Skip to main content
Top
Published in: Malaria Journal 1/2009

Open Access 01-12-2009 | Research

A mechanistic approach for accurate simulation of village scale malaria transmission

Authors: Arne Bomblies, Jean-Bernard Duchemin, Elfatih AB Eltahir

Published in: Malaria Journal | Issue 1/2009

Login to get access

Abstract

Background

Malaria transmission models commonly incorporate spatial environmental and climate variability for making regional predictions of disease risk. However, a mismatch of these models' typical spatial resolutions and the characteristic scale of malaria vector population dynamics may confound disease risk predictions in areas of high spatial hydrological variability such as the Sahel region of Africa.

Methods

Field observations spanning two years from two Niger villages are compared. The two villages are separated by only 30 km but exhibit a ten-fold difference in anopheles mosquito density. These two villages would be covered by a single grid cell in many malaria models, yet their entomological activity differs greatly. Environmental conditions and associated entomological activity are simulated at high spatial- and temporal resolution using a mechanistic approach that couples a distributed hydrology scheme and an entomological model. Model results are compared to regular field observations of Anopheles gambiae sensu lato mosquito populations and local hydrology. The model resolves the formation and persistence of individual pools that facilitate mosquito breeding and predicts spatio-temporal mosquito population variability at high resolution using an agent-based modeling approach.

Results

Observations of soil moisture, pool size, and pool persistence are reproduced by the model. The resulting breeding of mosquitoes in the simulated pools yields time-integrated seasonal mosquito population dynamics that closely follow observations from captured mosquito abundance. Interannual difference in mosquito abundance is simulated, and the inter-village difference in mosquito population is reproduced for two years of observations. These modeling results emulate the known focal nature of malaria in Niger Sahel villages.

