HK (2008) Mitochondrial import and accumulation of α-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J Biol Chem 283(14):9089–9100PubMedCrossRef
go back to reference Ebrahim A, Ko L, Yen S (2010) Reduced expression of peroxisome-proliferator activated receptor gamma coactivator-1α enhances α-synuclein oligomerization and down regulates AKT/GSK3beta signaling pathway in human neuronal cells that inducibly express α-synuclein. Neurosci Lett 473(2):120–125PubMedCrossRef Ebrahim A, Ko L, Yen S (2010) Reduced expression of peroxisome-proliferator activated receptor gamma coactivator-1α enhances α-synuclein oligomerization and down regulates AKT/GSK3beta signaling pathway in human neuronal cells that inducibly express α-synuclein. Neurosci Lett 473(2):120–125PubMedCrossRef
go back to reference Ellis CE, Murphy EJ, Mitchell DC, Golovko MY, Scaglia F, Barceló-Coblijn GC, Nussbaum RL (2005) Mitochondrial lipid abnormality and electron transport chain impairment in mice lacking α-synuclein. Mol Cell Biol 25(22):10190–10201PubMedCrossRef Ellis CE, Murphy EJ, Mitchell DC, Golovko MY, Scaglia F, Barceló-Coblijn GC, Nussbaum RL (2005) Mitochondrial lipid abnormality and electron transport chain impairment in mice lacking α-synuclein. Mol Cell Biol 25(22):10190–10201PubMedCrossRef
go back to reference Fountaine T, Venda L, Warrick N, Christian H, Brundin P, Channon K, Wade-Martins R (2008) The effect of α-synuclein knockdown on MPP+ toxicity in models of human neurons. Eur J Neurosci 28(12):2459–2473PubMedCrossRef Fountaine T, Venda L, Warrick N, Christian H, Brundin P, Channon K, Wade-Martins R (2008) The effect of α-synuclein knockdown on MPP+ toxicity in models of human neurons. Eur J Neurosci 28(12):2459–2473PubMedCrossRef
go back to reference Gloeckner C, Kinkl N, Schumacher A, Braun RJ, O’Neill E, Meitinger T, Kolch W, Prokisch H, Ueffing M (2006) The Parkinson disease causing LRRK2 mutation I2020T is associated with increased kinase activity. Hum Mol Genet 15(2):223–232PubMedCrossRef Gloeckner C, Kinkl N, Schumacher A, Braun RJ, O’Neill E, Meitinger T, Kolch W, Prokisch H, Ueffing M (2006) The Parkinson disease causing LRRK2 mutation I2020T is associated with increased kinase activity. Hum Mol Genet 15(2):223–232PubMedCrossRef
go back to reference Gloeckner C, Schumacher A, Boldt K, Ueffing M (2009) The Parkinson disease-associated protein kinase LRRK2 exhibits MAPKKK activity and phosphorylates MKK3/6 and MKK4/7, in vitro. J Neurochem 109(4):959–968PubMedCrossRef Gloeckner C, Schumacher A, Boldt K, Ueffing M (2009) The Parkinson disease-associated protein kinase LRRK2 exhibits MAPKKK activity and phosphorylates MKK3/6 and MKK4/7, in vitro. J Neurochem 109(4):959–968PubMedCrossRef
go back to reference Hashimoto M, Takeda A, Hsu LJ, Takenouchi T, Masliah E (1999) Role of cytochrome c as a stimulator of α-synuclein aggregation in Lewy body disease. J Biol Chem 274(41):28849–28852PubMedCrossRef Hashimoto M, Takeda A, Hsu LJ, Takenouchi T, Masliah E (1999) Role of cytochrome c as a stimulator of α-synuclein aggregation in Lewy body disease. J Biol Chem 274(41):28849–28852PubMedCrossRef
go back to reference Hashimoto M, Hsu LJ, Rockenstein E, Takenouchi T, Mallory M, Masliah E (2002) α-Synuclein protects against oxidative stress via inactivation of the c-Jun N-terminal kinase stress-signaling pathway in neuronal cells. J Biol Chem 277(13):11465–11472PubMedCrossRef Hashimoto M, Hsu LJ, Rockenstein E, Takenouchi T, Mallory M, Masliah E (2002) α-Synuclein protects against oxidative stress via inactivation of the c-Jun N-terminal kinase stress-signaling pathway in neuronal cells. J Biol Chem 277(13):11465–11472PubMedCrossRef
