Skip to main content
Top
Published in: Malaria Journal 1/2017

Open Access 01-12-2017 | Research

A spatial agent-based model of Anopheles vagus for malaria epidemiology: examining the impact of vector control interventions

Authors: Md. Zahangir Alam, S. M. Niaz Arifin, Hasan Mohammad Al-Amin, Mohammad Shafiul Alam, M. Sohel Rahman

Published in: Malaria Journal | Issue 1/2017

Login to get access

Abstract

Background

Malaria, being a mosquito-borne infectious disease, is still one of the most devastating global health issues. The malaria vector Anopheles vagus is widely distributed in Asia and a dominant vector in Bandarban, Bangladesh. However, despite its wide distribution, no agent based model (ABM) of An. vagus has yet been developed. Additionally, its response to combined vector control interventions has not been examined.

Methods

A spatial ABM, denoted as ABM\(_{vagus}\), was designed and implemented based on the biological attributes of An. vagus by modifying an established, existing ABM of Anopheles gambiae. Environmental factors such as temperature and rainfall were incorporated into ABM\(_{vagus}\) using daily weather profiles. Real-life field data of Bandarban were used to generate landscapes which were used in the simulations. ABM\(_{vagus}\) was verified and validated using several standard techniques and against real-life field data. Using artificial landscapes, the individual and combined efficacies of existing vector control interventions are modeled, applied, and examined.

Results

Simulated female abundance curves generated by ABM\(_{vagus}\) closely follow the patterns observed in the field. Due to the use of daily temperature and rainfall data, ABM\(_{vagus}\) was able to generate seasonal patterns for a particular area. When two interventions were applied with parameters set to mid-ranges, ITNs/LLINs with IRS produced better results compared to the other cases. Moreover, any intervention combined with ITNs/LLINs yielded better results. Not surprisingly, three interventions applied in combination generate best results compared to any two interventions applied in combination.

Conclusions

Output of ABM\(_{vagus}\) showed high sensitivity to real-life field data of the environmental factors and the landscape of a particular area. Hence, it is recommended to use the model for a given area in connection to its local field data. For applying combined interventions, three interventions altogether are highly recommended whenever possible. It is also suggested that ITNs/LLINs with IRS can be applied when three interventions are not available.
Appendix
Available only for authorised users
Literature
5.
go back to reference Haque U, Magalhães RJS, Reid HL, Clements AC, Ahmed SM, Islam A. Spatial prediction of malaria prevalence in an endemic area of Bangladesh. Malaria J. 2010;9:120.CrossRef Haque U, Magalhães RJS, Reid HL, Clements AC, Ahmed SM, Islam A. Spatial prediction of malaria prevalence in an endemic area of Bangladesh. Malaria J. 2010;9:120.CrossRef
6.
go back to reference Haque U, Overgaard HJ, Clements ACA, Norris DE, Islam N, Karim J, et al. Malaria burden and control in Bangladesh and prospects for elimination: an epidemiological and economic assessment. Lancet Glob Health. 2014;2:e98–105.CrossRefPubMed Haque U, Overgaard HJ, Clements ACA, Norris DE, Islam N, Karim J, et al. Malaria burden and control in Bangladesh and prospects for elimination: an epidemiological and economic assessment. Lancet Glob Health. 2014;2:e98–105.CrossRefPubMed
7.
go back to reference Alam MS, Khan MGM, Chaudhury N, Deloer S, Nazib F, Bangali AM, et al. Prevalence of anopheline species and their Plasmodium infection status in epidemic-prone border areas of Bangladesh. Malaria J. 2010;9:15.CrossRef Alam MS, Khan MGM, Chaudhury N, Deloer S, Nazib F, Bangali AM, et al. Prevalence of anopheline species and their Plasmodium infection status in epidemic-prone border areas of Bangladesh. Malaria J. 2010;9:15.CrossRef
8.
go back to reference Alam MS, Chakma S, Khan WA, Glass GE, Mohon AN, Elahi R, et al. Diversity of anopheline species and their Plasmodium infection status in rural Bandarban, Bangladesh. Parasit Vectors. 2012;5:150.CrossRefPubMedPubMedCentral Alam MS, Chakma S, Khan WA, Glass GE, Mohon AN, Elahi R, et al. Diversity of anopheline species and their Plasmodium infection status in rural Bandarban, Bangladesh. Parasit Vectors. 2012;5:150.CrossRefPubMedPubMedCentral
9.
go back to reference Wardrop NA, Barnett AG, Atkinson JA, Clements AC. Plasmodium vivax malaria incidence over time and its association with temperature and rainfall in four counties of Yunnan Province, China. Malaria J. 2013;12:452.CrossRef Wardrop NA, Barnett AG, Atkinson JA, Clements AC. Plasmodium vivax malaria incidence over time and its association with temperature and rainfall in four counties of Yunnan Province, China. Malaria J. 2013;12:452.CrossRef
10.
