Skip to main content
Top
Published in: Malaria Journal 1/2018

Open Access 01-12-2018 | Research

Agent-based models of malaria transmission: a systematic review

Authors: Neal R. Smith, James M. Trauer, Manoj Gambhir, Jack S. Richards, Richard J. Maude, Jonathan M. Keith, Jennifer A. Flegg

Published in: Malaria Journal | Issue 1/2018

Login to get access

Abstract

Background

Much of the extensive research regarding transmission of malaria is underpinned by mathematical modelling. Compartmental models, which focus on interactions and transitions between population strata, have been a mainstay of such modelling for more than a century. However, modellers are increasingly adopting agent-based approaches, which model hosts, vectors and/or their interactions on an individual level. One reason for the increasing popularity of such models is their potential to provide enhanced realism by allowing system-level behaviours to emerge as a consequence of accumulated individual-level interactions, as occurs in real populations.

Methods

A systematic review of 90 articles published between 1998 and May 2018 was performed, characterizing agent-based models (ABMs) relevant to malaria transmission. The review provides an overview of approaches used to date, determines the advantages of these approaches, and proposes ideas for progressing the field.

Results

The rationale for ABM use over other modelling approaches centres around three points: the need to accurately represent increased stochasticity in low-transmission settings; the benefits of high-resolution spatial simulations; and heterogeneities in drug and vaccine efficacies due to individual patient characteristics. The success of these approaches provides avenues for further exploration of agent-based techniques for modelling malaria transmission. Potential extensions include varying elimination strategies across spatial landscapes, extending the size of spatial models, incorporating human movement dynamics, and developing increasingly comprehensive parameter estimation and optimization techniques.