go back to reference Hashimoto M, Takenouchi T, Rockenstein E, Masliah E (2003) α-Synuclein up-regulates expression of caveolin-1 and down-regulates extracellular signal-regulated kinase activity in B103 neuroblastoma cells: role in the pathogenesis of Parkinson’s disease. J Neurochem 85(6):1468–1479PubMedCrossRef Hashimoto M, Takenouchi T, Rockenstein E, Masliah E (2003) α-Synuclein up-regulates expression of caveolin-1 and down-regulates extracellular signal-regulated kinase activity in B103 neuroblastoma cells: role in the pathogenesis of Parkinson’s disease. J Neurochem 85(6):1468–1479PubMedCrossRef
go back to reference Hsu LJ, Sagara Y, Arroyo A, Rockenstein E, Sisk A, Mallory M, Wong J, Takenouchi T, Hashimoto M, Masliah E (2000) α-Synuclein promotes mitochondrial deficit and oxidative stress. Am J Pathol 157(2):401–410PubMedCrossRef Hsu LJ, Sagara Y, Arroyo A, Rockenstein E, Sisk A, Mallory M, Wong J, Takenouchi T, Hashimoto M, Masliah E (2000) α-Synuclein promotes mitochondrial deficit and oxidative stress. Am J Pathol 157(2):401–410PubMedCrossRef
go back to reference Ito G, Okai T, Fujino G, Takeda K, Ichijo H, Katada T, Iwatsubo T (2007) GTP binding is essential to the protein kinase activity of LRRK2, a causative gene product for familial Parkinson’s disease. Biochemistry 46(5):1380–1388PubMedCrossRef Ito G, Okai T, Fujino G, Takeda K, Ichijo H, Katada T, Iwatsubo T (2007) GTP binding is essential to the protein kinase activity of LRRK2, a causative gene product for familial Parkinson’s disease. Biochemistry 46(5):1380–1388PubMedCrossRef
go back to reference Iwata A, Maruyama M, Kanazawa I, Nukina N (2001) α-Synuclein affects the MAPK pathway and accelerates cell death. J Biol Chem 276(48):45320–45329PubMedCrossRef Iwata A, Maruyama M, Kanazawa I, Nukina N (2001) α-Synuclein affects the MAPK pathway and accelerates cell death. J Biol Chem 276(48):45320–45329PubMedCrossRef
go back to reference Kaul S, Anantharam V, Kanthasamy A, Kanthasamy AG (2005) Wild-type α-synuclein interacts with pro-apoptotic proteins PKCdelta and BAD to protect dopaminergic neuronal cells against MPP+-induced apoptotic cell death. Brain Res Mol Brain Res 139(1):137–152PubMedCrossRef Kaul S, Anantharam V, Kanthasamy A, Kanthasamy AG (2005) Wild-type α-synuclein interacts with pro-apoptotic proteins PKCdelta and BAD to protect dopaminergic neuronal cells against MPP+-induced apoptotic cell death. Brain Res Mol Brain Res 139(1):137–152PubMedCrossRef
go back to reference Kim C, Lee S (2008) Controlling the mass action of α-synuclein in Parkinson’s disease. J Neurochem 107(2):303–316PubMedCrossRef Kim C, Lee S (2008) Controlling the mass action of α-synuclein in Parkinson’s disease. J Neurochem 107(2):303–316PubMedCrossRef
go back to reference Klivenyi P, Siwek D, Gardian G, Yang L, Starkov A, Cleren C, Ferrante RJ, Kowall NW, Abeliovich A, Beal MF (2006) Mice lacking α-synuclein are resistant to mitochondrial toxins. Neurobiol Dis 21(3):541–548PubMedCrossRef Klivenyi P, Siwek D, Gardian G, Yang L, Starkov A, Cleren C, Ferrante RJ, Kowall NW, Abeliovich A, Beal MF (2006) Mice lacking α-synuclein are resistant to mitochondrial toxins. Neurobiol Dis 21(3):541–548PubMedCrossRef
