Skip to main content
Log in

Formation and Implications of Alpha-Synuclein Radical in Maneb- and Paraquat-Induced Models of Parkinson’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a debilitating, progressive, neurodegenerative disorder characterized by progressive loss of dopaminergic neurons and motor deficits. Alpha-synuclein-containing aggregates represent a feature of a variety of neurodegenerative disorders, including PD; however, the mechanism that initiates and promotes intraneuronal alpha-synuclein aggregation remains unknown. We hypothesized protein radical formation as an initiating mechanism for alpha-synuclein aggregation. Therefore, we used the highly sensitive immuno-spin trapping technique to investigate protein radical formation as a possible mechanism of alpha-synuclein aggregation as well as to investigate the source of protein radical formation in the midbrains of Maneb- and paraquat-coexposed mice. Coexposure to Maneb and paraquat for 6 weeks resulted in active microgliosis, NADPH oxidase activation, and inducible nitric oxide synthase (iNOS) induction, which culminated in protein radical formation in the midbrains of mice. Results obtained with immuno-spin trapping and immunoprecipitation experiments confirmed formation of alpha-synuclein radicals in dopaminergic neurons of exposed mice. Free radical formation requires NADPH oxidase and iNOS, as indicated by decreased protein radical formation in knockout mice (P47phox−/− and iNOS−/−) and in mice treated with inhibitors such as FeTPPS (a peroxynitrite decomposition catalyst), 1400 W (an iNOS inhibitor), or apocynin (a NADPH oxidase inhibitor). Concurrence of protein radical formation with dopaminergic neuronal death indicated a link between protein radicals and disease progression. Taken together, these results show for the first time the formation and detection of the alpha-synuclein radical and suggest that NADPH oxidase and iNOS play roles in peroxynitrite-mediated protein radical formation and subsequent neuronal death in the midbrains of Maneb- and paraquat-coexposed mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1.

Similar content being viewed by others

Abbreviations

DMPO:

5,5-Dimethyl-1-pyrroline N-oxide

MP:

Maneb and paraquat

O2 ·− :

Superoxide

TH:

Tyrosine hydroxylase

NO· :

Nitric oxide

ONOO :

Peroxynitrite

References

  1. Levesque S, Wilson B, Gregoria V, Thorpe LB, Dallas S, Polikov VS, Hong JS, Block ML (2010) Reactive microgliosis: extracellular micro-calpain and microglia-mediated dopaminergic neurotoxicity. Brain 133:808–821

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kumar A, Chen SH, Kadiiska MB, Hong JS, Zielonka J, Kalyanaraman B, Mason RP (2014) Inducible nitric oxide synthase is key to peroxynitrite-mediated, LPS-induced protein radical formation in murine microglial BV2 cells. Free Radic Biol Med 73:51–59

    Article  CAS  PubMed  Google Scholar 

  3. Ryan SD, Dolatabadi N, Chan SF, Zhang X, Akhtar MW, Parker J, Soldner F, Sunico CR et al (2013) Isogenic human iPSC Parkinson's model shows nitrosative stress-induced dysfunction in MEF2-PGC1alpha transcription. Cell 155:1351–1364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Singh AK, Tiwari MN, Upadhyay G, Patel DK, Singh D, Prakash O, Singh MP (2012) Long term exposure to cypermethrin induces nigrostriatal dopaminergic neurodegeneration in adult rats: postnatal exposure enhances the susceptibility during adulthood. Neurobiol Aging 33:404–415

    Article  CAS  PubMed  Google Scholar 

  5. Thiruchelvam M, Richfield EK, Baggs RB, Tank AW, Cory-Slechta DA (2000) The nigrostriatal dopaminergic system as a preferential target of repeated exposures to combined paraquat and maneb: implications for Parkinson's disease. J Neurosci 20:9207–9214

    CAS  PubMed  Google Scholar 

  6. Lang AE, Lozano AM (1998) Parkinson's disease. First of two parts. N Engl J Med 339:1044–1053

    Article  CAS  PubMed  Google Scholar 

  7. Lang AE, Lozano AM (1998) Parkinson's disease. Second of two parts. N Engl J Med 339:1130–1143

    Article  CAS  PubMed  Google Scholar 

  8. Kontakos N, Stokes J (1999) Monograph series on aging-related diseases: XII. Parkinson's disease-recent developments and new directions. Chronic Dis Can 20:58–76

    CAS  PubMed  Google Scholar 

  9. Priyadarshi A, Khuder SA, Schaub EA, Priyadarshi SS (2001) Environmental risk factors and Parkinson's disease: a metaanalysis. Environ Res 86:122–127

    Article  CAS  PubMed  Google Scholar 

  10. Costello S, Cockburn M, Bronstein J, Zhang X, Ritz B (2009) Parkinson's disease and residential exposure to maneb and paraquat from agricultural applications in the central valley of California. Am J Epidemiol 169:919–926