Conclusion

Collectively, the literature covers an extensive array of topics, including the full spectrum of transmission and intervention regimes. Bringing these elements together under a common framework may enhance knowledge of, and guide policies towards, malaria elimination. However, because of the diversity of available models, endorsing a standardized approach to ABM implementation may not be possible. Instead it is recommended that model frameworks be contextually appropriate and sufficiently described. One key recommendation is to develop enhanced parameter estimation and optimization techniques. Extensions of current techniques will provide the robust results required to enhance current elimination efforts.
Appendix
Available only for authorised users
Literature
3.
go back to reference Ross R. Report on the prevention of malaria in Mauritius. London: Waterlow; 1908. Ross R. Report on the prevention of malaria in Mauritius. London: Waterlow; 1908.
6.
go back to reference Reiner RC, Perkins AT, Barker CM, Niu T, Chaves LF, Ellis AM, et al. A systematic review of mathematical models of mosquito-borne pathogen transmission: 1970–2010. J R Soc Interface. 2013;10:20120921.PubMedPubMedCentralCrossRef Reiner RC, Perkins AT, Barker CM, Niu T, Chaves LF, Ellis AM, et al. A systematic review of mathematical models of mosquito-borne pathogen transmission: 1970–2010. J R Soc Interface. 2013;10:20120921.PubMedPubMedCentralCrossRef
7.
go back to reference Chitnis N, Schapira A, Smith DL, Smith T, Hay SI, Steketee R. Mathematical modelling to support malaria control and elimination. Progress & impact series, vol 5. Geneva: Roll Back Malaria; 2010. Chitnis N, Schapira A, Smith DL, Smith T, Hay SI, Steketee R. Mathematical modelling to support malaria control and elimination. Progress & impact series, vol 5. Geneva: Roll Back Malaria; 2010.
8.
go back to reference Maude RJ, Pontavornpinyo W, Saralamba S, Aguas R, Yeung S, Dondorp AM, et al. The last man standing is the most resistant: eliminating artemisinin-resistant malaria in Cambodia. Malar J. 2009;8:31.PubMedPubMedCentralCrossRef Maude RJ, Pontavornpinyo W, Saralamba S, Aguas R, Yeung S, Dondorp AM, et al. The last man standing is the most resistant: eliminating artemisinin-resistant malaria in Cambodia. Malar J. 2009;8:31.PubMedPubMedCentralCrossRef
9.
go back to reference Acevedo MA, Prosper O, Lopiano K, Ruktanonchai N, Caughlin TT, Martcheva M, et al. Spatial heterogeneity, host movement and mosquito-borne disease transmission. PLoS ONE. 2015;10:e0127552.PubMedPubMedCentralCrossRef Acevedo MA, Prosper O, Lopiano K, Ruktanonchai N, Caughlin TT, Martcheva M, et al. Spatial heterogeneity, host movement and mosquito-borne disease transmission. PLoS ONE. 2015;10:e0127552.PubMedPubMedCentralCrossRef
10.
go back to reference Bousema T, Griffin JT, Sauerwein RW, Smith DL, Churcher TS, Takken W, et al. Hitting hotspots: spatial targeting of malaria for control and elimination. PLoS Med. 2012;9:e01001165.CrossRef Bousema T, Griffin JT, Sauerwein RW, Smith DL, Churcher TS, Takken W, et al. Hitting hotspots: spatial targeting of malaria for control and elimination. PLoS Med. 2012;9:e01001165.CrossRef
11.
go back to reference Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med. 2009;6:e1000100.PubMedPubMedCentralCrossRef Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med. 2009;6:e1000100.PubMedPubMedCentralCrossRef
12.
go back to reference Dietz K, Raddatz G, Molineaux L. Mathematical model of the first wave of Plasmodium falciparum asexual parasitemia in non-immune and vaccinated individuals. Am J Trop Med Hyg. 2006;75(2 suppl):46–55.PubMedCrossRef Dietz K, Raddatz G, Molineaux L. Mathematical model of the first wave of Plasmodium falciparum asexual parasitemia in non-immune and vaccinated individuals. Am J Trop Med Hyg. 2006;75(2 suppl):46–55.PubMedCrossRef
14.
go back to reference Griffin JT, Hollingsworth TD, Okell LC, Churcher TS, White M, Hinsley W, et al. Reducing Plasmodium falciparum malaria transmission in Africa: a model-based evaluation of intervention strategies. PLoS Med. 2010;7:e1000324.PubMedPubMedCentralCrossRef Griffin JT, Hollingsworth TD, Okell LC, Churcher TS, White M, Hinsley W, et al. Reducing Plasmodium falciparum malaria transmission in Africa: a model-based evaluation of intervention strategies. PLoS Med. 2010;7:e1000324.PubMedPubMedCentralCrossRef
15.
go back to reference Gatton ML, Cheng Q. Interrupting malaria transmission: quantifying the impact of interventions in regions of low to moderate transmission. PLoS ONE. 2010;5:e15149.PubMedPubMedCentralCrossRef Gatton ML, Cheng Q. Interrupting malaria transmission: quantifying the impact of interventions in regions of low to moderate transmission. PLoS ONE. 2010;5:e15149.PubMedPubMedCentralCrossRef
16.
go back to reference Silal SP, Little F, Barnes KI, White LJ. Predicting the impact of border control on malaria transmission: a simulated focal screen and treat campaign. Malar J. 2015;12(14):268.CrossRef Silal SP, Little F, Barnes KI, White LJ. Predicting the impact of border control on malaria transmission: a simulated focal screen and treat campaign. Malar J. 2015;12(14):268.CrossRef
17.
go back to reference Karl S, White MT, Milne GJ, Gurarie D, Hay SI, Barry AE, et al. Spatial effects on the multiplicity of Plasmodium falciparum infections. PLoS ONE. 2016;11:e0164054.PubMedPubMedCentralCrossRef Karl S, White MT, Milne GJ, Gurarie D, Hay SI, Barry AE, et al. Spatial effects on the multiplicity of Plasmodium falciparum infections. PLoS ONE. 2016;11:e0164054.PubMedPubMedCentralCrossRef
18.
go back to reference Smith T, Killeen GF, Maire N, Ross A, Molineaux L, Tediosi F, et al. Mathematical modeling of the impact of malaria vaccines on the clinical epidemiology and natural history of Plasmodium falciparum malaria: overview. Am J Trop Med Hyg. 2006;75(2 suppl):1–10.PubMedCrossRef Smith T, Killeen GF, Maire N, Ross A, Molineaux L, Tediosi F, et al. Mathematical modeling of the impact of malaria vaccines on the clinical epidemiology and natural history of Plasmodium falciparum malaria: overview. Am J Trop Med Hyg. 2006;75(2 suppl):1–10.PubMedCrossRef
20.
go back to reference Bomblies A, Duchemin JB, Eltahir EAB. Hydrology of malaria: model development and application to a Sahelian village. Water Resour Res. 2008;44:1–26.CrossRef Bomblies A, Duchemin JB, Eltahir EAB. Hydrology of malaria: model development and application to a Sahelian village. Water Resour Res. 2008;44:1–26.CrossRef
21.
go back to reference Zhu L, Marshall JM, Qualls WA, Schlein Y, McManus JW, Arheart KL, et al. Modelling optimum use of attractive toxic sugar bait stations for effective malaria vector control in Africa. Malar J. 2015;14:492.PubMedPubMedCentralCrossRef Zhu L, Marshall JM, Qualls WA, Schlein Y, McManus JW, Arheart KL, et al. Modelling optimum use of attractive toxic sugar bait stations for effective malaria vector control in Africa. Malar J. 2015;14:492.PubMedPubMedCentralCrossRef
22.
go back to reference Arifin SMN, Davis GJ, Zhou Y. A spatial agent-based model of malaria: model verification and effects of spatial heterogeneity. Int J Agent Technol Syst. 2011;3:17–34.CrossRef Arifin SMN, Davis GJ, Zhou Y. A spatial agent-based model of malaria: model verification and effects of spatial heterogeneity. Int J Agent Technol Syst. 2011;3:17–34.CrossRef
23.
go back to reference Ross A, Killeen G, Smith T. Relationships between host infectivity to mosquitoes and asexual parasite density in Plasmodium falciparum. Am J Trop Med Hyg. 2006;75(2 suppl):32–7.PubMedCrossRef Ross A, Killeen G, Smith T. Relationships between host infectivity to mosquitoes and asexual parasite density in Plasmodium falciparum. Am J Trop Med Hyg. 2006;75(2 suppl):32–7.PubMedCrossRef