go back to reference Leist M, Nicotera P (1998) Apoptosis, excitotoxicity, and neuropathology. Exp Cell Res 239(2):183–201PubMedCrossRef Leist M, Nicotera P (1998) Apoptosis, excitotoxicity, and neuropathology. Exp Cell Res 239(2):183–201PubMedCrossRef
go back to reference Manning-Bog AB, McCormack AL, Li J, Uversky VN, Fink AL, Di Monte DA (2002) The herbicide paraquat causes up-regulation and aggregation of α-synuclein in mice: paraquat and α-synuclein. J Biol Chem 277(3):1641–1644PubMedCrossRef Manning-Bog AB, McCormack AL, Li J, Uversky VN, Fink AL, Di Monte DA (2002) The herbicide paraquat causes up-regulation and aggregation of α-synuclein in mice: paraquat and α-synuclein. J Biol Chem 277(3):1641–1644PubMedCrossRef
go back to reference Manning-Bog AB, McCormack AL, Purisai MG, Bolin LM, Di Monte DA (2003) α-synuclein overexpression protects against paraquat-induced neurodegeneration. J Neurosci 23(8):3095–3099PubMed Manning-Bog AB, McCormack AL, Purisai MG, Bolin LM, Di Monte DA (2003) α-synuclein overexpression protects against paraquat-induced neurodegeneration. J Neurosci 23(8):3095–3099PubMed
go back to reference Monti B, Polazzi E, Batti L, Crochemore C, Virgili M, Contestabile A (2007) α-synuclein protects cerebellar granule neurons against 6-hydroxydopamine-induced death. J Neurochem 103(2):518–530PubMedCrossRef Monti B, Polazzi E, Batti L, Crochemore C, Virgili M, Contestabile A (2007) α-synuclein protects cerebellar granule neurons against 6-hydroxydopamine-induced death. J Neurochem 103(2):518–530PubMedCrossRef
go back to reference Musgrove RE, King AE, Dickson TC (2010) Neuroprotective upregulation of endogenous α-synuclein precedes ubiquitination in cultured dopaminergic neurons. Neurotox Res 19(4):592–602PubMedCrossRef Musgrove RE, King AE, Dickson TC (2010) Neuroprotective upregulation of endogenous α-synuclein precedes ubiquitination in cultured dopaminergic neurons. Neurotox Res 19(4):592–602PubMedCrossRef
go back to reference Navarro A, Boveris A, Bandez MJ, Sanchez-Pino MJ, Gomez C, Muntane G, Ferrer I (2009) Human brain cortex: mitochondrial oxidative damage and adaptive response in Parkinson disease and in dementia with Lewy bodies. Free Radic Biol Med 46(12):1574–1580PubMedCrossRef Navarro A, Boveris A, Bandez MJ, Sanchez-Pino MJ, Gomez C, Muntane G, Ferrer I (2009) Human brain cortex: mitochondrial oxidative damage and adaptive response in Parkinson disease and in dementia with Lewy bodies. Free Radic Biol Med 46(12):1574–1580PubMedCrossRef
go back to reference Neame SJ, Whitfield J, Ham J (2004) Immunocytochemical techniques for studying apoptosis in primary sympathetic neurons. Methods Mol Biol 282:169–177PubMed Neame SJ, Whitfield J, Ham J (2004) Immunocytochemical techniques for studying apoptosis in primary sympathetic neurons. Methods Mol Biol 282:169–177PubMed
go back to reference Nemani VM, Lu W, Berge V, Nakamura K, Onoa B, Lee MK, Chaudhry FA, Nicoll RA, Edwards RH (2010) Increased expression of α-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis. Neuron 65(1):66–79PubMedCrossRef Nemani VM, Lu W, Berge V, Nakamura K, Onoa B, Lee MK, Chaudhry FA, Nicoll RA, Edwards RH (2010) Increased expression of α-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis. Neuron 65(1):66–79PubMedCrossRef
go back to reference Onyango IG (2008) Mitochondrial dysfunction and oxidative stress in Parkinson’s disease. Neurochem Res 33(3):589–597PubMedCrossRef Onyango IG (2008) Mitochondrial dysfunction and oxidative stress in Parkinson’s disease. Neurochem Res 33(3):589–597PubMedCrossRef
