Skip to main content
Top
Published in: European Journal of Epidemiology 7/2011

01-07-2011 | NEURO-EPIDEMIOLOGY

Parkinson’s disease risk from ambient exposure to pesticides

Authors: Anthony Wang, Sadie Costello, Myles Cockburn, Xinbo Zhang, Jeff Bronstein, Beate Ritz

Published in: European Journal of Epidemiology | Issue 7/2011

Login to get access

Abstract

Due to the heavy and expanding agricultural use of neurotoxic pesticides suspected to affect dopaminergic neurons, it is imperative to closely examine the role of pesticides in the development of Parkinson’s disease (PD). We focus our investigation on pesticide use in California’s heavily agricultural central valley by utilizing a unique pesticide use reporting system. From 2001 to 2007, we enrolled 362 incident PD cases and 341 controls living in the Central Valley of California. Employing our geographic information system model, we estimated ambient exposures to the pesticides ziram, maneb, and paraquat at work places and residences from 1974 to 1999. At workplaces, combined exposure to ziram, maneb, and paraquat increased risk of PD three-fold (OR: 3.09; 95% CI: 1.69, 5.64) and combined exposure to ziram and paraquat, excluding maneb exposure, was associated with a 80% increase in risk (OR:1.82; 95% CI: 1.03, 3.21). Risk estimates for ambient workplace exposure were greater than for exposures at residences and were especially high for younger onset PD patients and when exposed in both locations. Our study is the first to implicate ziram in PD etiology. Combined ambient exposure to ziram and paraquat as well as combined ambient exposure to maneb and paraquat at both workplaces and residences increased PD risk substantially. Those exposed to ziram, maneb, and paraquat together experienced the greatest increase in PD risk. Our results suggest that pesticides affecting different mechanisms that contribute to dopaminergic neuron death may act together to increase the risk of PD considerably.
Literature
1.
go back to reference Twelves D, Perkins KS, Counsell C. Systematic review of incidence studies of Parkinson’s disease. Mov Disord. 2003;18(1):19–31.PubMedCrossRef Twelves D, Perkins KS, Counsell C. Systematic review of incidence studies of Parkinson’s disease. Mov Disord. 2003;18(1):19–31.PubMedCrossRef
2.
go back to reference Shimizu K, Matsubara K, Ohtaki K, Fujimaru S, Saito O, Shiono H. Paraquat induces long-lasting dopamine overflow through the excitotoxic pathway in the striatum of freely moving rats. Brain Res. 2003;976(2):243–52.PubMedCrossRef Shimizu K, Matsubara K, Ohtaki K, Fujimaru S, Saito O, Shiono H. Paraquat induces long-lasting dopamine overflow through the excitotoxic pathway in the striatum of freely moving rats. Brain Res. 2003;976(2):243–52.PubMedCrossRef
3.
go back to reference Purisai MG, McCormack AL, Cumine S, Li J, Isla MZ, Di Monte DA. Microglial activation as a priming event leading to paraquat-induced dopaminergic cell degeneration. Neurobiol Dis. 2007;25(2):392–400.PubMedCrossRef Purisai MG, McCormack AL, Cumine S, Li J, Isla MZ, Di Monte DA. Microglial activation as a priming event leading to paraquat-induced dopaminergic cell degeneration. Neurobiol Dis. 2007;25(2):392–400.PubMedCrossRef
4.
go back to reference McCormack AL, Thiruchelvam M, Manning-Bog AB, et al. Environmental risk factors and Parkinson’s disease: selective degeneration of nigral dopaminergic neurons caused by the herbicide paraquat. Neurobiol Dis. 2002;10(2):119–27.PubMedCrossRef McCormack AL, Thiruchelvam M, Manning-Bog AB, et al. Environmental risk factors and Parkinson’s disease: selective degeneration of nigral dopaminergic neurons caused by the herbicide paraquat. Neurobiol Dis. 2002;10(2):119–27.PubMedCrossRef