24.
go back to reference Ross A, Maire N, Molineaux L, Smith T. An epidemiologic model of severe morbidity and mortality caused by Plasmodium falciparum. Am J Trop Med Hyg. 2006;75(2 suppl):63–73.PubMedCrossRef Ross A, Maire N, Molineaux L, Smith T. An epidemiologic model of severe morbidity and mortality caused by Plasmodium falciparum. Am J Trop Med Hyg. 2006;75(2 suppl):63–73.PubMedCrossRef
25.
go back to reference Bomblies A, Eltahir EAB. Assessment of the impact of climate shifts on malaria transmission in the Sahel. EcoHealth. 2009;6:426–37.PubMedCrossRef Bomblies A, Eltahir EAB. Assessment of the impact of climate shifts on malaria transmission in the Sahel. EcoHealth. 2009;6:426–37.PubMedCrossRef
26.
go back to reference Tediosi F, Hutton G, Maire N, Smith TA, Ross A, Tanner M. Predicting the cost-effectiveness of introducing a pre-erythrocytic malaria vaccine into the expanded program on immunization in tanzania. Am J Trop Med Hyg. 2006;75(2 suppl):119–30.PubMed Tediosi F, Hutton G, Maire N, Smith TA, Ross A, Tanner M. Predicting the cost-effectiveness of introducing a pre-erythrocytic malaria vaccine into the expanded program on immunization in tanzania. Am J Trop Med Hyg. 2006;75(2 suppl):119–30.PubMed
27.
go back to reference Maire N, Shillcutt SD, Walker DG, Tediosi F, Smith TA. Cost-effectiveness of the introduction of a pre-erythrocytic malaria vaccine into the expanded program on immunization in sub-Saharan Africa: analysis of uncertainties using a stochastic individual-based simulation model of Plasmodium falciparum malaria. Value Health. 2011;14:1028–38.PubMedCrossRef Maire N, Shillcutt SD, Walker DG, Tediosi F, Smith TA. Cost-effectiveness of the introduction of a pre-erythrocytic malaria vaccine into the expanded program on immunization in sub-Saharan Africa: analysis of uncertainties using a stochastic individual-based simulation model of Plasmodium falciparum malaria. Value Health. 2011;14:1028–38.PubMedCrossRef
28.
go back to reference Phillips V, Njau J, Li S, Kachur P. Simulations show diagnostic testing for malaria in young African children can be cost-saving or cost-effective. Health Aff. 2015;34:1196–203.CrossRef Phillips V, Njau J, Li S, Kachur P. Simulations show diagnostic testing for malaria in young African children can be cost-saving or cost-effective. Health Aff. 2015;34:1196–203.CrossRef
30.
go back to reference Pizzitutti F, Pan W, Barbieri A, Miranda JJ, Feingold B, Guedes GR, et al. A validated agent-based model to study the spatial and temporal heterogeneities of malaria incidence in the rainforest environment. Malar J. 2015;14:514.PubMedPubMedCentralCrossRef Pizzitutti F, Pan W, Barbieri A, Miranda JJ, Feingold B, Guedes GR, et al. A validated agent-based model to study the spatial and temporal heterogeneities of malaria incidence in the rainforest environment. Malar J. 2015;14:514.PubMedPubMedCentralCrossRef
31.
go back to reference Zhu L, Qualls WA, Marshall JM, Arheart KL, DeAngelis DL, McManus JW, et al. A spatial individual-based model predicting a great impact of copious sugar sources and resting sites on survival of Anopheles gambiae and malaria parasite transmission. Malar J. 2015;14:59.PubMedPubMedCentralCrossRef Zhu L, Qualls WA, Marshall JM, Arheart KL, DeAngelis DL, McManus JW, et al. A spatial individual-based model predicting a great impact of copious sugar sources and resting sites on survival of Anopheles gambiae and malaria parasite transmission. Malar J. 2015;14:59.PubMedPubMedCentralCrossRef
32.
go back to reference Smith T, Maire N, Dietz K, Killeen GF, Vounatsou P, Molineaux L, et al. Relationship between the entomologic inoculation rate and the force of infection for Plasmodium falciparum malaria. Am J Trop Med Hyg. 2006;75(2 suppl):11–8.PubMedCrossRef Smith T, Maire N, Dietz K, Killeen GF, Vounatsou P, Molineaux L, et al. Relationship between the entomologic inoculation rate and the force of infection for Plasmodium falciparum malaria. Am J Trop Med Hyg. 2006;75(2 suppl):11–8.PubMedCrossRef
33.
go back to reference Maire N, Aponte JJ, Ross A, Thompson R, Alonso P, Utzinger J, et al. Modeling a field trial of the RTS, S/AS02A malaria vaccine. Am J Trop Med Hyg. 2006;75(2 suppl):104–10.PubMedCrossRef Maire N, Aponte JJ, Ross A, Thompson R, Alonso P, Utzinger J, et al. Modeling a field trial of the RTS, S/AS02A malaria vaccine. Am J Trop Med Hyg. 2006;75(2 suppl):104–10.PubMedCrossRef
34.
go back to reference Maire N, Smith T, Ross A, Owusu-Agyei S, Dietz K, Molineaux L. A model for natural immunity to asexual blood stages of Plasmodium falciparum malaria in endemic areas. Am J Trop Med Hyg. 2006;75(2 Suppl):19–31.PubMedCrossRef Maire N, Smith T, Ross A, Owusu-Agyei S, Dietz K, Molineaux L. A model for natural immunity to asexual blood stages of Plasmodium falciparum malaria in endemic areas. Am J Trop Med Hyg. 2006;75(2 Suppl):19–31.PubMedCrossRef
35.
go back to reference Smith T, Ross A, Maire N, Rogier C, Trape J-F, Molineaux L. An epidemiologic model of the incidence of acute illness in Plasmodium falciparum malaria. Am J Trop Med Hyg. 2006;75(2 suppl):56–62.PubMedCrossRef Smith T, Ross A, Maire N, Rogier C, Trape J-F, Molineaux L. An epidemiologic model of the incidence of acute illness in Plasmodium falciparum malaria. Am J Trop Med Hyg. 2006;75(2 suppl):56–62.PubMedCrossRef
36.
go back to reference Zhu L, Müller GC, Marshall JM, Arheart KL, Qualls WA, Hlaing WM, et al. Is outdoor vector control needed for malaria elimination? An individual-based modelling study. Malar J. 2017;16:266.PubMedPubMedCentralCrossRef Zhu L, Müller GC, Marshall JM, Arheart KL, Qualls WA, Hlaing WM, et al. Is outdoor vector control needed for malaria elimination? An individual-based modelling study. Malar J. 2017;16:266.PubMedPubMedCentralCrossRef
37.
go back to reference Pizzitutti F, Pan W, Feingold B, Zaitchik B, Álvarez CA, Mena CF. Out of the net: an agent-based model to study human movements influence on local-scale malaria transmission. PLoS ONE. 2018;13:e0193493.PubMedPubMedCentralCrossRef Pizzitutti F, Pan W, Feingold B, Zaitchik B, Álvarez CA, Mena CF. Out of the net: an agent-based model to study human movements influence on local-scale malaria transmission. PLoS ONE. 2018;13:e0193493.PubMedPubMedCentralCrossRef
38.
39.
go back to reference Yamana TK, Bomblies A, Laminou IM, Duchemin J-B, Eltahir EAB. Linking environmental variability to village-scale malaria transmission using a simple immunity model. Parasit Vectors. 2013;6:226.PubMedPubMedCentralCrossRef Yamana TK, Bomblies A, Laminou IM, Duchemin J-B, Eltahir EAB. Linking environmental variability to village-scale malaria transmission using a simple immunity model. Parasit Vectors. 2013;6:226.PubMedPubMedCentralCrossRef
40.
go back to reference Yamana TK, Qiu X, Eltahir EAB. Hysteresis in simulations of malaria transmission. Adv Water Resour. 2017;108:416–22.CrossRef Yamana TK, Qiu X, Eltahir EAB. Hysteresis in simulations of malaria transmission. Adv Water Resour. 2017;108:416–22.CrossRef
41.
go back to reference Endo N, Eltahir EAB. Environmental determinants of malaria transmission around the Koka Reservoir in Ethiopia. GeoHealth. 2018;2:104–15.CrossRef Endo N, Eltahir EAB. Environmental determinants of malaria transmission around the Koka Reservoir in Ethiopia. GeoHealth. 2018;2:104–15.CrossRef
43.