Conclusion

Hydrological variability must be represented at high spatial and temporal resolution to achieve accurate predictive ability of malaria risk at the village scale, which can then be integrated appropriately to regional spatial scales and seasonal temporal scales. These results have important implications for models seeking to link the impacts of climate change and climate variability to malaria transmission. The highly focal nature of malaria in the Sahel makes detailed representation necessary to evaluate village-level risks associated with hydrology-related vector population variability.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bomblies A, Duchemin JB, Eltahir EAB: Hydrology of malaria: Model development and application to a Sahelian village. Water Resour Res. 2008, 44: W12445-10.1029/2008WR006917. doi:10.1029/2008WR006917CrossRef Bomblies A, Duchemin JB, Eltahir EAB: Hydrology of malaria: Model development and application to a Sahelian village. Water Resour Res. 2008, 44: W12445-10.1029/2008WR006917. doi:10.1029/2008WR006917CrossRef
2.
go back to reference Bøgh C, Lindsay SW, Clarke SE, Dean A, Jawara M, Pinder M, Thomas CJ: High spatial resolution mapping of malaria transmission risk in the Gambia, West Africa, using Landsat TM satellite imagery. Am J Trop Med Hyg. 2007, 76 (5): 875-881.PubMed Bøgh C, Lindsay SW, Clarke SE, Dean A, Jawara M, Pinder M, Thomas CJ: High spatial resolution mapping of malaria transmission risk in the Gambia, West Africa, using Landsat TM satellite imagery. Am J Trop Med Hyg. 2007, 76 (5): 875-881.PubMed
3.
go back to reference Kim Y, Eltahir EAB: Role of topography in facilitating coexistence of trees and grasses within savannas. Water Resour Res. 2004, 40: W075005-10:1029/2003WR002578. Kim Y, Eltahir EAB: Role of topography in facilitating coexistence of trees and grasses within savannas. Water Resour Res. 2004, 40: W075005-10:1029/2003WR002578.
4.
go back to reference Craig MH, Snow RW, le Sueur D: A climate-based distribution model of malaria transmission in sub- Saharan Africa. Parasitol Today. 1999, 15: 105-111. 10.1016/S0169-4758(99)01396-4.CrossRefPubMed Craig MH, Snow RW, le Sueur D: A climate-based distribution model of malaria transmission in sub- Saharan Africa. Parasitol Today. 1999, 15: 105-111. 10.1016/S0169-4758(99)01396-4.CrossRefPubMed
5.
go back to reference Gillies MT: Studies on the Dispersion and Survival of Anopheles Gambiae Giles in East Africa: By Means of Marking and Release Experiments. Bull Entomol Res. 1961, 52: 99-127. 10.1017/S0007485300055309.CrossRef Gillies MT: Studies on the Dispersion and Survival of Anopheles Gambiae Giles in East Africa: By Means of Marking and Release Experiments. Bull Entomol Res. 1961, 52: 99-127. 10.1017/S0007485300055309.CrossRef
6.
go back to reference Costantini C, Li S, Della Torre A, Sagnon N, Coluzzi M, Taylor CE: Density, survival, and dispersal of Anopheles gambiae complex mosquitoes in a West African Sudan savanna village. Med and Vet Entomol. 1996, 10: 203-219. 10.1111/j.1365-2915.1996.tb00733.x.CrossRef Costantini C, Li S, Della Torre A, Sagnon N, Coluzzi M, Taylor CE: Density, survival, and dispersal of Anopheles gambiae complex mosquitoes in a West African Sudan savanna village. Med and Vet Entomol. 1996, 10: 203-219. 10.1111/j.1365-2915.1996.tb00733.x.CrossRef
7.
go back to reference Taylor CE, Touré YT, Carnahan J, Norris DE, Dolo G, Traoré SF, Edillo FE, Lanzaro GC: Gene flow among populations of the malaria vector, Anopheles gambiae, in Mali, West Africa. Genetics. 2001, 157: 743-750.PubMedCentralPubMed Taylor CE, Touré YT, Carnahan J, Norris DE, Dolo G, Traoré SF, Edillo FE, Lanzaro GC: Gene flow among populations of the malaria vector, Anopheles gambiae, in Mali, West Africa. Genetics. 2001, 157: 743-750.PubMedCentralPubMed
8.
go back to reference Minakawa N, Seda P, Yan G: Influence of host and larval habitat distribution on the abundance of African malaria vectors in Western Kenya. Am J Trop Med Hyg. 2002, 67 (1): 32-38.PubMed Minakawa N, Seda P, Yan G: Influence of host and larval habitat distribution on the abundance of African malaria vectors in Western Kenya. Am J Trop Med Hyg. 2002, 67 (1): 32-38.PubMed
9.
go back to reference Kitron U, Pener H, Costin C, Orshan L, Greenberg Z, Shalom U: Geographic information system in malaria surveillance: mosquito breeding and imported cases in Israel. Am J Trop Med Hyg. 1994, 50 (5): 550-556.PubMed Kitron U, Pener H, Costin C, Orshan L, Greenberg Z, Shalom U: Geographic information system in malaria surveillance: mosquito breeding and imported cases in Israel. Am J Trop Med Hyg. 1994, 50 (5): 550-556.PubMed