go back to reference Rueda LM, Pecor JE, Harrison BA. Updated distribution records for Anopheles vagus (Diptera: Culicidae) in the Republic of Philippines, and considerations regarding its secondary vector roles in Southeast Asia. Trop Biomed. 2011;28(1):181–7.PubMed Rueda LM, Pecor JE, Harrison BA. Updated distribution records for Anopheles vagus (Diptera: Culicidae) in the Republic of Philippines, and considerations regarding its secondary vector roles in Southeast Asia. Trop Biomed. 2011;28(1):181–7.PubMed
11.
go back to reference Verhaeghen K, Bortel WV, Trung HD, Sochantha T, Keokenchanh K, Coosemans M. Knockdown resistance in Anopheles vagus, An. sinensis, An. paraliae and An. peditaeniatus populations of the Mekong region. Parasit Vectors. 2010;3:59–70.CrossRefPubMedPubMedCentral Verhaeghen K, Bortel WV, Trung HD, Sochantha T, Keokenchanh K, Coosemans M. Knockdown resistance in Anopheles vagus, An. sinensis, An. paraliae and An. peditaeniatus populations of the Mekong region. Parasit Vectors. 2010;3:59–70.CrossRefPubMedPubMedCentral
12.
go back to reference Maheswary NP, Majumdar S, Chowdhury AR, Faruque MS, Montanari RM. Incrmination of Anopheles vagus Donitz, 1902 as an epidemic malaria vector in Bangladesh. Indian J Malariol. 1994;31:35–8.PubMed Maheswary NP, Majumdar S, Chowdhury AR, Faruque MS, Montanari RM. Incrmination of Anopheles vagus Donitz, 1902 as an epidemic malaria vector in Bangladesh. Indian J Malariol. 1994;31:35–8.PubMed
13.
go back to reference Lynch CA, Hewitt S, editors. Malaria in the Asia-Pacific: burden, success and challenges. Sydney, Australia: Malaria 2012. Saving Lives in the Asia-Pacific Conference; 2012. Lynch CA, Hewitt S, editors. Malaria in the Asia-Pacific: burden, success and challenges. Sydney, Australia: Malaria 2012. Saving Lives in the Asia-Pacific Conference; 2012.
14.
go back to reference Atmosoedjono S, Partono F, Dennis DT, Purnomo S. Anopheles barbirostris (Diptera: Culicidae) as a vector of the Timor filaria on Flores Island: preliminary observations. J Med Entomol. 1977;13:611–61.CrossRefPubMed Atmosoedjono S, Partono F, Dennis DT, Purnomo S. Anopheles barbirostris (Diptera: Culicidae) as a vector of the Timor filaria on Flores Island: preliminary observations. J Med Entomol. 1977;13:611–61.CrossRefPubMed
15.
go back to reference Manguin S, Bangs MJ, Pothikasikorn J, Chareonviriyaphap T. Review on global co-transmission of human Plasmodium species and Wuchereria bancrofti by Anopheles mosquitoes. Infect Genet Evol. 2010;10:159–77.CrossRefPubMed Manguin S, Bangs MJ, Pothikasikorn J, Chareonviriyaphap T. Review on global co-transmission of human Plasmodium species and Wuchereria bancrofti by Anopheles mosquitoes. Infect Genet Evol. 2010;10:159–77.CrossRefPubMed
16.
go back to reference Stoops CA, Rusmiarto S, Susapto D, Munif A, Andris H, Barbara KA, et al. Bionomics of Anopheles spp. (Diptera: Culicidae) in a malaria endemic region of Sukabumi, West Java, Indonesia. J Vector Ecol. 2009;34(2):200–7.CrossRefPubMed Stoops CA, Rusmiarto S, Susapto D, Munif A, Andris H, Barbara KA, et al. Bionomics of Anopheles spp. (Diptera: Culicidae) in a malaria endemic region of Sukabumi, West Java, Indonesia. J Vector Ecol. 2009;34(2):200–7.CrossRefPubMed
17.
go back to reference Khan WA, Sack DA, Ahmed S, Prue CS, Alam MS, Haque R, et al. Mapping hypoendemic, seasonal malaria in rural Bandarban, Bangladesh: a prospective surveillance. Malaria J. 2011;10:124.CrossRef Khan WA, Sack DA, Ahmed S, Prue CS, Alam MS, Haque R, et al. Mapping hypoendemic, seasonal malaria in rural Bandarban, Bangladesh: a prospective surveillance. Malaria J. 2011;10:124.CrossRef
18.