go back to reference Penny MA, Maire N, Studer A, Schapira A, Smith TA. What should vaccine developers ask? Simulation of the effectiveness of malaria vaccines. PLoS ONE. 2008;3:e3193.PubMedPubMedCentralCrossRef Penny MA, Maire N, Studer A, Schapira A, Smith TA. What should vaccine developers ask? Simulation of the effectiveness of malaria vaccines. PLoS ONE. 2008;3:e3193.PubMedPubMedCentralCrossRef
44.
go back to reference Maire N, Tediosi F, Ross A, Smith T. Predictions of the epidemiologic impact of introducing a pre-erythrocytic vaccine into the expanded program on immunization in sub-Saharan Africa. Am J Trop Med Hyg. 2006;75(2 suppl):111–8.PubMedCrossRef Maire N, Tediosi F, Ross A, Smith T. Predictions of the epidemiologic impact of introducing a pre-erythrocytic vaccine into the expanded program on immunization in sub-Saharan Africa. Am J Trop Med Hyg. 2006;75(2 suppl):111–8.PubMedCrossRef
45.
go back to reference Nguyen TD, Olliaro P, Dondorp AM, Baird JK, Lam HM, Farrar J, et al. Optimum population-level use of artemisinin combination therapies: a modelling study. Lancet Glob Health. 2015;3:e758.PubMedPubMedCentralCrossRef Nguyen TD, Olliaro P, Dondorp AM, Baird JK, Lam HM, Farrar J, et al. Optimum population-level use of artemisinin combination therapies: a modelling study. Lancet Glob Health. 2015;3:e758.PubMedPubMedCentralCrossRef
46.
go back to reference Ouédraogo AL, Eckhoff PA, Luty AJF, Roeffen W, Sauerwein RW, Bousema T, et al. Modeling the impact of Plasmodium falciparum sexual stage immunity on the composition and dynamics of the human infectious reservoir for malaria in natural settings. PLoS Pathog. 2018;14:e1007034.PubMedPubMedCentralCrossRef Ouédraogo AL, Eckhoff PA, Luty AJF, Roeffen W, Sauerwein RW, Bousema T, et al. Modeling the impact of Plasmodium falciparum sexual stage immunity on the composition and dynamics of the human infectious reservoir for malaria in natural settings. PLoS Pathog. 2018;14:e1007034.PubMedPubMedCentralCrossRef
47.
go back to reference Ross A, Smith T. Interpreting malaria age-prevalence and incidence curves: a simulation study of the effects of different types of heterogeneity. Malar J. 2010;9:132–40.PubMedPubMedCentralCrossRef Ross A, Smith T. Interpreting malaria age-prevalence and incidence curves: a simulation study of the effects of different types of heterogeneity. Malar J. 2010;9:132–40.PubMedPubMedCentralCrossRef
48.
go back to reference Choi SE, Brandeau ML, Bendavid E. Cost-effectiveness of malaria preventive treatment for HIV-infected pregnant women in sub-Saharan Africa. Malar J. 2017;16:1–10.CrossRef Choi SE, Brandeau ML, Bendavid E. Cost-effectiveness of malaria preventive treatment for HIV-infected pregnant women in sub-Saharan Africa. Malar J. 2017;16:1–10.CrossRef
49.
go back to reference Killeen GF, Ross A, Smith T. Infectiousness of malaria-endemic human populations to vectors. Am J Trop Med Hyg. 2006;75(2 Suppl):38–45.PubMedCrossRef Killeen GF, Ross A, Smith T. Infectiousness of malaria-endemic human populations to vectors. Am J Trop Med Hyg. 2006;75(2 Suppl):38–45.PubMedCrossRef
50.
go back to reference Griffin JT, Hollingsworth TD, Reyburn H, Drakeley CJ, Riley EM, Ghani AC. Gradual acquisition of immunity to severe malaria with increasing exposure. Proc R Soc B Biol Sci. 2015;282:20142657.CrossRef Griffin JT, Hollingsworth TD, Reyburn H, Drakeley CJ, Riley EM, Ghani AC. Gradual acquisition of immunity to severe malaria with increasing exposure. Proc R Soc B Biol Sci. 2015;282:20142657.CrossRef
51.
go back to reference Arifin SMN, Madey GR, Collins FH. Examining the impact of larval source management and insecticide-treated nets using a spatial agent-based model of Anopheles gambiae and a landscape generator tool. Malar J. 2013;12:290–313.PubMedPubMedCentralCrossRef Arifin SMN, Madey GR, Collins FH. Examining the impact of larval source management and insecticide-treated nets using a spatial agent-based model of Anopheles gambiae and a landscape generator tool. Malar J. 2013;12:290–313.PubMedPubMedCentralCrossRef
52.
go back to reference Chitnis N, Hardy D, Smith T. A periodically-forced mathematical model for the seasonal dynamics of malaria in mosquitoes. Bull Math Biol. 2012;74:1098–124.PubMedPubMedCentralCrossRef Chitnis N, Hardy D, Smith T. A periodically-forced mathematical model for the seasonal dynamics of malaria in mosquitoes. Bull Math Biol. 2012;74:1098–124.PubMedPubMedCentralCrossRef
54.
go back to reference Cairns ME, Walker PGT, Okell LC, Griffin JT, Garske T, Asante KP, et al. Seasonality in malaria transmission: implications for case-management with long-acting artemisinin combination therapy in sub-Saharan Africa. Malar J. 2015;14:321.PubMedPubMedCentralCrossRef Cairns ME, Walker PGT, Okell LC, Griffin JT, Garske T, Asante KP, et al. Seasonality in malaria transmission: implications for case-management with long-acting artemisinin combination therapy in sub-Saharan Africa. Malar J. 2015;14:321.PubMedPubMedCentralCrossRef
56.
go back to reference Shcherbacheva A, Haario H, Killeen GF. Modeling host-seeking behavior of African malaria vector mosquitoes in the presence of long-lasting insecticidal nets. Math Biosci. 2018;295:36–47.PubMedCrossRef Shcherbacheva A, Haario H, Killeen GF. Modeling host-seeking behavior of African malaria vector mosquitoes in the presence of long-lasting insecticidal nets. Math Biosci. 2018;295:36–47.PubMedCrossRef
57.
go back to reference Shcherbacheva A, Haario H. The impact of household size on malaria reduction in relation with alterations in mosquito behavior by malaria parasite. J Multi-Valued Log Soft Comput. 2017;29:455–68. Shcherbacheva A, Haario H. The impact of household size on malaria reduction in relation with alterations in mosquito behavior by malaria parasite. J Multi-Valued Log Soft Comput. 2017;29:455–68.
58.
go back to reference Depinay JMO, Mbogo CM, Killeen G, Knols B, Beier J, Carlson J, et al. A simulation model of African Anopheles ecology and population dynamics for the analysis of malaria transmission. Malar J. 2004;3:29.PubMedPubMedCentralCrossRef Depinay JMO, Mbogo CM, Killeen G, Knols B, Beier J, Carlson J, et al. A simulation model of African Anopheles ecology and population dynamics for the analysis of malaria transmission. Malar J. 2004;3:29.PubMedPubMedCentralCrossRef
60.
go back to reference Mckenzie FE, Killeen GF, Beier JC, Bossert WH. Seasonality, parasite diversity, and local extinctions in plasmodium falciparum malaria. Ecology. 2001;82:2673–81.PubMedPubMedCentralCrossRef Mckenzie FE, Killeen GF, Beier JC, Bossert WH. Seasonality, parasite diversity, and local extinctions in plasmodium falciparum malaria. Ecology. 2001;82:2673–81.PubMedPubMedCentralCrossRef
61.
go back to reference Arifin S, Arifin R, Pitts D, Rahman M, Nowreen S, Madey G, et al. Landscape epidemiology modeling using an agent-based model and a geographic information system. Land. 2015;4:378–412.CrossRef Arifin S, Arifin R, Pitts D, Rahman M, Nowreen S, Madey G, et al. Landscape epidemiology modeling using an agent-based model and a geographic information system. Land. 2015;4:378–412.CrossRef
62.
go back to reference Eckhoff PA, Wenger EA, Godfray HCJ, Burt A. Impact of mosquito gene drive on malaria elimination in a computational model with explicit spatial and temporal dynamics. Proc Natl Acad Sci USA. 2016;114:e255–64.PubMedCrossRef Eckhoff PA, Wenger EA, Godfray HCJ, Burt A. Impact of mosquito gene drive on malaria elimination in a computational model with explicit spatial and temporal dynamics. Proc Natl Acad Sci USA. 2016;114:e255–64.PubMedCrossRef
63.