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wang A, Costello S, Cockburn M, Zhang X, Bronstein J, Ritz B (2011) Parkinson's disease risk from ambient exposure to pesticides. Eur J Epidemiol 26:547–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kachroo A, Irizarry MC, Schwarzschild MA (2010) Caffeine protects against combined paraquat and maneb-induced dopaminergic neuron degeneration. Exp Neurol 223:657–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kumar A, Singh BK, Ahmad I, Shukla S, Patel DK, Srivastava G, Kumar V, Pandey HP et al (2012) Involvement of NADPH oxidase and glutathione in zinc-induced dopaminergic neurodegeneration in rats: similarity with paraquat neurotoxicity. Brain Res 1438:48–64

    Article  CAS  PubMed  Google Scholar 

  14. Cicchetti F, Drouin-Ouellet J, Gross RE (2009) Environmental toxins and Parkinson's disease: what have we learned from pesticide-induced animal models? Trends Pharmacol Sci 30:475–483

    Article  CAS  PubMed  Google Scholar 

  15. Mattson MP, Magnus T (2006) Ageing and neuronal vulnerability. Nat Rev Neurosci 7:278–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Goldberg AL (2003) Protein degradation and protection against misfolded or damaged proteins. Nature 426:895–899

    Article  CAS  PubMed  Google Scholar 

  17. Ciechanover A (2005) Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat Rev Mol Cell Biol 6:79–87

    Article  CAS  PubMed  Google Scholar 

  18. Beal MF (1998) Excitotoxicity and nitric oxide in Parkinson's disease pathogenesis. Ann Neurol 44(3 Suppl 1):S110–S114

    Article  CAS  PubMed  Google Scholar 

  19. Floor E, Wetzel MG (1998) Increased protein oxidation in human substantia nigra pars compacta in comparison with basal ganglia and prefrontal cortex measured with an improved dinitrophenylhydrazine assay. J Neurochem 70:268–275

    Article  CAS  PubMed  Google Scholar 

  20. Forno LS (1969) Concentric hyalin intraneuronal inclusions of Lewy type in the brains of elderly persons (50 incidental cases): relationship to parkinsonism. J Am Geriatr Soc 17:557–575

    Article  CAS  PubMed  Google Scholar 

  21. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 388:839–840

    Article  CAS  PubMed  Google Scholar 

  22. Daturpalli S, Waudby CA, Meehan S, Jackson SE (2013) Hsp90 inhibits alpha-synuclein aggregation by interacting with soluble oligomers. J Mol Biol 425:4614–4628

    Article  CAS  PubMed  Google Scholar 

  23. Drolet RE, Behrouz B, Lookingland KJ, Goudreau JL (2004) Mice lacking alpha-synuclein have an attenuated loss of striatal dopamine following prolonged chronic MPTP administration. Neurotoxicology 25:761–769

    Article  CAS  PubMed  Google Scholar 

  24. Lashuel HA, Overk CR, Oueslati A, Masliah E (2013) The many faces of alpha-synuclein: from structure and toxicity to therapeutic target. Nat Rev Neurosci 14:38–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Donmez G, Arun A, Chung CY, McLean PJ, Lindquist S, Guarente L (2012) SIRT1 protects against alpha-synuclein aggregation by activating molecular chaperones. J Neurosci 32:124–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Donmez G, Outeiro TF (2013) SIRT1 and SIRT2: emerging targets in neurodegeneration. EMBO Mol Med 5:344–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gundersen V (2010) Protein aggregation in Parkinson's disease. Acta Neurol Scand Suppl 190:82–87

    Article  Google Scholar 

  28. Franco MC, Ye Y, Refakis CA, Feldman JL, Stokes AL, Basso M, Fernandez M, de Mera RM et al (2013) Nitration of Hsp90 induces cell death. Proc Natl Acad Sci U S A 110:E1102–E1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Radi R (2013) Protein tyrosine nitration: biochemical mechanisms and structural basis of functional effects. Acc Chem Res 46:550–559

    Article  CAS  PubMed  Google Scholar 

  30. Camilleri A, Vassallo N (2014) The Centrality of Mitochondria in the Pathogenesis and Treatment of Parkinson's Disease. CNS Neurosci Ther 20:591–602

    Article  CAS  PubMed  Google Scholar 

  31. Kumar A, Ganini D, Deterding LJ, Ehrenshaft M, Chatterjee S, Mason RP (2013) Immuno-spin trapping of heme-induced protein radicals: Implications for heme oxygenase-1 induction and heme degradation. Free Radic Biol Med 61C:265–272