go back to reference Opazo P, Watabe AM, Grant SG, O’Dell TJ (2003) Phosphatidylinositol 3-kinase regulates the induction of long-term potentiation through extracellular signal-related kinase-independent mechanisms. J Neurosci 23(9):3679–3688PubMed Opazo P, Watabe AM, Grant SG, O’Dell TJ (2003) Phosphatidylinositol 3-kinase regulates the induction of long-term potentiation through extracellular signal-related kinase-independent mechanisms. J Neurosci 23(9):3679–3688PubMed
go back to reference Ostrerova N, Petrucelli L, Farrer M, Mehta N, Choi P, Hardy J, Wolozin B (1999) α-Synuclein shares physical and functional homology with 14–3-3 proteins. J Neurosci 19(14):5782–5791PubMed Ostrerova N, Petrucelli L, Farrer M, Mehta N, Choi P, Hardy J, Wolozin B (1999) α-Synuclein shares physical and functional homology with 14–3-3 proteins. J Neurosci 19(14):5782–5791PubMed
go back to reference Parihar MS, Parihar A, Fujita M, Hashimoto M, Ghafourifar P (2008) Mitochondrial association of α-synuclein causes oxidative stress. Cell Mol Life Sci 65(7–8):1272–1284PubMedCrossRef Parihar MS, Parihar A, Fujita M, Hashimoto M, Ghafourifar P (2008) Mitochondrial association of α-synuclein causes oxidative stress. Cell Mol Life Sci 65(7–8):1272–1284PubMedCrossRef
go back to reference Parker WD, Parks JK, Swerdlow RH (2008) Complex I deficiency in Parkinson’s disease frontal cortex. Brain Res 1189:215–218PubMedCrossRef Parker WD, Parks JK, Swerdlow RH (2008) Complex I deficiency in Parkinson’s disease frontal cortex. Brain Res 1189:215–218PubMedCrossRef
go back to reference Quilty MC, King AE, Gai WP, Pountney DL, West AK, Vickers JC, Dickson TC (2006) α-synuclein is upregulated in neurones in response to chronic oxidative stress and is associated with neuroprotection. Exp Neurol 199(2):249–256PubMedCrossRef Quilty MC, King AE, Gai WP, Pountney DL, West AK, Vickers JC, Dickson TC (2006) α-synuclein is upregulated in neurones in response to chronic oxidative stress and is associated with neuroprotection. Exp Neurol 199(2):249–256PubMedCrossRef
go back to reference Rappley I, Myers D, Milne S, Ivanova P, Lavoie M, Brown HA, Selkoe D (2009) Lipidomic profiling in mouse brain reveals differences between ages and genders, with smaller changes associated with α-synuclein genotype. J Neurochem 111(1):15–25PubMedCrossRef Rappley I, Myers D, Milne S, Ivanova P, Lavoie M, Brown HA, Selkoe D (2009) Lipidomic profiling in mouse brain reveals differences between ages and genders, with smaller changes associated with α-synuclein genotype. J Neurochem 111(1):15–25PubMedCrossRef
go back to reference Rogers A, Schmuck G, Scholz G, Williams DC (2004) c-fos mRNA expression in rat cortical neurons during glutamate-mediated excitotoxicity. Toxicol Sci 82(2):562–569PubMedCrossRef Rogers A, Schmuck G, Scholz G, Williams DC (2004) c-fos mRNA expression in rat cortical neurons during glutamate-mediated excitotoxicity. Toxicol Sci 82(2):562–569PubMedCrossRef
go back to reference Saha AR, Ninkina NN, Hanger DP, Anderton BH, Davies AM, Buchman VL (2000) Induction of neuronal death by α-synuclein. Eur J Neurosci 12(8):3073–3077PubMedCrossRef Saha AR, Ninkina NN, Hanger DP, Anderton BH, Davies AM, Buchman VL (2000) Induction of neuronal death by α-synuclein. Eur J Neurosci 12(8):3073–3077PubMedCrossRef