10.
go back to reference Talbot MR: Environmental responses to climatic change in the West African Sahel over the past 20,000 years. The Sahara and the Nile, quaternary environments and prehistoric occupation in northern Africa. Edited by: Faure H, Williams M. 1980, Rotterdam: Balkema, 37-62. Talbot MR: Environmental responses to climatic change in the West African Sahel over the past 20,000 years. The Sahara and the Nile, quaternary environments and prehistoric occupation in northern Africa. Edited by: Faure H, Williams M. 1980, Rotterdam: Balkema, 37-62.
11.
go back to reference Minakawa N, Sonye G, Mogi M, Yan G: Habitat characteristics of Anopheles gambiae s.s. larvae in a Kenyan highland. Med Vet Entomol. 2004, 18 (3): 301-305. 10.1111/j.0269-283X.2004.00503.x.CrossRefPubMed Minakawa N, Sonye G, Mogi M, Yan G: Habitat characteristics of Anopheles gambiae s.s. larvae in a Kenyan highland. Med Vet Entomol. 2004, 18 (3): 301-305. 10.1111/j.0269-283X.2004.00503.x.CrossRefPubMed
12.
go back to reference Mutuku FM, Alaii JA, Bayoh MN, Gimnig JE, Vulule JM, Walker ED, Kabiru E, Hawley WA: Distribution, description, and local knowledge of larval habitats of Anopheles gambiae s.l. in a village in western Kenya. Am J Trop Med Hyg. 2006, 74: 44-53.PubMed Mutuku FM, Alaii JA, Bayoh MN, Gimnig JE, Vulule JM, Walker ED, Kabiru E, Hawley WA: Distribution, description, and local knowledge of larval habitats of Anopheles gambiae s.l. in a village in western Kenya. Am J Trop Med Hyg. 2006, 74: 44-53.PubMed
13.
go back to reference Service MW: Mortalities of the immature stages of species B of the Anopheles gambiae complex in Kenya: Comparison between rice fields and temporary pools, identification of predators, and effects of insecticidal spraying. J Med Entomol. 1977, 13: 535-545.CrossRefPubMed Service MW: Mortalities of the immature stages of species B of the Anopheles gambiae complex in Kenya: Comparison between rice fields and temporary pools, identification of predators, and effects of insecticidal spraying. J Med Entomol. 1977, 13: 535-545.CrossRefPubMed
14.
go back to reference Pollard D, Thompson SL: Use of a land-surface-transfer scheme (LSX) in a global climate model: the response to doubling stomatal resistance. Global and Planetary Change. 1995, 10: 129-161. 10.1016/0921-8181(94)00023-7.CrossRef Pollard D, Thompson SL: Use of a land-surface-transfer scheme (LSX) in a global climate model: the response to doubling stomatal resistance. Global and Planetary Change. 1995, 10: 129-161. 10.1016/0921-8181(94)00023-7.CrossRef
15.
go back to reference Boyer L: Rapport de Projet Pluridisciplinaire. Thesis. 2003, École Nationale des Sciences Géographiques. Marne-la-Vallée, France Boyer L: Rapport de Projet Pluridisciplinaire. Thesis. 2003, École Nationale des Sciences Géographiques. Marne-la-Vallée, France
16.
go back to reference Depinay JM, Mbogo CM, Killeen G, Knols B, Beier J, Carlson J, Dushoff J, Billingsley P, Mwambi H, Githure J, Toure AM, McKenzie FE: A simulation model of African Anopheles ecology and population dynamics for the analysis of malaria transmission. Malaria Journal. 2004, 3: 29-10.1186/1475-2875-3-29.PubMedCentralCrossRefPubMed Depinay JM, Mbogo CM, Killeen G, Knols B, Beier J, Carlson J, Dushoff J, Billingsley P, Mwambi H, Githure J, Toure AM, McKenzie FE: A simulation model of African Anopheles ecology and population dynamics for the analysis of malaria transmission. Malaria Journal. 2004, 3: 29-10.1186/1475-2875-3-29.PubMedCentralCrossRefPubMed
17.
go back to reference Koenraadt CJM, Takken W: Cannibalism and predation among larvae of the Anopheles gambiae complex. Med Vet Entomol. 2003, 17: 61-66. 10.1046/j.1365-2915.2003.00409.x.CrossRefPubMed Koenraadt CJM, Takken W: Cannibalism and predation among larvae of the Anopheles gambiae complex. Med Vet Entomol. 2003, 17: 61-66. 10.1046/j.1365-2915.2003.00409.x.CrossRefPubMed
18.
go back to reference Detinova TS, Gillies MT: Observations on the determination of the age composition and epidemiological importance of populations of Anopheles gambiae Giles and Anopheles funestus Giles in Tanganyika. Bull World Health Organ. 1964, 30: 23-28.PubMedCentralPubMed Detinova TS, Gillies MT: Observations on the determination of the age composition and epidemiological importance of populations of Anopheles gambiae Giles and Anopheles funestus Giles in Tanganyika. Bull World Health Organ. 1964, 30: 23-28.PubMedCentralPubMed
19.
go back to reference Hoshen MB, Morse AP: A weather-driven model of malaria transmission. Malaria Journal. 2004, 3 (32): Hoshen MB, Morse AP: A weather-driven model of malaria transmission. Malaria Journal. 2004, 3 (32):