    Article  Google Scholar 

  32. Mason RP (2004) Using anti-5,5-dimethyl-1-pyrroline N-oxide (anti-DMPO) to detect protein radicals in time and space with immuno-spin trapping. Free Radic Biol Med 36:1214–1223

    Article  CAS  PubMed  Google Scholar 

  33. Beal MF (2001) Experimental models of Parkinson's disease. Nat Rev Neurosci 2:325–334

    Article  CAS  PubMed  Google Scholar 

  34. Fu RH, Liu SP, Huang SJ, Chen HJ, Chen PR, Lin YH, Ho YC, Chang WL et al (2013) Aberrant alternative splicing events in Parkinson's disease. Cell Transplant 22:653–661

    Article  PubMed  Google Scholar 

  35. Oueslati A, Schneider BL, Aebischer P, Lashuel HA (2013) Polo-like kinase 2 regulates selective autophagic alpha-synuclein clearance and suppresses its toxicity in vivo. Proc Natl Acad Sci U S A 110:E3945–E3954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu KJ, Jiang JJ, Ji LL, Shi XL, Schwartz HM (1996) An HPLC and EPR investigation on the stability of DMPO and DMPO spin adducts in vivo. Res Chem Intermed 22:499–509

    Article  CAS  Google Scholar 

  37. Turner MJ 3rd, Rosen GM (1986) Spin trapping of superoxide and hydroxyl radicals with substituted pyrroline 1-oxides. J Med Chem 29:2439–2444

    Article  CAS  PubMed  Google Scholar 

  38. Xie Z, Wei M, Morgan TE, Fabrizio P, Han D, Finch CE, Longo VD (2002) Peroxynitrite mediates neurotoxicity of amyloid beta-peptide1-42- and lipopolysaccharide-activated microglia. J Neurosci 22:3484–3492

    CAS  PubMed  Google Scholar 

  39. MacMillan-Crow LA, Crow JP, Thompson JA (1998) Peroxynitrite-mediated inactivation of manganese superoxide dismutase involves nitration and oxidation of critical tyrosine residues. Biochemistry 37:1613–1622

    Article  CAS  PubMed  Google Scholar 

  40. Alvarez B, Demicheli V, Duran R, Trujillo M, Cervenansky C, Freeman BA, Radi R (2004) Inactivation of human Cu, Zn superoxide dismutase by peroxynitrite and formation of histidinyl radical. Free Radic Biol Med 37:813–822

    Article  CAS  PubMed  Google Scholar 

  41. Cristovao AC, Guhathakurta S, Bok E, Je G, Yoo SD, Choi DH, Kim YS (2012) NADPH oxidase 1 mediates alpha-synucleinopathy in Parkinson's disease. J Neurosci 32:14465–14477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fahn S, Cohen G (1992) The oxidant stress hypothesis in Parkinson's disease: evidence supporting it. Ann Neurol 32:804–812

    Article  CAS  PubMed  Google Scholar 

  43. Ara J, Przedborski S, Naini AB, Jackson-Lewis V, Trifiletti RR, Horwitz J, Ischiropoulos H (1998) Inactivation of tyrosine hydroxylase by nitration following exposure to peroxynitrite and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Proc Natl Acad Sci U S A 95:7659–7663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Singhal NK, Srivastava G, Patel DK, Jain SK, Singh MP (2011) Melatonin or silymarin reduces maneb- and paraquat-induced Parkinson's disease phenotype in the mouse. J Pineal Res 50:97–109

    CAS  PubMed  Google Scholar 

  45. Imam SZ, Islam F, Itzhak Y, Slikker W Jr, Ali SF (2000) Prevention of dopaminergic neurotoxicity by targeting nitric oxide and peroxynitrite: implications for the prevention of methamphetamine-induced neurotoxic damage. Ann N Y Acad Sci 914:157–171

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Dr. Ann Motten and Mary Mason for their valuable help in the preparation of the manuscript. We are very thankful to Dr. Thomas van‘t Erve and Dr. Birandra Sinha for reviewing the manuscript. This work has been supported by the Intramural Research Program of the National Institutes of Health and the National Institute of Environmental Health Sciences.

Compliance with Ethical Standards

Authors declare compliance with ethical standards.

Conflict of Interest

The authors declare no conflict of interest.

Human and Animal Rights and Informed Consent

No human samples were used. Experiments with animals were in strict accordance with the NIH Guide for the Care and Use of Laboratory Animals, and the animal study proposal was approved by the institutional review board.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashutosh Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Leinisch, F., Kadiiska, M.B. et al. Formation and Implications of Alpha-Synuclein Radical in Maneb- and Paraquat-Induced Models of Parkinson’s Disease. Mol Neurobiol 53, 2983–2994 (2016). https://doi.org/10.1007/s12035-015-9179-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9179-1

Keywords

Navigation