5.
go back to reference Ossowska K, Smialowska M, Kuter K, et al. Degeneration of dopaminergic mesocortical neurons and activation of compensatory processes induced by a long-term paraquat administration in rats: implications for Parkinson’s disease. Neuroscience. 2006;141(4):2155–65.PubMedCrossRef Ossowska K, Smialowska M, Kuter K, et al. Degeneration of dopaminergic mesocortical neurons and activation of compensatory processes induced by a long-term paraquat administration in rats: implications for Parkinson’s disease. Neuroscience. 2006;141(4):2155–65.PubMedCrossRef
6.
go back to reference Zhou Y, Shie FS, Piccardo P, Montine TJ, Zhang J. Proteasomal inhibition induced by manganese ethylene-bis-dithiocarbamate: relevance to Parkinson’s disease. Neuroscience. 2004;128(2):281–91.PubMedCrossRef Zhou Y, Shie FS, Piccardo P, Montine TJ, Zhang J. Proteasomal inhibition induced by manganese ethylene-bis-dithiocarbamate: relevance to Parkinson’s disease. Neuroscience. 2004;128(2):281–91.PubMedCrossRef
7.
go back to reference Zhang J, Fitsanakis VA, Gu G, et al. Manganese ethylene-bis-dithiocarbamate and selective dopaminergic neurodegeneration in rat: a link through mitochondrial dysfunction. J Neurochem. 2003;84(2):336–46.PubMedCrossRef Zhang J, Fitsanakis VA, Gu G, et al. Manganese ethylene-bis-dithiocarbamate and selective dopaminergic neurodegeneration in rat: a link through mitochondrial dysfunction. J Neurochem. 2003;84(2):336–46.PubMedCrossRef
8.
go back to reference Chou AP, Maidment N, Klintenberg R, et al. Ziram causes dopaminergic cell damage by inhibiting E1 ligase of the proteasome. J Biol Chem. 2008;283(50):34696–703.PubMedCrossRef Chou AP, Maidment N, Klintenberg R, et al. Ziram causes dopaminergic cell damage by inhibiting E1 ligase of the proteasome. J Biol Chem. 2008;283(50):34696–703.PubMedCrossRef
9.
go back to reference Cory-Slechta DA, Thiruchelvam M, Barlow BK, Richfield EK. Developmental pesticide models of the Parkinson disease phenotype. Environ Health Perspect. 2005;113(9):1263–70.PubMedCrossRef Cory-Slechta DA, Thiruchelvam M, Barlow BK, Richfield EK. Developmental pesticide models of the Parkinson disease phenotype. Environ Health Perspect. 2005;113(9):1263–70.PubMedCrossRef
10.
go back to reference Barlow BK, Thiruchelvam MJ, Bennice L, Cory-Slechta DA, Ballatori N, Richfield EK. Increased synaptosomal dopamine content and brain concentration of paraquat produced by selective dithiocarbamates. J Neurochem. 2003;85(4):1075–86.PubMedCrossRef Barlow BK, Thiruchelvam MJ, Bennice L, Cory-Slechta DA, Ballatori N, Richfield EK. Increased synaptosomal dopamine content and brain concentration of paraquat produced by selective dithiocarbamates. J Neurochem. 2003;85(4):1075–86.PubMedCrossRef
11.
go back to reference Thiruchelvam M, Prokopenko O, Cory-Slechta DA, Buckley B, Mirochnitchenko O. Overexpression of superoxide dismutase or glutathione peroxidase protects against the paraquat + maneb-induced Parkinson disease phenotype. J Biol Chem. 2005;280(23):22530–9.PubMedCrossRef Thiruchelvam M, Prokopenko O, Cory-Slechta DA, Buckley B, Mirochnitchenko O. Overexpression of superoxide dismutase or glutathione peroxidase protects against the paraquat + maneb-induced Parkinson disease phenotype. J Biol Chem. 2005;280(23):22530–9.PubMedCrossRef