go back to reference Elyazar IRF, Sinka ME, Gething PW, Tarmidzi SN, Surya A, Kusriastuti R. The distribution and bionomics of Anopheles malaria vector mosquitoes in Indonesia. Adv Parasitol. 2013;83(3):173–209.CrossRefPubMed Elyazar IRF, Sinka ME, Gething PW, Tarmidzi SN, Surya A, Kusriastuti R. The distribution and bionomics of Anopheles malaria vector mosquitoes in Indonesia. Adv Parasitol. 2013;83(3):173–209.CrossRefPubMed
20.
go back to reference Gu W, Novak RJ. Predicting the impact of insecticide-treated bed nets on malaria transmission: the devil is in the detail. Malaria J. 2009;8:256.CrossRef Gu W, Novak RJ. Predicting the impact of insecticide-treated bed nets on malaria transmission: the devil is in the detail. Malaria J. 2009;8:256.CrossRef
21.
go back to reference Eckhoff PA. A malaria transmission-directed model of mosquito life cycle and ecology. Malaria J. 2011;10:303.CrossRef Eckhoff PA. A malaria transmission-directed model of mosquito life cycle and ecology. Malaria J. 2011;10:303.CrossRef
22.
go back to reference Eckhoff PA. Mathematical models of within-host and transmission dynamics to determine effects of malaria interventions in a variety of transmission settings. Am J Trop Med Hyg. 2013;88(5):817–27.CrossRefPubMedPubMedCentral Eckhoff PA. Mathematical models of within-host and transmission dynamics to determine effects of malaria interventions in a variety of transmission settings. Am J Trop Med Hyg. 2013;88(5):817–27.CrossRefPubMedPubMedCentral
23.
go back to reference Griffin JT, Hollingsworth TD, Okell LC, Churcher TS, White M, Hinsley W, et al. Reducing Plasmodium falciparum malaria transmission in Africa: a model-based evaluation of intervention strategies. PLoS Med. 2010;7:e1000324.CrossRefPubMedPubMedCentral Griffin JT, Hollingsworth TD, Okell LC, Churcher TS, White M, Hinsley W, et al. Reducing Plasmodium falciparum malaria transmission in Africa: a model-based evaluation of intervention strategies. PLoS Med. 2010;7:e1000324.CrossRefPubMedPubMedCentral
24.
go back to reference Gurarie D, Karl S, Zimmerman PA, King CH, Pierre TGS, Davis TME. Mathematical modeling of malaria infection with innate and adaptive immunity in individuals and agent-based communities. PLoS ONE. 2012;7(3):e34040.CrossRefPubMedPubMedCentral Gurarie D, Karl S, Zimmerman PA, King CH, Pierre TGS, Davis TME. Mathematical modeling of malaria infection with innate and adaptive immunity in individuals and agent-based communities. PLoS ONE. 2012;7(3):e34040.CrossRefPubMedPubMedCentral
25.
go back to reference Lunde TM, Korecha D, Loha E, Sorteberg A, LindtjØrn B, et al. A dynamic model of some malaria-transmitting anopheline mosquitoes of the Afrotropical region. I. Model description and sensitivity analysis. Malaria J. 2013;12:28.CrossRef Lunde TM, Korecha D, Loha E, Sorteberg A, LindtjØrn B, et al. A dynamic model of some malaria-transmitting anopheline mosquitoes of the Afrotropical region. I. Model description and sensitivity analysis. Malaria J. 2013;12:28.CrossRef
26.
go back to reference Zhou Y, Arifin SMN, Gentile J, Kurtz SJ, Davis GJ, Wendelberger BA. An agent-based model of the Anopheles gambiae mosquito life cycle. In summer simulation multiconference, Ottawa, Ontario, Canada: Society for Computer Simulation International; 2010. p. 201–8. Zhou Y, Arifin SMN, Gentile J, Kurtz SJ, Davis GJ, Wendelberger BA. An agent-based model of the Anopheles gambiae mosquito life cycle. In summer simulation multiconference, Ottawa, Ontario, Canada: Society for Computer Simulation International; 2010. p. 201–8.
27.
go back to reference Arifin SMN, Davis GJ, Zhou Y. Modeling space in an agent-based model of malaria: comparison between non-spatial and spatial models. In Proceedings of the 2011 Workshop on agent-directed simulation San Diego, CA, USA: Society for Computer Simulation International. 2011; p. 92–99. Arifin SMN, Davis GJ, Zhou Y. Modeling space in an agent-based model of malaria: comparison between non-spatial and spatial models. In Proceedings of the 2011 Workshop on agent-directed simulation San Diego, CA, USA: Society for Computer Simulation International. 2011; p. 92–99.