go back to reference Alam MSMZ, Niaz Arifin SM, Al-Amin HM, Alam MSMZ, Rahman MS. A spatial agent-based model of Anopheles vagus for malaria epidemiology: examining the impact of vector control interventions. Malar J. 2017;16:432.PubMedPubMedCentralCrossRef Alam MSMZ, Niaz Arifin SM, Al-Amin HM, Alam MSMZ, Rahman MS. A spatial agent-based model of Anopheles vagus for malaria epidemiology: examining the impact of vector control interventions. Malar J. 2017;16:432.PubMedPubMedCentralCrossRef
64.
go back to reference Churcher TS, Dawes EJ, Sinden RE, Christophides GK, Koella JC, Basáñez M-G. Population biology of malaria within the mosquito: density-dependent processes and potential implications for transmission-blocking interventions. Malar J. 2010;9:311.PubMedPubMedCentralCrossRef Churcher TS, Dawes EJ, Sinden RE, Christophides GK, Koella JC, Basáñez M-G. Population biology of malaria within the mosquito: density-dependent processes and potential implications for transmission-blocking interventions. Malar J. 2010;9:311.PubMedPubMedCentralCrossRef
65.
go back to reference Arifin SMN, Zhou Y, Davis GJ, Gentile JE, Madey GR, Collins FH. An agent-based model of the population dynamics of Anopheles gambiae. Malar J. 2014;13:424.PubMedPubMedCentralCrossRef Arifin SMN, Zhou Y, Davis GJ, Gentile JE, Madey GR, Collins FH. An agent-based model of the population dynamics of Anopheles gambiae. Malar J. 2014;13:424.PubMedPubMedCentralCrossRef
66.
go back to reference Eckhoff P. Mathematical models of within-host and transmission dynamics to determine effects of malaria interventions in a variety of transmission settings. Am J Trop Med Hyg. 2013;88:817–27.PubMedPubMedCentralCrossRef Eckhoff P. Mathematical models of within-host and transmission dynamics to determine effects of malaria interventions in a variety of transmission settings. Am J Trop Med Hyg. 2013;88:817–27.PubMedPubMedCentralCrossRef
67.
go back to reference Gerardin J, Bever CA, Bridenbecker D, Hamainza B, Silumbe K, Miller JM, et al. Effectiveness of reactive case detection for malaria elimination in three archetypical transmission settings: a modelling study. Malar J. 2017;16:248.PubMedPubMedCentralCrossRef Gerardin J, Bever CA, Bridenbecker D, Hamainza B, Silumbe K, Miller JM, et al. Effectiveness of reactive case detection for malaria elimination in three archetypical transmission settings: a modelling study. Malar J. 2017;16:248.PubMedPubMedCentralCrossRef
68.
go back to reference Gerardin J, Ouédraogo AL, McCarthy KA, Eckhoff PA, Wenger EA. Characterization of the infectious reservoir of malaria with an agent-based model calibrated to age-stratified parasite densities and infectiousness. Malar J. 2015;14:231.PubMedPubMedCentralCrossRef Gerardin J, Ouédraogo AL, McCarthy KA, Eckhoff PA, Wenger EA. Characterization of the infectious reservoir of malaria with an agent-based model calibrated to age-stratified parasite densities and infectiousness. Malar J. 2015;14:231.PubMedPubMedCentralCrossRef
69.
go back to reference Walker PGT, Griffin JT, Ferguson NM, Ghani AC. Estimating the most efficient allocation of interventions to achieve reductions in Plasmodium falciparum malaria burden and transmission in Africa: a modelling study. Lancet Glob Health. 2016;4:e474.PubMedCrossRef Walker PGT, Griffin JT, Ferguson NM, Ghani AC. Estimating the most efficient allocation of interventions to achieve reductions in Plasmodium falciparum malaria burden and transmission in Africa: a modelling study. Lancet Glob Health. 2016;4:e474.PubMedCrossRef
70.
go back to reference Ferreira CP, Lyra SP, Azevedo F, Greenhalgh D, Massad E. Modelling the impact of the long-term use of insecticide-treated bed nets on Anopheles mosquito biting time. Malar J. 2017;16:373.PubMedPubMedCentralCrossRef Ferreira CP, Lyra SP, Azevedo F, Greenhalgh D, Massad E. Modelling the impact of the long-term use of insecticide-treated bed nets on Anopheles mosquito biting time. Malar J. 2017;16:373.PubMedPubMedCentralCrossRef
71.
go back to reference Linard C, Ponçon N, Fontenille D, Lambin EF. A multi-agent simulation to assess the risk of malaria re-emergence in southern France. Ecol Modell. 2009;220:160–74.CrossRef Linard C, Ponçon N, Fontenille D, Lambin EF. A multi-agent simulation to assess the risk of malaria re-emergence in southern France. Ecol Modell. 2009;220:160–74.CrossRef
72.
73.
go back to reference Molineaux L, Diebner HH, Eichner M, Collins WE, Jeffery GM, Dietz K. Plasmodium falciparum parasitaemia described by a new mathematical model. Parasitology. 2001;122(Pt 4):379–91.PubMed Molineaux L, Diebner HH, Eichner M, Collins WE, Jeffery GM, Dietz K. Plasmodium falciparum parasitaemia described by a new mathematical model. Parasitology. 2001;122(Pt 4):379–91.PubMed
74.
go back to reference McKenzie FE, Bossert WH. An integrated model of Plasmodium falciparum dynamics. J Theor Biol. 2005;232:411–26.PubMedCrossRef McKenzie FE, Bossert WH. An integrated model of Plasmodium falciparum dynamics. J Theor Biol. 2005;232:411–26.PubMedCrossRef
75.
go back to reference Gatton ML, Dunn J, Chaudhry A, Ciketic S, Cunningham J, Cheng Q. Implications of parasites lacking Plasmodium falciparum histidine-rich protein 2 on malaria morbidity and control when rapid diagnostic tests are used for diagnosis. J Infect Dis. 2017;215:1156–66.PubMedCrossRef Gatton ML, Dunn J, Chaudhry A, Ciketic S, Cunningham J, Cheng Q. Implications of parasites lacking Plasmodium falciparum histidine-rich protein 2 on malaria morbidity and control when rapid diagnostic tests are used for diagnosis. J Infect Dis. 2017;215:1156–66.PubMedCrossRef
76.
go back to reference Watson OJ, Slater HC, Verity R, Parr JB, Mwandagalirwa MK, Tshefu A, et al. Modelling the drivers of the spread of Plasmodium falciparum hrp2 gene deletions in sub-Saharan Africa. Elife. 2017;6:e25008.PubMedPubMedCentralCrossRef Watson OJ, Slater HC, Verity R, Parr JB, Mwandagalirwa MK, Tshefu A, et al. Modelling the drivers of the spread of Plasmodium falciparum hrp2 gene deletions in sub-Saharan Africa. Elife. 2017;6:e25008.PubMedPubMedCentralCrossRef
77.
go back to reference Klein EY. The impact of heterogeneous transmission on the establishment and spread of antimalarial drug resistance. J Theor Biol. 2014;340:177–85.PubMedCrossRef Klein EY. The impact of heterogeneous transmission on the establishment and spread of antimalarial drug resistance. J Theor Biol. 2014;340:177–85.PubMedCrossRef
78.
go back to reference McCarthy KA, Wenger EA, Huynh GH, Eckhoff PA. Calibration of an intrahost malaria model and parameter ensemble evaluation of a pre-erythrocytic vaccine. Malar J. 2015;14:6.PubMedPubMedCentralCrossRef McCarthy KA, Wenger EA, Huynh GH, Eckhoff PA. Calibration of an intrahost malaria model and parameter ensemble evaluation of a pre-erythrocytic vaccine. Malar J. 2015;14:6.PubMedPubMedCentralCrossRef
79.
go back to reference Gurarie D, Karl S, Zimmerman PA, King CH, St Pierre TG, Davis TME. Mathematical modeling of malaria infection with innate and adaptive immunity in individuals and agent-based communities. PLoS ONE. 2012;7:e34040.PubMedPubMedCentralCrossRef Gurarie D, Karl S, Zimmerman PA, King CH, St Pierre TG, Davis TME. Mathematical modeling of malaria infection with innate and adaptive immunity in individuals and agent-based communities. PLoS ONE. 2012;7:e34040.PubMedPubMedCentralCrossRef
80.
go back to reference Gerardin J, Eckhoff P, Wenger EA. Mass campaigns with antimalarial drugs: a modelling comparison of artemether-lumefantrine and DHA-piperaquine with and without primaquine as tools for malaria control and elimination. BMC Infect Dis. 2015;15:144.PubMedPubMedCentralCrossRef Gerardin J, Eckhoff P, Wenger EA. Mass campaigns with antimalarial drugs: a modelling comparison of artemether-lumefantrine and DHA-piperaquine with and without primaquine as tools for malaria control and elimination. BMC Infect Dis. 2015;15:144.PubMedPubMedCentralCrossRef