20.
go back to reference Detinova TS: Age grouping methods in diptera of medical importance. 1962, Geneva: World Health Organization Detinova TS: Age grouping methods in diptera of medical importance. 1962, Geneva: World Health Organization
21.
go back to reference Gillies MT: The role of carbon dioxide in host-finding by mosquitoes (Diptera: Culicidae): a review. Bull Entomol Res. 1980, 70: 525-532. 10.1017/S0007485300007811.CrossRef Gillies MT: The role of carbon dioxide in host-finding by mosquitoes (Diptera: Culicidae): a review. Bull Entomol Res. 1980, 70: 525-532. 10.1017/S0007485300007811.CrossRef
22.
go back to reference Martens WJM: Health Impacts of Climate Change and Ozone Depletion: An Eco-epidemiological Modelling Approach. PhD Thesis. 1997, Maastricht University, Department of Mathematics Martens WJM: Health Impacts of Climate Change and Ozone Depletion: An Eco-epidemiological Modelling Approach. PhD Thesis. 1997, Maastricht University, Department of Mathematics
23.
go back to reference Ye-Ebiyo Y, Pollack RJ, Kiszewski A, Spielman A: Enhancement of development of larval Anopheles arabiensis by proximity to flowering maize (Zea mays) in turbid water and when crowded. Am J Trop Med Hyg. 2003, 68 (6): 748-752.PubMed Ye-Ebiyo Y, Pollack RJ, Kiszewski A, Spielman A: Enhancement of development of larval Anopheles arabiensis by proximity to flowering maize (Zea mays) in turbid water and when crowded. Am J Trop Med Hyg. 2003, 68 (6): 748-752.PubMed
24.
25.
go back to reference Sandmeier M, Dajoz I: Allocation to reproduction in pearl millet: correlations between male and female functions. Int J Plant Sci. 1997, 510-518. 10.1086/297461. Sandmeier M, Dajoz I: Allocation to reproduction in pearl millet: correlations between male and female functions. Int J Plant Sci. 1997, 510-518. 10.1086/297461.
26.
go back to reference Desconnets JC, Taupin JD, Lebel T, Leduc C: Hydrology of Hapex-sahel central supersite: surface water drainage and aquifer recharge through the pool systems. J Hydrol. 1997, 188-189: 155-178. 10.1016/S0022-1694(96)03158-7.CrossRef Desconnets JC, Taupin JD, Lebel T, Leduc C: Hydrology of Hapex-sahel central supersite: surface water drainage and aquifer recharge through the pool systems. J Hydrol. 1997, 188-189: 155-178. 10.1016/S0022-1694(96)03158-7.CrossRef
27.
go back to reference Campbell GS: Soil physics with BASIC. 1985, New York: Elsevier Campbell GS: Soil physics with BASIC. 1985, New York: Elsevier
28.
go back to reference Yeh P, Eltahir EAB: Representation of water table dynamics in a land surface scheme. Part I: Model development. J Clim. 2003, 18 (12): 1861-1880. 10.1175/JCLI3330.1.CrossRef Yeh P, Eltahir EAB: Representation of water table dynamics in a land surface scheme. Part I: Model development. J Clim. 2003, 18 (12): 1861-1880. 10.1175/JCLI3330.1.CrossRef
29.
go back to reference Gillies MT, DeMeillon B: The Anophelinae of Africa South of the Sahara. 1968, Johannesburg: South African Institute of Medical Research Gillies MT, DeMeillon B: The Anophelinae of Africa South of the Sahara. 1968, Johannesburg: South African Institute of Medical Research
30.
go back to reference Costantini C, Sagnon NF, della Torre A, Diallo M, Brady J, Gibson G, Coluzzi M: Odor-mediated host preferences of West African mosquitoes, with particular reference to malaria vectors. Am J Trop Med Hyg. 1998, 58: 56-63.PubMed Costantini C, Sagnon NF, della Torre A, Diallo M, Brady J, Gibson G, Coluzzi M: Odor-mediated host preferences of West African mosquitoes, with particular reference to malaria vectors. Am J Trop Med Hyg. 1998, 58: 56-63.PubMed
31.
go back to reference Horsfall WR: Some responses of the malaria mosquito to light. Ann Entomol Soc Am. 1943, 36 (1): 41-45.CrossRef Horsfall WR: Some responses of the malaria mosquito to light. Ann Entomol Soc Am. 1943, 36 (1): 41-45.CrossRef
32.
go back to reference Pratt HD: Influence of the moon on light trap collections of Anopheles albimanus in Puerto Rico. J Natl Malar Soc. 1948, 7: 212-220.PubMed Pratt HD: Influence of the moon on light trap collections of Anopheles albimanus in Puerto Rico. J Natl Malar Soc. 1948, 7: 212-220.PubMed
Metadata
Title
A mechanistic approach for accurate simulation of village scale malaria transmission
Authors
Arne Bomblies
Jean-Bernard Duchemin
Elfatih AB Eltahir
Publication date
01-12-2009
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2009
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/1475-2875-8-223

Other articles of this Issue 1/2009

Malaria Journal 1/2009 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.