28.
go back to reference Arifin SMN, Davis GJ, Zhou Y. A spatial agent-based model of malaria: model verification and effects of spatial heterogeneity. Int J Agent Technol Syst. 2011;3:17–34.CrossRef Arifin SMN, Davis GJ, Zhou Y. A spatial agent-based model of malaria: model verification and effects of spatial heterogeneity. Int J Agent Technol Syst. 2011;3:17–34.CrossRef
29.
go back to reference Arifin SN, Madey GR, Collins FH. Examining the impact of larval source management and insecticide-treated nets using a spatial agent-based model of Anopheles gambiae and a landscape generator tool. Malaria J. 2013;12:290.CrossRef Arifin SN, Madey GR, Collins FH. Examining the impact of larval source management and insecticide-treated nets using a spatial agent-based model of Anopheles gambiae and a landscape generator tool. Malaria J. 2013;12:290.CrossRef
30.
go back to reference Arifin SN, Zhou Y, Davis GJ, Gentile JE, Madey GR, Collins FH. An agent-based model of the population dynamics of Anopheles gambiae. Malaria J. 2014;13(1):424.CrossRef Arifin SN, Zhou Y, Davis GJ, Gentile JE, Madey GR, Collins FH. An agent-based model of the population dynamics of Anopheles gambiae. Malaria J. 2014;13(1):424.CrossRef
31.
go back to reference Kelly-Hope LA, Hemingway J, McKenzie FE. Environmental factors associated with the malaria vectors Anopheles gambiae and Anopheles funestus in Kenya. Malaria J. 2009;8:268.CrossRef Kelly-Hope LA, Hemingway J, McKenzie FE. Environmental factors associated with the malaria vectors Anopheles gambiae and Anopheles funestus in Kenya. Malaria J. 2009;8:268.CrossRef
32.
go back to reference Teklehaimanot HD, Lipsitch M, Teklehaimanot A, Schwartz J. Weather-based prediction of Plasmodium falciparum malaria in epidemic-prone regions of Ethiopia I. Patterns of lagged weather effects reflect biological mechanisms. Malaria J. 2004;3:41.CrossRef Teklehaimanot HD, Lipsitch M, Teklehaimanot A, Schwartz J. Weather-based prediction of Plasmodium falciparum malaria in epidemic-prone regions of Ethiopia I. Patterns of lagged weather effects reflect biological mechanisms. Malaria J. 2004;3:41.CrossRef
33.
go back to reference Coulibaly D, Rebaudet S, Travassos M, Tolo Y, Laurens M, Kone AK, et al. Spatio-temporal analysis of malaria within a transmission season in Bandiagara, Mali. Malaria J. 2013;12:82.CrossRef Coulibaly D, Rebaudet S, Travassos M, Tolo Y, Laurens M, Kone AK, et al. Spatio-temporal analysis of malaria within a transmission season in Bandiagara, Mali. Malaria J. 2013;12:82.CrossRef
34.
go back to reference Zhao X, Chen F, Feng Z, Author XL, Zhou XH. The temporal lagged association between meteorological factors and malaria in 30 counties in southwest China: a multilevel distributed lag non-linear analysis. Malaria J. 2014;13:57.CrossRef Zhao X, Chen F, Feng Z, Author XL, Zhou XH. The temporal lagged association between meteorological factors and malaria in 30 counties in southwest China: a multilevel distributed lag non-linear analysis. Malaria J. 2014;13:57.CrossRef
35.
go back to reference Arab A, Jackson MC, Kongoli C. Modelling the effects of weather and climate on malaria distributions in West Africa. Malaria J. 2014;13:126.CrossRef Arab A, Jackson MC, Kongoli C. Modelling the effects of weather and climate on malaria distributions in West Africa. Malaria J. 2014;13:126.CrossRef
36.
go back to reference Kumar DS, Andimuthu R, Rajan R, Venkatesan MS. Spatial trend, environmental and socioeconomic factors associated with malaria prevalence in Chennai. Malaria J. 2014;13:14.CrossRef Kumar DS, Andimuthu R, Rajan R, Venkatesan MS. Spatial trend, environmental and socioeconomic factors associated with malaria prevalence in Chennai. Malaria J. 2014;13:14.CrossRef
37.
go back to reference Haghdoost AA, Alexander N, Cox J. Modelling of malaria temporal variations in Iran. Trop Med Int Health. 2008;13:1501–8.CrossRefPubMed Haghdoost AA, Alexander N, Cox J. Modelling of malaria temporal variations in Iran. Trop Med Int Health. 2008;13:1501–8.CrossRefPubMed
38.