81.
go back to reference Eckhoff PA. Malaria parasite diversity and transmission intensity affect development of parasitological immunity in a mathematical model. Malar J. 2012;11:419.PubMedPubMedCentralCrossRef Eckhoff PA. Malaria parasite diversity and transmission intensity affect development of parasitological immunity in a mathematical model. Malar J. 2012;11:419.PubMedPubMedCentralCrossRef
83.
go back to reference Sauboin CJ, Van Bellinghen L-A, Van De Velde N, Van Vlaenderen I. Potential public health impact of RTS, S malaria candidate vaccine in sub-Saharan Africa: a modelling study. Malar J. 2015;14:524.PubMedPubMedCentralCrossRef Sauboin CJ, Van Bellinghen L-A, Van De Velde N, Van Vlaenderen I. Potential public health impact of RTS, S malaria candidate vaccine in sub-Saharan Africa: a modelling study. Malar J. 2015;14:524.PubMedPubMedCentralCrossRef
84.
go back to reference Stryker JJ, Bomblies A. The impacts of land use change on malaria vector abundance in a water-limited, highland region of Ethiopia. EcoHealth. 2012;9:455–70.PubMedCrossRef Stryker JJ, Bomblies A. The impacts of land use change on malaria vector abundance in a water-limited, highland region of Ethiopia. EcoHealth. 2012;9:455–70.PubMedCrossRef
85.
go back to reference Gerardin J, Bever CA, Hamainza B, Miller JM, Eckhoff PA, Wenger EA. Optimal population-level infection detection strategies for malaria control and elimination in a spatial model of malaria transmission. PLoS Comput Biol. 2016;12:e1004707.PubMedPubMedCentralCrossRef Gerardin J, Bever CA, Hamainza B, Miller JM, Eckhoff PA, Wenger EA. Optimal population-level infection detection strategies for malaria control and elimination in a spatial model of malaria transmission. PLoS Comput Biol. 2016;12:e1004707.PubMedPubMedCentralCrossRef
86.
go back to reference Rateb F, Pavard B, Bellamine-BenSaoud N, Merelo JJ, Arenas MG. Modeling malaria with multi-agent systems. Int J Intell Inf Technol. 2005;1:17–27.CrossRef Rateb F, Pavard B, Bellamine-BenSaoud N, Merelo JJ, Arenas MG. Modeling malaria with multi-agent systems. Int J Intell Inf Technol. 2005;1:17–27.CrossRef
87.
go back to reference Hay SI, Guerra CA, Gething PW, Patil AP, Tatem AJ, Noor AM, et al. A world malaria map: Plasmodium falciparum endemicity in 2007. PLoS Med. 2009;6:e1000048.PubMedPubMedCentralCrossRef Hay SI, Guerra CA, Gething PW, Patil AP, Tatem AJ, Noor AM, et al. A world malaria map: Plasmodium falciparum endemicity in 2007. PLoS Med. 2009;6:e1000048.PubMedPubMedCentralCrossRef
88.
go back to reference Markham CG. Seasonaility of precipitation in the United States. Ann Assoc Am Geogr. 1970;60:593–7.CrossRef Markham CG. Seasonaility of precipitation in the United States. Ann Assoc Am Geogr. 1970;60:593–7.CrossRef
89.
go back to reference Griffin JT, Ferguson NM, Ghani AC. Estimates of the changing age-burden of Plasmodium falciparum malaria disease in sub-Saharan Africa. Nat Commun. 2014;5:3136.PubMedPubMedCentralCrossRef Griffin JT, Ferguson NM, Ghani AC. Estimates of the changing age-burden of Plasmodium falciparum malaria disease in sub-Saharan Africa. Nat Commun. 2014;5:3136.PubMedPubMedCentralCrossRef
90.
go back to reference Slater HC, Griffin JT, Ghani AC, Okell LC. Assessing the potential impact of artemisinin and partner drug resistance in sub-Saharan Africa. Malar J. 2016;15:10.PubMedPubMedCentralCrossRef Slater HC, Griffin JT, Ghani AC, Okell LC. Assessing the potential impact of artemisinin and partner drug resistance in sub-Saharan Africa. Malar J. 2016;15:10.PubMedPubMedCentralCrossRef
91.
go back to reference Okell LC, Cairns M, Griffin JT, Ferguson NM, Tarning J, Jagoe G, et al. Contrasting benefits of different artemisinin combination therapies as first-line malaria treatments using model-based cost-effectiveness analysis. Nat Commun. 2014;5:5606.PubMedPubMedCentralCrossRef Okell LC, Cairns M, Griffin JT, Ferguson NM, Tarning J, Jagoe G, et al. Contrasting benefits of different artemisinin combination therapies as first-line malaria treatments using model-based cost-effectiveness analysis. Nat Commun. 2014;5:5606.PubMedPubMedCentralCrossRef
92.
go back to reference Griffin JT, Bhatt S, Sinka ME, Gething PW, Lynch M, Patouillard E, et al. Potential for reduction of burden and local elimination of malaria by reducing Plasmodium falciparum malaria transmission: a mathematical modelling study. Lancet Infect Dis. 2016;16:465–72.PubMedPubMedCentralCrossRef Griffin JT, Bhatt S, Sinka ME, Gething PW, Lynch M, Patouillard E, et al. Potential for reduction of burden and local elimination of malaria by reducing Plasmodium falciparum malaria transmission: a mathematical modelling study. Lancet Infect Dis. 2016;16:465–72.PubMedPubMedCentralCrossRef
93.
go back to reference Bretscher MT, Griffin JT, Ghani AC, Okell LC. Modelling the benefits of long-acting or transmission-blocking drugs for reducing Plasmodium falciparum transmission by case management or by mass treatment. Malar J. 2017;16:341.PubMedPubMedCentralCrossRef Bretscher MT, Griffin JT, Ghani AC, Okell LC. Modelling the benefits of long-acting or transmission-blocking drugs for reducing Plasmodium falciparum transmission by case management or by mass treatment. Malar J. 2017;16:341.PubMedPubMedCentralCrossRef
94.
go back to reference Gu W, Killeen GF, Mbogo CM, Regens JL, Githure JI, Beier JC. An individual-based model of Plasmodium falciparum malaria transmission on the coast of Kenya. Trans R Soc Trop Med Hyg. 2003;97:43–50.PubMedCrossRef Gu W, Killeen GF, Mbogo CM, Regens JL, Githure JI, Beier JC. An individual-based model of Plasmodium falciparum malaria transmission on the coast of Kenya. Trans R Soc Trop Med Hyg. 2003;97:43–50.PubMedCrossRef
95.
go back to reference Gerardin J, Bertozzi-Villa A, Eckhoff PA, Wenger EA. Impact of mass drug administration campaigns depends on interaction with seasonal human movement. Int Health. 2018;10:252–7.PubMedPubMedCentralCrossRef Gerardin J, Bertozzi-Villa A, Eckhoff PA, Wenger EA. Impact of mass drug administration campaigns depends on interaction with seasonal human movement. Int Health. 2018;10:252–7.PubMedPubMedCentralCrossRef
96.
go back to reference Slater HC, Walker PGT, Bousema T, Okell LC, Ghani AC. The potential impact of adding ivermectin to a mass treatment intervention to reduce malaria transmission: a modelling study. J Infect Dis. 2014;210:1972–80.PubMedCrossRef Slater HC, Walker PGT, Bousema T, Okell LC, Ghani AC. The potential impact of adding ivermectin to a mass treatment intervention to reduce malaria transmission: a modelling study. J Infect Dis. 2014;210:1972–80.PubMedCrossRef
97.
go back to reference Winskill P, Walker PG, Griffin JT, Ghani AC. Modelling the cost-effectiveness of introducing the RTS, S malaria vaccine relative to scaling up other malaria interventions in sub-Saharan Africa. BMJ Glob Health. 2017;2:e000090.PubMedPubMedCentralCrossRef Winskill P, Walker PG, Griffin JT, Ghani AC. Modelling the cost-effectiveness of introducing the RTS, S malaria vaccine relative to scaling up other malaria interventions in sub-Saharan Africa. BMJ Glob Health. 2017;2:e000090.PubMedPubMedCentralCrossRef
98.