12.
go back to reference WHO. Public health impact of pesticide used in agriculture. Geneva: World Health Organization; 1990. WHO. Public health impact of pesticide used in agriculture. Geneva: World Health Organization; 1990.
13.
go back to reference Ecobichon DJ. Pesticide use in developing countries. Toxicology. 2001;1–3(160):27–33.CrossRef Ecobichon DJ. Pesticide use in developing countries. Toxicology. 2001;1–3(160):27–33.CrossRef
14.
go back to reference Ward MH, Lubin J, Giglierano J, et al. Proximity to crops and residential exposure to agricultural herbicides in iowa. Environ Health Perspect. 2006;114(6):893–7.PubMedCrossRef Ward MH, Lubin J, Giglierano J, et al. Proximity to crops and residential exposure to agricultural herbicides in iowa. Environ Health Perspect. 2006;114(6):893–7.PubMedCrossRef
15.
go back to reference Priyadarshi A, Khuder SA, Schaub EA, Priyadarshi SS. Environmental risk factors and Parkinson’s disease: a metaanalysis. Environ Res. 2001;86(2):122–7.PubMedCrossRef Priyadarshi A, Khuder SA, Schaub EA, Priyadarshi SS. Environmental risk factors and Parkinson’s disease: a metaanalysis. Environ Res. 2001;86(2):122–7.PubMedCrossRef
16.
go back to reference Petrovitch H, Ross GW, Abbott RD, et al. Plantation work and risk of Parkinson disease in a population-based longitudinal study. Arch Neurol. 2002;59(11):1787–92.PubMedCrossRef Petrovitch H, Ross GW, Abbott RD, et al. Plantation work and risk of Parkinson disease in a population-based longitudinal study. Arch Neurol. 2002;59(11):1787–92.PubMedCrossRef
17.
go back to reference Ascherio A, Chen H, Weisskopf MG, et al. Pesticide exposure and risk for Parkinson’s disease. Ann Neurol. 2006;60(2):197–203.PubMedCrossRef Ascherio A, Chen H, Weisskopf MG, et al. Pesticide exposure and risk for Parkinson’s disease. Ann Neurol. 2006;60(2):197–203.PubMedCrossRef
18.
go back to reference Costello S, Cockburn M, Bronstein J, Zhang X, Ritz B. Parkinson’s disease and residential exposure to maneb and paraquat from agricultural applications in the central valley of California. Am J Epidemiol. 2009;169(8):919–26.PubMedCrossRef Costello S, Cockburn M, Bronstein J, Zhang X, Ritz B. Parkinson’s disease and residential exposure to maneb and paraquat from agricultural applications in the central valley of California. Am J Epidemiol. 2009;169(8):919–26.PubMedCrossRef
19.
go back to reference Kamel F, Tanner C, Umbach D, et al. Pesticide exposure and self-reported Parkinson’s disease in the agricultural health study. Am J Epidemiol. 2007;165(4):364–74.PubMedCrossRef Kamel F, Tanner C, Umbach D, et al. Pesticide exposure and self-reported Parkinson’s disease in the agricultural health study. Am J Epidemiol. 2007;165(4):364–74.PubMedCrossRef
20.
go back to reference Elbaz A, Clavel J, Rathouz PJ, Moisan F, Galanaud JP, Delemotte B, Alperovitch A, Tzourio C. Professional exposure to pesticides and Parkinson’s disease. Ann Neurol. 2009;66(4)494–504. Elbaz A, Clavel J, Rathouz PJ, Moisan F, Galanaud JP, Delemotte B, Alperovitch A, Tzourio C. Professional exposure to pesticides and Parkinson’s disease. Ann Neurol. 2009;66(4)494–504.
21.
go back to reference Liou HH, Tsai MC, Chen CJ, et al. Environmental risk factors and Parkinson’s disease: a case-control study in Taiwan. Neurology. 1997;48(6):1583–8.PubMed Liou HH, Tsai MC, Chen CJ, et al. Environmental risk factors and Parkinson’s disease: a case-control study in Taiwan. Neurology. 1997;48(6):1583–8.PubMed