go back to reference Mabaso ML, Vounatsou P, Midzi S, Silva JD, Smith T. Spatio-temporal analysis of the role of climate in inter-annual variation of malaria incidence in Zimbabwe. Int J Health Geogr. 2006;5:20.CrossRefPubMedPubMedCentral Mabaso ML, Vounatsou P, Midzi S, Silva JD, Smith T. Spatio-temporal analysis of the role of climate in inter-annual variation of malaria incidence in Zimbabwe. Int J Health Geogr. 2006;5:20.CrossRefPubMedPubMedCentral
39.
go back to reference Clements AC, Barnett AG, Cheng ZW, Snow RW, Zhou HN. Space-time variation of malaria incidence in Yunnan province, China. Malaria J. 2009;8:180.CrossRef Clements AC, Barnett AG, Cheng ZW, Snow RW, Zhou HN. Space-time variation of malaria incidence in Yunnan province, China. Malaria J. 2009;8:180.CrossRef
40.
go back to reference Kristan M, Abeku TA, Beard J, Okia M, Rapuoda B, Sang J, et al. Variations in entomological indices in relation to weather patterns and malaria incidence in East African highlands: implications for epidemic prevention and control. Malaria J. 2008;7:231.CrossRef Kristan M, Abeku TA, Beard J, Okia M, Rapuoda B, Sang J, et al. Variations in entomological indices in relation to weather patterns and malaria incidence in East African highlands: implications for epidemic prevention and control. Malaria J. 2008;7:231.CrossRef
41.
go back to reference Lindsay SW, Hole DG, Hutchinson RA, Richards SA, Willis SG. Assessing the future threat from vivax malaria in the United Kingdom using two markedly different modeling approaches. Malaria J. 2010;9:70.CrossRef Lindsay SW, Hole DG, Hutchinson RA, Richards SA, Willis SG. Assessing the future threat from vivax malaria in the United Kingdom using two markedly different modeling approaches. Malaria J. 2010;9:70.CrossRef
42.
go back to reference Basurko C, Hanf M, Han-Sze R, Rogier S, Héritier P, Grenier C, et al. Influence of climate and river level on the incidence of malaria in Cacao, French Guiana. Malaria J. 2011;10:26.CrossRef Basurko C, Hanf M, Han-Sze R, Rogier S, Héritier P, Grenier C, et al. Influence of climate and river level on the incidence of malaria in Cacao, French Guiana. Malaria J. 2011;10:26.CrossRef
43.
44.
go back to reference Parham PE, Pople D, Christiansen-Jucht C, Lindsay S, Hinsley W, Michael E. Modeling the role of environmental variables on the population dynamics of the malaria vector Anopheles gambiae sensu stricto. Malaria J. 2012;11:271.CrossRef Parham PE, Pople D, Christiansen-Jucht C, Lindsay S, Hinsley W, Michael E. Modeling the role of environmental variables on the population dynamics of the malaria vector Anopheles gambiae sensu stricto. Malaria J. 2012;11:271.CrossRef
45.
go back to reference Hardy AJ, Gamarra JGP, Cross DE, Macklin MG, Smith MW, Kihonda J, et al. Habitat hydrology and geomorphology control the distribution of malaria vector larvae in Rural Africa. PLoS ONE. 2013;8(12):e81931.CrossRefPubMedPubMedCentral Hardy AJ, Gamarra JGP, Cross DE, Macklin MG, Smith MW, Kihonda J, et al. Habitat hydrology and geomorphology control the distribution of malaria vector larvae in Rural Africa. PLoS ONE. 2013;8(12):e81931.CrossRefPubMedPubMedCentral
46.
go back to reference Texier G, Machault V, Barragti M, Boutin JP, Rogier C. Environmental determinant of malaria cases among travellers. Malaria J. 2013;12:87.CrossRef Texier G, Machault V, Barragti M, Boutin JP, Rogier C. Environmental determinant of malaria cases among travellers. Malaria J. 2013;12:87.CrossRef
47.
go back to reference Paaijmans KP, Imbahale SS, Thomas MB, Takken W. Relevant microclimate for determining the development rate of malaria mosquitoes and possible implications of climate change. Malaria J. 2010;9:196.CrossRef Paaijmans KP, Imbahale SS, Thomas MB, Takken W. Relevant microclimate for determining the development rate of malaria mosquitoes and possible implications of climate change. Malaria J. 2010;9:196.CrossRef
48.
go back to reference Rahman A, Kogan F, Roytman L. Analysis of malaria cases in Bangladesh with remote sensing data. Am J Trop Med Hyg. 2006;74(1):17–9.PubMed Rahman A, Kogan F, Roytman L. Analysis of malaria cases in Bangladesh with remote sensing data. Am J Trop Med Hyg. 2006;74(1):17–9.PubMed
49.