go back to reference Okell LC, Griffin JT, Kleinschmidt I, Hollingsworth TD, Churcher TS, White MJ, et al. The potential contribution of mass treatment to the control of Plasmodium falciparum malaria. PLoS ONE. 2011;6:e20179.PubMedPubMedCentralCrossRef Okell LC, Griffin JT, Kleinschmidt I, Hollingsworth TD, Churcher TS, White MJ, et al. The potential contribution of mass treatment to the control of Plasmodium falciparum malaria. PLoS ONE. 2011;6:e20179.PubMedPubMedCentralCrossRef
99.
go back to reference Arifin SMN, Davis GJ, Zhou Y, Madey GR. Verification and validation by docking: a case study of agent-based models of Anopheles gambiae. In: Proceedings of the 2010 Summer Computer Simulation Conference; 2010. p. 1–8. Arifin SMN, Davis GJ, Zhou Y, Madey GR. Verification and validation by docking: a case study of agent-based models of Anopheles gambiae. In: Proceedings of the 2010 Summer Computer Simulation Conference; 2010. p. 1–8.
100.
go back to reference Smith T, Maire N, Ross A, Penny M, Chitnis N, Schapira A, et al. Towards a comprehensive simulation model of malaria epidemiology and control. Parasitology. 2008;135:1507–16.PubMedCrossRef Smith T, Maire N, Ross A, Penny M, Chitnis N, Schapira A, et al. Towards a comprehensive simulation model of malaria epidemiology and control. Parasitology. 2008;135:1507–16.PubMedCrossRef
101.
go back to reference Tediosi F, Maire N, Smith T, Hutton G, Utzinger J, Ross A, et al. An approach to model the costs and effects of case management of Plasmodium falciparum malaria in sub-Saharan Africa. Am J Trop Med Hyg. 2006;75(2 Suppl):90–103.PubMedCrossRef Tediosi F, Maire N, Smith T, Hutton G, Utzinger J, Ross A, et al. An approach to model the costs and effects of case management of Plasmodium falciparum malaria in sub-Saharan Africa. Am J Trop Med Hyg. 2006;75(2 Suppl):90–103.PubMedCrossRef
102.
go back to reference Ross A, Maire N, Sicuri E, Smith T, Conteh L. Determinants of the cost-effectiveness of intermittent preventive treatment for malaria in infants and children. PLoS ONE. 2011;6:e18391.PubMedPubMedCentralCrossRef Ross A, Maire N, Sicuri E, Smith T, Conteh L. Determinants of the cost-effectiveness of intermittent preventive treatment for malaria in infants and children. PLoS ONE. 2011;6:e18391.PubMedPubMedCentralCrossRef
103.
go back to reference Crowell V, Briët OJ, Hardy D, Chitnis N, Maire N, Di Pasquale A, et al. Modelling the cost-effectiveness of mass screening and treatment for reducing Plasmodium falciparum malaria burden. Malar J. 2013;12:4.PubMedPubMedCentralCrossRef Crowell V, Briët OJ, Hardy D, Chitnis N, Maire N, Di Pasquale A, et al. Modelling the cost-effectiveness of mass screening and treatment for reducing Plasmodium falciparum malaria burden. Malar J. 2013;12:4.PubMedPubMedCentralCrossRef
105.
go back to reference Ross A, Penny M, Maire N, Studer A, Carneiro I, Schellenberg D, et al. Modelling the epidemiological impact of intermittent preventive treatment against malaria in infants. PLoS ONE. 2008;3:e2661.PubMedPubMedCentralCrossRef Ross A, Penny M, Maire N, Studer A, Carneiro I, Schellenberg D, et al. Modelling the epidemiological impact of intermittent preventive treatment against malaria in infants. PLoS ONE. 2008;3:e2661.PubMedPubMedCentralCrossRef
106.
go back to reference Briët OJT, Hardy D, Smith TA. Importance of factors determining the effective lifetime of a mass, long-lasting, insecticidal net distribution: a sensitivity analysis. Malar J. 2012;11:20.PubMedPubMedCentralCrossRef Briët OJT, Hardy D, Smith TA. Importance of factors determining the effective lifetime of a mass, long-lasting, insecticidal net distribution: a sensitivity analysis. Malar J. 2012;11:20.PubMedPubMedCentralCrossRef
107.
go back to reference Smith T, Ross A, Maire N, Chitnis N, Studer A, Hardy D, et al. Ensemble modeling of the likely public health impact of a pre-erythrocytic malaria vaccine. PLoS Med. 2012;9:e1001157.PubMedPubMedCentralCrossRef Smith T, Ross A, Maire N, Chitnis N, Studer A, Hardy D, et al. Ensemble modeling of the likely public health impact of a pre-erythrocytic malaria vaccine. PLoS Med. 2012;9:e1001157.PubMedPubMedCentralCrossRef
108.
go back to reference Penny MA, Pemberton-Ross P, Smith TA. The time-course of protection of the RTS, S vaccine against malaria infections and clinical disease. Malar J. 2015;14:437.PubMedPubMedCentralCrossRef Penny MA, Pemberton-Ross P, Smith TA. The time-course of protection of the RTS, S vaccine against malaria infections and clinical disease. Malar J. 2015;14:437.PubMedPubMedCentralCrossRef
109.
go back to reference Stuckey EM, Miller JM, Littrell M, Chitnis N, Steketee R. Operational strategies of anti-malarial drug campaigns for malaria elimination in Zambia’s southern province: a simulation study. Malar J. 2016;15:148.PubMedPubMedCentralCrossRef Stuckey EM, Miller JM, Littrell M, Chitnis N, Steketee R. Operational strategies of anti-malarial drug campaigns for malaria elimination in Zambia’s southern province: a simulation study. Malar J. 2016;15:148.PubMedPubMedCentralCrossRef
110.
go back to reference Stuckey EM, Stevenson JC, Cooke MK, Owaga C, Marube E, Oando G, et al. Simulation of malaria epidemiology and control in the highlands of western Kenya. Malar J. 2012;11:357.PubMedPubMedCentralCrossRef Stuckey EM, Stevenson JC, Cooke MK, Owaga C, Marube E, Oando G, et al. Simulation of malaria epidemiology and control in the highlands of western Kenya. Malar J. 2012;11:357.PubMedPubMedCentralCrossRef
111.
go back to reference Briët OJT, Penny MA, Hardy D, Awolola TS, Van Bortel W, Corbel V, et al. Effects of pyrethroid resistance on the cost effectiveness of a mass distribution of long- lasting insecticidal nets: a modelling study. Malar J. 2013;12:77.PubMedPubMedCentralCrossRef Briët OJT, Penny MA, Hardy D, Awolola TS, Van Bortel W, Corbel V, et al. Effects of pyrethroid resistance on the cost effectiveness of a mass distribution of long- lasting insecticidal nets: a modelling study. Malar J. 2013;12:77.PubMedPubMedCentralCrossRef
112.
go back to reference Briët OJT, Chitnis N. Effects of changing mosquito host searching behaviour on the cost effectiveness of a mass distribution of long-lasting, insecticidal nets: a modelling study. Malar J. 2013;12:215.PubMedPubMedCentralCrossRef Briët OJT, Chitnis N. Effects of changing mosquito host searching behaviour on the cost effectiveness of a mass distribution of long-lasting, insecticidal nets: a modelling study. Malar J. 2013;12:215.PubMedPubMedCentralCrossRef
113.
go back to reference Briët OJT, Penny MA. Repeated mass distributions and continuous distribution of long-lasting insecticidal nets: modelling sustainability of health benefits from mosquito nets, depending on case management. Malar J. 2013;12:401.PubMedPubMedCentralCrossRef Briët OJT, Penny MA. Repeated mass distributions and continuous distribution of long-lasting insecticidal nets: modelling sustainability of health benefits from mosquito nets, depending on case management. Malar J. 2013;12:401.PubMedPubMedCentralCrossRef
114.
go back to reference Stuckey EM, Stevenson J, Galactionova K, Baidjoe AY, Bousema T, Odongo W, et al. Modeling the cost effectiveness of malaria control interventions in the highlands of western Kenya. PLoS ONE. 2014;9:e107700.PubMedPubMedCentralCrossRef Stuckey EM, Stevenson J, Galactionova K, Baidjoe AY, Bousema T, Odongo W, et al. Modeling the cost effectiveness of malaria control interventions in the highlands of western Kenya. PLoS ONE. 2014;9:e107700.PubMedPubMedCentralCrossRef
115.
go back to reference Pemberton-Ross P, Smith TA, Hodel EM, Kay K, Penny MA. Age-shifting in malaria incidence as a result of induced immunological deficit: a simulation study. Malar J. 2015;14:287.PubMedPubMedCentralCrossRef Pemberton-Ross P, Smith TA, Hodel EM, Kay K, Penny MA. Age-shifting in malaria incidence as a result of induced immunological deficit: a simulation study. Malar J. 2015;14:287.PubMedPubMedCentralCrossRef