22.
go back to reference Dhillon AS, Tarbutton GL, Levin JL, et al. Pesticide/environmental exposures and Parkinson’s disease in East Texas. J Agromed. 2008;13(1):37–48.CrossRef Dhillon AS, Tarbutton GL, Levin JL, et al. Pesticide/environmental exposures and Parkinson’s disease in East Texas. J Agromed. 2008;13(1):37–48.CrossRef
23.
go back to reference Seidler A, Hellenbrand W, Robra BP, et al. Possible environmental, occupational, and other etiologic factors for Parkinson’s disease: a case-control study in Germany. Neurology. 1996;46(5):1275–84.PubMed Seidler A, Hellenbrand W, Robra BP, et al. Possible environmental, occupational, and other etiologic factors for Parkinson’s disease: a case-control study in Germany. Neurology. 1996;46(5):1275–84.PubMed
24.
go back to reference Hancock DB, Martin ER, Mayhew GM, et al. Pesticide exposure and risk of Parkinson’s disease: a family-based case-control study. BMC Neurol. 2008;8:6.PubMedCrossRef Hancock DB, Martin ER, Mayhew GM, et al. Pesticide exposure and risk of Parkinson’s disease: a family-based case-control study. BMC Neurol. 2008;8:6.PubMedCrossRef
25.
27.
go back to reference Kang GA, Bronstein JM, Masterman DL, Redelings M, Crum JA, Ritz B. Clinical characteristics in early Parkinson’s disease in a central California population-based study. Mov Disord. 2005;20(9):1133–42.PubMedCrossRef Kang GA, Bronstein JM, Masterman DL, Redelings M, Crum JA, Ritz B. Clinical characteristics in early Parkinson’s disease in a central California population-based study. Mov Disord. 2005;20(9):1133–42.PubMedCrossRef
28.
go back to reference Rull RP, Ritz B. Historical pesticide exposure in California using pesticide use reports and land-use surveys: an assessment of misclassification error and bias. Environ Health Perspect. 2003;111(12):1582–9.PubMedCrossRef Rull RP, Ritz B. Historical pesticide exposure in California using pesticide use reports and land-use surveys: an assessment of misclassification error and bias. Environ Health Perspect. 2003;111(12):1582–9.PubMedCrossRef
29.
go back to reference Chester G, Ward RJ. Occupational exposure and drift hazard during aerial application of paraquat to cotton. Arch Environ Contam Toxicol. 1984;13(5):551–63.PubMedCrossRef Chester G, Ward RJ. Occupational exposure and drift hazard during aerial application of paraquat to cotton. Arch Environ Contam Toxicol. 1984;13(5):551–63.PubMedCrossRef
30.
go back to reference McElroy JA, Remington PL, Trentham-Dietz A, Robert SA, Newcomb PA. Geocoding addresses from a large population-based study: lessons learned. Epidemiology. 2003;14(4):399–407.PubMed McElroy JA, Remington PL, Trentham-Dietz A, Robert SA, Newcomb PA. Geocoding addresses from a large population-based study: lessons learned. Epidemiology. 2003;14(4):399–407.PubMed
31.
go back to reference MacCollom GB. Drift comparisons between aerial and ground orchard application. J Econ Entomol. 1986;79:459–64. MacCollom GB. Drift comparisons between aerial and ground orchard application. J Econ Entomol. 1986;79:459–64.
32.
go back to reference Ritz B, Costello S. Geographic model and biomarker-derived measures of pesticide exposure and Parkinson’s disease. Ann N Y Acad Sci. 2006;1076:378–87.PubMedCrossRef Ritz B, Costello S. Geographic model and biomarker-derived measures of pesticide exposure and Parkinson’s disease. Ann N Y Acad Sci. 2006;1076:378–87.PubMedCrossRef
34.