go back to reference Lwin MM, Sudhinaraset M, San AK, Aung T. Improving malaria knowledge and practices in rural Myanmar through a village health worker intervention: a cross-sectional study. Malaria J. 2014;13:5.CrossRef Lwin MM, Sudhinaraset M, San AK, Aung T. Improving malaria knowledge and practices in rural Myanmar through a village health worker intervention: a cross-sectional study. Malaria J. 2014;13:5.CrossRef
52.
go back to reference Dev V. Integrated disease vector control of malaria: a success story based in Assam, northeastern India. ICMR Bull. 2009;39:21–8. Dev V. Integrated disease vector control of malaria: a success story based in Assam, northeastern India. ICMR Bull. 2009;39:21–8.
53.
go back to reference Prasad H. Evaluation of malaria control programme in three selected districts of Assam, India. J Vector Borne Dis. 2009;46:280–7.PubMed Prasad H. Evaluation of malaria control programme in three selected districts of Assam, India. J Vector Borne Dis. 2009;46:280–7.PubMed
54.
go back to reference Ahmed SM, Haque R, Haque U, Hossain A. Knowledge on the transmission, prevention and treatment of malaria among two endemic populations of Bangladesh and their health-seeking behavior. Malaria J. 2009;8:173.CrossRef Ahmed SM, Haque R, Haque U, Hossain A. Knowledge on the transmission, prevention and treatment of malaria among two endemic populations of Bangladesh and their health-seeking behavior. Malaria J. 2009;8:173.CrossRef
57.
go back to reference Yakob L, Yan G. Modeling the effects of integrating larval habitat source reduction and insecticide treated nets for malaria control. PLoS ONE. 2009;4:e6921.CrossRefPubMedPubMedCentral Yakob L, Yan G. Modeling the effects of integrating larval habitat source reduction and insecticide treated nets for malaria control. PLoS ONE. 2009;4:e6921.CrossRefPubMedPubMedCentral
58.
go back to reference malERA. Consultative group on vector control: a research agenda for malaria eradication: vector control. PLoS Med. 2011;8:e1000401.CrossRef malERA. Consultative group on vector control: a research agenda for malaria eradication: vector control. PLoS Med. 2011;8:e1000401.CrossRef
59.
go back to reference Hawley WA, Kuile FOT, Steketee RS, Nahlen BL, Terlouw DJ, Gimnig JE, et al. Implications of the western Kenya permethrin-treated bed net study for policy, program implementation, and future research. Am J Trop Med Hyg. 2003;68(Suppl 4):168–73.PubMed Hawley WA, Kuile FOT, Steketee RS, Nahlen BL, Terlouw DJ, Gimnig JE, et al. Implications of the western Kenya permethrin-treated bed net study for policy, program implementation, and future research. Am J Trop Med Hyg. 2003;68(Suppl 4):168–73.PubMed
60.
go back to reference Bowen HL. Impact of a mass media campaign on bed net use in Cameroon. Malaria J. 2013;12:36.CrossRef Bowen HL. Impact of a mass media campaign on bed net use in Cameroon. Malaria J. 2013;12:36.CrossRef
61.
go back to reference Chitnis N, Schapira A, Smith T, Steketee R. Comparing the effectiveness of malaria vector-control interventions through a mathematical model. Am J Trop Med Hyg. 2010;83:230–40.CrossRefPubMedPubMedCentral Chitnis N, Schapira A, Smith T, Steketee R. Comparing the effectiveness of malaria vector-control interventions through a mathematical model. Am J Trop Med Hyg. 2010;83:230–40.CrossRefPubMedPubMedCentral
62.
go back to reference Kelly DW, Thompson CE. Epidemiology and optimal foraging: modelling the ideal free distribution of insect vectors. Parasitology. 2000;120:319–27.CrossRefPubMed Kelly DW, Thompson CE. Epidemiology and optimal foraging: modelling the ideal free distribution of insect vectors. Parasitology. 2000;120:319–27.CrossRefPubMed
63.
go back to reference Saul A. Zooprophylaxis or zoopotentiation: the outcome of introducing animals on vector transmission is highly dependent on the mosquito mortality while searching. Malaria J. 2003;2:32.CrossRef Saul A. Zooprophylaxis or zoopotentiation: the outcome of introducing animals on vector transmission is highly dependent on the mosquito mortality while searching. Malaria J. 2003;2:32.CrossRef
64.
go back to reference Killeen GF, Seyoum A, Knols BGJ. Rationalizing historical successes of malaria control in Africa in terms of mosquito resource availability management. Am J Trop Med Hyg. 2004;71(Suppl 2):87–93.PubMed Killeen GF, Seyoum A, Knols BGJ. Rationalizing historical successes of malaria control in Africa in terms of mosquito resource availability management. Am J Trop Med Hyg. 2004;71(Suppl 2):87–93.PubMed
65.