116.
go back to reference Penny MA, Galactionova K, Tarantino M, Tanner M, Smith TA. The public health impact of malaria vaccine RTS, S in malaria endemic Africa: country-specific predictions using 18 month follow-up Phase III data and simulation models. BMC Med. 2015;13:170.PubMedPubMedCentralCrossRef Penny MA, Galactionova K, Tarantino M, Tanner M, Smith TA. The public health impact of malaria vaccine RTS, S in malaria endemic Africa: country-specific predictions using 18 month follow-up Phase III data and simulation models. BMC Med. 2015;13:170.PubMedPubMedCentralCrossRef
117.
go back to reference Yukich J, Chitnis N. When can malaria control and elimination programs safely reduce vector control efforts?. A simulation study. Geneva: World Health Organization; 2015. Yukich J, Chitnis N. When can malaria control and elimination programs safely reduce vector control efforts?. A simulation study. Geneva: World Health Organization; 2015.
118.
go back to reference Cameron E, Battle KE, Bhatt S, Weiss DJ, Bisanzio D, Mappin B, et al. Defining the relationship between infection prevalence and clinical incidence of Plasmodium falciparum malaria. Nat Commun. 2015;6:8170.PubMedPubMedCentralCrossRef Cameron E, Battle KE, Bhatt S, Weiss DJ, Bisanzio D, Mappin B, et al. Defining the relationship between infection prevalence and clinical incidence of Plasmodium falciparum malaria. Nat Commun. 2015;6:8170.PubMedPubMedCentralCrossRef
119.
go back to reference Penny MA, Verity R, Bever CA, Sauboin C, Galactionova K, Flasche S, et al. Public health impact and cost-effectiveness of the RTS, S/AS01 malaria vaccine: a systematic comparison of predictions from four mathematical models. Lancet. 2016;387:367–75.PubMedPubMedCentralCrossRef Penny MA, Verity R, Bever CA, Sauboin C, Galactionova K, Flasche S, et al. Public health impact and cost-effectiveness of the RTS, S/AS01 malaria vaccine: a systematic comparison of predictions from four mathematical models. Lancet. 2016;387:367–75.PubMedPubMedCentralCrossRef
120.
go back to reference Brady OJ, Slater HC, Pemberton-Ross P, Wenger E, Maude RJ, Ghani AC, et al. Role of mass drug administration in elimination of Plasmodium falciparum malaria: a consensus modelling study. Lancet Glob Health. 2017;5:e680–7.PubMedPubMedCentralCrossRef Brady OJ, Slater HC, Pemberton-Ross P, Wenger E, Maude RJ, Ghani AC, et al. Role of mass drug administration in elimination of Plasmodium falciparum malaria: a consensus modelling study. Lancet Glob Health. 2017;5:e680–7.PubMedPubMedCentralCrossRef
121.
go back to reference Deville P, Linard C, Martin S, Gilbert M, Stevens FR, Gaughan AE, et al. Dynamic population mapping using mobile phone data. Proc Natl Acad Sci USA. 2014;111:15888–93.PubMedCrossRef Deville P, Linard C, Martin S, Gilbert M, Stevens FR, Gaughan AE, et al. Dynamic population mapping using mobile phone data. Proc Natl Acad Sci USA. 2014;111:15888–93.PubMedCrossRef
122.
go back to reference Keith JM, Spring D. Agent-based Bayesian approach to monitoring the progress of invasive species eradication programs. Proc Natl Acad Sci US. 2013;110:13428–33.CrossRef Keith JM, Spring D. Agent-based Bayesian approach to monitoring the progress of invasive species eradication programs. Proc Natl Acad Sci US. 2013;110:13428–33.CrossRef
123.
go back to reference Barber BE, William T, Dhararaj P, Anderios F, Grigg MJ, Yeo TW, et al. Epidemiology of Plasmodium knowlesi malaria in north-east Sabah, Malaysia: family clusters and wide age distribution. Malar J. 2012;11:401.PubMedPubMedCentralCrossRef Barber BE, William T, Dhararaj P, Anderios F, Grigg MJ, Yeo TW, et al. Epidemiology of Plasmodium knowlesi malaria in north-east Sabah, Malaysia: family clusters and wide age distribution. Malar J. 2012;11:401.PubMedPubMedCentralCrossRef
124.
go back to reference Lekone PE, Finkenstädt BF. Statistical inference in a stochastic epidemic SEIR model with control intervention: Ebola as a case study. Biometrics. 2006;62:1170–7.PubMedCrossRef Lekone PE, Finkenstädt BF. Statistical inference in a stochastic epidemic SEIR model with control intervention: Ebola as a case study. Biometrics. 2006;62:1170–7.PubMedCrossRef
125.
go back to reference Kerr CC, Stuart RM, Gray RT, Shattock AJ, Fraser-hurt N, Benedikt C, et al. Optima: a model for HIV epidemic analysis, program prioritization, and resource optimization. J Acquir Immune Defic Syndr. 2015;69:365–76.PubMedCrossRef Kerr CC, Stuart RM, Gray RT, Shattock AJ, Fraser-hurt N, Benedikt C, et al. Optima: a model for HIV epidemic analysis, program prioritization, and resource optimization. J Acquir Immune Defic Syndr. 2015;69:365–76.PubMedCrossRef
126.
go back to reference Heesterbeek H, Anderson RM, Andreasen V, Bansal S, De Angelis D, Dye C, et al. Modeling infectious disease dynamics in the complex landscape of global health. Science. 2015;347:4339.CrossRef Heesterbeek H, Anderson RM, Andreasen V, Bansal S, De Angelis D, Dye C, et al. Modeling infectious disease dynamics in the complex landscape of global health. Science. 2015;347:4339.CrossRef
127.
go back to reference Kelly SL, Shattock AJ, Kerr CC, Stuart RM, Papoyan A, Grigoryan T, et al. Optimizing HIV/AIDS resources in Armenia: increasing ART investment and examining HIV programmes for seasonal migrant labourers. J Int AIDS Soc. 2016;19:1–7.CrossRef Kelly SL, Shattock AJ, Kerr CC, Stuart RM, Papoyan A, Grigoryan T, et al. Optimizing HIV/AIDS resources in Armenia: increasing ART investment and examining HIV programmes for seasonal migrant labourers. J Int AIDS Soc. 2016;19:1–7.CrossRef
128.
go back to reference Scott N, Hussain SA, Martin-Hughes R, Fowkes FJI, Kerr CC, Pearson R, et al. Maximizing the impact of malaria funding through allocative efficiency: using the right interventions in the right locations. Malar J. 2017;16:368.PubMedPubMedCentralCrossRef Scott N, Hussain SA, Martin-Hughes R, Fowkes FJI, Kerr CC, Pearson R, et al. Maximizing the impact of malaria funding through allocative efficiency: using the right interventions in the right locations. Malar J. 2017;16:368.PubMedPubMedCentralCrossRef
129.
go back to reference Barbati M, Bruno G, Genovese A. Applications of agent-based models for optimization problems: a literature review. Expert Syst Appl. 2012;39:6020–8.CrossRef Barbati M, Bruno G, Genovese A. Applications of agent-based models for optimization problems: a literature review. Expert Syst Appl. 2012;39:6020–8.CrossRef
130.
go back to reference Grimm V, Berger U, DeAngelis DL, Polhill JG, Giske J, Railsback SF. The ODD protocol: a review and first update. Ecol Modell. 2010;221:2760–8.CrossRef Grimm V, Berger U, DeAngelis DL, Polhill JG, Giske J, Railsback SF. The ODD protocol: a review and first update. Ecol Modell. 2010;221:2760–8.CrossRef
131.
go back to reference Chretien JP, Riley S, George DB. Mathematical modeling of the West Africa ebola epidemic. Elife. 2015;4:1–15.CrossRef Chretien JP, Riley S, George DB. Mathematical modeling of the West Africa ebola epidemic. Elife. 2015;4:1–15.CrossRef
Metadata
Title
Agent-based models of malaria transmission: a systematic review
Authors
Neal R. Smith
James M. Trauer
Manoj Gambhir
Jack S. Richards
Richard J. Maude
Jonathan M. Keith
Jennifer A. Flegg
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2018
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-018-2442-y

Other articles of this Issue 1/2018

Malaria Journal 1/2018 Go to the issue