go back to reference Chan JY, Chan SH, Dai KY, Cheng HL, Chou JL, Chang AY. Cholinergic-receptor-independent dysfunction of mitochondrial respiratory chain enzymes, reduced mitochondrial transmembrane potential and ATP depletion underlie necrotic cell death induced by the organophosphate poison mevinphos. Neuropharmacology. 2006;51(7–8):1109–19.PubMedCrossRef Chan JY, Chan SH, Dai KY, Cheng HL, Chou JL, Chang AY. Cholinergic-receptor-independent dysfunction of mitochondrial respiratory chain enzymes, reduced mitochondrial transmembrane potential and ATP depletion underlie necrotic cell death induced by the organophosphate poison mevinphos. Neuropharmacology. 2006;51(7–8):1109–19.PubMedCrossRef
35.
go back to reference Hatcher JM, Richardson JR, Guillot TS, et al. Dieldrin exposure induces oxidative damage in the mouse nigrostriatal dopamine system. Exp Neurol. 2007;204(2):619–30.PubMedCrossRef Hatcher JM, Richardson JR, Guillot TS, et al. Dieldrin exposure induces oxidative damage in the mouse nigrostriatal dopamine system. Exp Neurol. 2007;204(2):619–30.PubMedCrossRef
36.
go back to reference Baldi I, Cantagrel A, Lebailly P, et al. Association between Parkinson’s disease and exposure to pesticides in southwestern France. Neuroepidemiology. 2003;22(5):305–10.PubMedCrossRef Baldi I, Cantagrel A, Lebailly P, et al. Association between Parkinson’s disease and exposure to pesticides in southwestern France. Neuroepidemiology. 2003;22(5):305–10.PubMedCrossRef
37.
go back to reference Dick FD, De Palma G, Ahmadi A, et al. Environmental risk factors for Parkinson’s disease and parkinsonism: the Geoparkinson study. Occup Environ Med. 2007;64(10):666–72.PubMedCrossRef Dick FD, De Palma G, Ahmadi A, et al. Environmental risk factors for Parkinson’s disease and parkinsonism: the Geoparkinson study. Occup Environ Med. 2007;64(10):666–72.PubMedCrossRef
38.
go back to reference Firestone JA, Smith-Weller T, Franklin G, Swanson P, Longstreth WT Jr, Checkoway H. Pesticides and risk of Parkinson disease: a population-based case-control study. Arch Neurol. 2005;62(1):91–5.PubMedCrossRef Firestone JA, Smith-Weller T, Franklin G, Swanson P, Longstreth WT Jr, Checkoway H. Pesticides and risk of Parkinson disease: a population-based case-control study. Arch Neurol. 2005;62(1):91–5.PubMedCrossRef
39.
go back to reference Frigerio R, Sanft KR, Grossardt BR, et al. Chemical exposures and Parkinson’s disease: a population-based case-control study. Mov Disord. 2006;21(10):1688–92.PubMedCrossRef Frigerio R, Sanft KR, Grossardt BR, et al. Chemical exposures and Parkinson’s disease: a population-based case-control study. Mov Disord. 2006;21(10):1688–92.PubMedCrossRef
40.
go back to reference Nuti A, Ceravolo R, Dell’Agnello G, et al. Environmental factors and Parkinson’s disease: a case-control study in the Tuscany region of Italy. Parkinsonism Relat Disord. 2004;10(8):481–5.PubMedCrossRef Nuti A, Ceravolo R, Dell’Agnello G, et al. Environmental factors and Parkinson’s disease: a case-control study in the Tuscany region of Italy. Parkinsonism Relat Disord. 2004;10(8):481–5.PubMedCrossRef
Metadata
Title
Parkinson’s disease risk from ambient exposure to pesticides
Authors
Anthony Wang
Sadie Costello
Myles Cockburn
Xinbo Zhang
Jeff Bronstein
Beate Ritz
Publication date
01-07-2011
Publisher
Springer Netherlands
Published in
European Journal of Epidemiology / Issue 7/2011
Print ISSN: 0393-2990
Electronic ISSN: 1573-7284
DOI
https://doi.org/10.1007/s10654-011-9574-5

Other articles of this Issue 7/2011

European Journal of Epidemiology 7/2011 Go to the issue