go back to reference Killeen GF, Smith TA, Ferguson HM, Mshinda H, Abdulla S, Lengeler C, et al. Preventing childhood malaria in Africa by protecting adults from mosquitoes with insecticide-treated nets. PLoS Med. 2007;4:e229.CrossRefPubMedPubMedCentral Killeen GF, Smith TA, Ferguson HM, Mshinda H, Abdulla S, Lengeler C, et al. Preventing childhood malaria in Africa by protecting adults from mosquitoes with insecticide-treated nets. PLoS Med. 2007;4:e229.CrossRefPubMedPubMedCentral
66.
go back to reference Menach AL, Takala S, McKenzie FE, Perisse A, Harris A, Flahault A, et al. An elaborated feeding cycle model for reductions in vectorial capacity of night-biting mosquitoes by insecticide-treated nets. Malaria J. 2007;6:10.CrossRef Menach AL, Takala S, McKenzie FE, Perisse A, Harris A, Flahault A, et al. An elaborated feeding cycle model for reductions in vectorial capacity of night-biting mosquitoes by insecticide-treated nets. Malaria J. 2007;6:10.CrossRef
67.
go back to reference Gillies MT. Studies on the dispersion and survival of Anopheles gambiae Giles in East Africa, by means of marking and release experiments. Bull Entomol Res. 1961;52:99–127.CrossRef Gillies MT. Studies on the dispersion and survival of Anopheles gambiae Giles in East Africa, by means of marking and release experiments. Bull Entomol Res. 1961;52:99–127.CrossRef
68.
go back to reference Gillies MT, Wilkes TJ. The range of attraction of single baits for some West African mosquitoes. Bull Entomol Res. 1970;60:225–35.CrossRefPubMed Gillies MT, Wilkes TJ. The range of attraction of single baits for some West African mosquitoes. Bull Entomol Res. 1970;60:225–35.CrossRefPubMed
69.
go back to reference Gilliesa MT, Wilkesa TJ. The range of attraction of animal baits and carbon dioxide for mosquitoes. Bull Entomol Res. 1972;61:389–404.CrossRef Gilliesa MT, Wilkesa TJ. The range of attraction of animal baits and carbon dioxide for mosquitoes. Bull Entomol Res. 1972;61:389–404.CrossRef
70.
go back to reference Gilliesa MT, Wilkesa TJ. The range of attraction of birds as baits for some West African mosquitoes. Bull Entomol Res. 1974;63:573–81.CrossRef Gilliesa MT, Wilkesa TJ. The range of attraction of birds as baits for some West African mosquitoes. Bull Entomol Res. 1974;63:573–81.CrossRef
71.
go back to reference Midega JT, Mbogo CM, Mwambi H, Wilson MD, Ojwang G, Mwangangi JM, et al. Estimating dispersal and survival of Anopheles gambiae and Anopheles funestus along the Kenyan coast by using mark-release-recapture methods. J Med Entomol. 2007;44:923–9.CrossRefPubMedPubMedCentral Midega JT, Mbogo CM, Mwambi H, Wilson MD, Ojwang G, Mwangangi JM, et al. Estimating dispersal and survival of Anopheles gambiae and Anopheles funestus along the Kenyan coast by using mark-release-recapture methods. J Med Entomol. 2007;44:923–9.CrossRefPubMedPubMedCentral
72.
go back to reference Protopopoff N, Matowo J, Malima R, Kavishe R, Kaaya R, Wright A, et al. High level of resistance in the mosquito Anopheles gambiae to pyrethroid insecticides and reduced susceptibility to bendiocarb in north-western Tanzania. Malaria J. 2013;12:149.CrossRef Protopopoff N, Matowo J, Malima R, Kavishe R, Kaaya R, Wright A, et al. High level of resistance in the mosquito Anopheles gambiae to pyrethroid insecticides and reduced susceptibility to bendiocarb in north-western Tanzania. Malaria J. 2013;12:149.CrossRef
73.
go back to reference Thomsen EK, Strode C, Hemmings K, Hughes AJ, Chanda E, Musapa M, et al. Underpinning sustainable vector control through informed insecticide resistance management. PLoS ONE. 2014;9(6):e99822.CrossRefPubMedPubMedCentral Thomsen EK, Strode C, Hemmings K, Hughes AJ, Chanda E, Musapa M, et al. Underpinning sustainable vector control through informed insecticide resistance management. PLoS ONE. 2014;9(6):e99822.CrossRefPubMedPubMedCentral
74.