go back to reference Sasaki M, Gonzalez-Zulueta M, Huang H, Herring WJ, Ahn S, Ginty DD, Dawson VL, Dawson TM (2000) Dynamic regulation of neuronal NO synthase transcription by calcium influx through a CREB family transcription factor-dependent mechanism. Proc Natl Acad Sci USA 97(15):8617–8622 Sasaki M, Gonzalez-Zulueta M, Huang H, Herring WJ, Ahn S, Ginty DD, Dawson VL, Dawson TM (2000) Dynamic regulation of neuronal NO synthase transcription by calcium influx through a CREB family transcription factor-dependent mechanism. Proc Natl Acad Sci USA 97(15):8617–8622
go back to reference Seo JH, Rah JC, Choi SH, Shin JK, Min K, Kim HS, Park CH, Kim S, Kim EM, Lee SH, Lee S, Suh SW, Suh YH (2002) α-Synuclein regulates neuronal survival via Bcl-2 family expression and PI3/Akt kinase pathway. FASEB J 16(13):1826–1828PubMed Seo JH, Rah JC, Choi SH, Shin JK, Min K, Kim HS, Park CH, Kim S, Kim EM, Lee SH, Lee S, Suh SW, Suh YH (2002) α-Synuclein regulates neuronal survival via Bcl-2 family expression and PI3/Akt kinase pathway. FASEB J 16(13):1826–1828PubMed
go back to reference Seo D, Lopez-Meraz M, Allen S, Wasterlain C, Niquet J (2009) Contribution of a mitochondrial pathway to excitotoxic neuronal necrosis. J Neurosci Res 87(9):2087–2094PubMedCrossRef Seo D, Lopez-Meraz M, Allen S, Wasterlain C, Niquet J (2009) Contribution of a mitochondrial pathway to excitotoxic neuronal necrosis. J Neurosci Res 87(9):2087–2094PubMedCrossRef
go back to reference Sherer TB, Betarbet R, Testa CM, Seo BB, Richardson JR, Kim JH, Miller GW, Yagi T, Matsuno-Yagi A, Greenamyre JT (2003) Mechanism of toxicity in rotenone models of Parkinson’s disease. J Neurosci 23(34):10756PubMed Sherer TB, Betarbet R, Testa CM, Seo BB, Richardson JR, Kim JH, Miller GW, Yagi T, Matsuno-Yagi A, Greenamyre JT (2003) Mechanism of toxicity in rotenone models of Parkinson’s disease. J Neurosci 23(34):10756PubMed
go back to reference Vila M, Vukosavic S, Jackson-Lewis V, Neystat M, Jakowec M, Przedborski S (2000) α-synuclein up-regulation in substantia nigra dopaminergic neurons following administration of the parkinsonian toxin MPTP. J Neurochem 74(2):721–729PubMedCrossRef Vila M, Vukosavic S, Jackson-Lewis V, Neystat M, Jakowec M, Przedborski S (2000) α-synuclein up-regulation in substantia nigra dopaminergic neurons following administration of the parkinsonian toxin MPTP. J Neurochem 74(2):721–729PubMedCrossRef
go back to reference Whiteman M, Dogra Y, Winyard P, Armstrong J (2009) Detection and measurement of reactive oxygen intermediates in mitochondria and cells. Methods Mol Biol 476:28–49CrossRef Whiteman M, Dogra Y, Winyard P, Armstrong J (2009) Detection and measurement of reactive oxygen intermediates in mitochondria and cells. Methods Mol Biol 476:28–49CrossRef
go back to reference Yuan Y, Sun J, Zhao M, Hu J, Wang X, Du G, Chen NH (2010) Overexpression of α-Synuclein Down-Regulates BDNF Expression. Cell Mol Neurobiol 30(6):939–946PubMedCrossRef Yuan Y, Sun J, Zhao M, Hu J, Wang X, Du G, Chen NH (2010) Overexpression of α-Synuclein Down-Regulates BDNF Expression. Cell Mol Neurobiol 30(6):939–946PubMedCrossRef
Metadata
Title
α-Synuclein Protects Neurons from Apoptosis Downstream of Free-Radical Production Through Modulation of the MAPK Signalling Pathway
Authors
Ruth E. J. Musgrove
Anna E. King
Tracey C. Dickson
Publication date
01-05-2013
Publisher
Springer-Verlag
Published in
Neurotoxicity Research / Issue 4/2013
Print ISSN: 1029-8428
Electronic ISSN: 1476-3524
DOI
https://doi.org/10.1007/s12640-012-9352-5

Other articles of this Issue 4/2013

Neurotoxicity Research 4/2013 Go to the issue