go back to reference Lutambi AM, Penny MA, Smith T, Chitnis N. Mathematical modelling of mosquito dispersal in a heterogeneous environment. Math Biosci. 2013;231:198–216.CrossRef Lutambi AM, Penny MA, Smith T, Chitnis N. Mathematical modelling of mosquito dispersal in a heterogeneous environment. Math Biosci. 2013;231:198–216.CrossRef
75.
go back to reference Lutambi AM, Chitnis N, Briët OJT, Smith TA, Penny MA. Clustering of vector control interventions has important consequences for their effectiveness: a modelling study. PLoS ONE. 2014;9(5):e97065.CrossRefPubMedPubMedCentral Lutambi AM, Chitnis N, Briët OJT, Smith TA, Penny MA. Clustering of vector control interventions has important consequences for their effectiveness: a modelling study. PLoS ONE. 2014;9(5):e97065.CrossRefPubMedPubMedCentral
76.
go back to reference Fillinger U, Lindsay SW. Larval source management for malaria control in Africa: myths and reality. Malaria J. 2011;10:353.CrossRef Fillinger U, Lindsay SW. Larval source management for malaria control in Africa: myths and reality. Malaria J. 2011;10:353.CrossRef
77.
go back to reference Worrall E, Fillinger U. Large-scale use of mosquito larval source management for malaria control in Africa: a cost analysis. Malaria J. 2011;10(1):338.CrossRef Worrall E, Fillinger U. Large-scale use of mosquito larval source management for malaria control in Africa: a cost analysis. Malaria J. 2011;10(1):338.CrossRef
78.
go back to reference Fillinger U, Ndenga B, Githeko A, Lindsay SW. Integrated malaria vector control with microbial larvicides and insecticide-treated nets in western Kenya: a controlled trial. Bull World Health Organ. 2009;87:655–65.CrossRefPubMedPubMedCentral Fillinger U, Ndenga B, Githeko A, Lindsay SW. Integrated malaria vector control with microbial larvicides and insecticide-treated nets in western Kenya: a controlled trial. Bull World Health Organ. 2009;87:655–65.CrossRefPubMedPubMedCentral
79.
go back to reference Mutero CM, Schlodder D, Kabatereine N, Kramer R. Integrated vector management for malaria control in Uganda: knowledge, perceptions and policy development. Malaria J. 2012;11:21.CrossRef Mutero CM, Schlodder D, Kabatereine N, Kramer R. Integrated vector management for malaria control in Uganda: knowledge, perceptions and policy development. Malaria J. 2012;11:21.CrossRef
80.
go back to reference Fullman N, Burstein R, Lim SS, Medlin C, Gakidou E. Nets, spray or both? The effectiveness of insecticide-treated nets and indoor residual spraying in reducing malaria morbidity and child mortality in sub-Saharan Africa. Malaria J. 2013;12:62.CrossRef Fullman N, Burstein R, Lim SS, Medlin C, Gakidou E. Nets, spray or both? The effectiveness of insecticide-treated nets and indoor residual spraying in reducing malaria morbidity and child mortality in sub-Saharan Africa. Malaria J. 2013;12:62.CrossRef
81.
go back to reference Simon C, Moakofhi K, Mosweunyane T, Jibril HB, Nkomo B, Motlaleng M, et al. Malaria control in Botswana, 2008–2012: the path towards elimination. Malaria J. 2013;12:458.CrossRef Simon C, Moakofhi K, Mosweunyane T, Jibril HB, Nkomo B, Motlaleng M, et al. Malaria control in Botswana, 2008–2012: the path towards elimination. Malaria J. 2013;12:458.CrossRef
82.
go back to reference Smithuis FM, Kyaw MK, Phe UO, van der Broek I, Katterman N, Rogers C, et al. The effect of insecticide-treated bed nets on the incidence and prevalence of malaria in children in an area of unstable seasonal transmission in western Myanmar. Malaria J. 2013;12:363.CrossRef Smithuis FM, Kyaw MK, Phe UO, van der Broek I, Katterman N, Rogers C, et al. The effect of insecticide-treated bed nets on the incidence and prevalence of malaria in children in an area of unstable seasonal transmission in western Myanmar. Malaria J. 2013;12:363.CrossRef
83.
go back to reference Nkya TE, Akhouayri I, Poupardin R, Batengana B, Mosha F, Magesa S, et al. Insecticide resistance mechanisms associated with different environments in the malaria vector Anopheles gambiae: a case study in Tanzania. Malaria J. 2014;13:28.CrossRef Nkya TE, Akhouayri I, Poupardin R, Batengana B, Mosha F, Magesa S, et al. Insecticide resistance mechanisms associated with different environments in the malaria vector Anopheles gambiae: a case study in Tanzania. Malaria J. 2014;13:28.CrossRef
84.
go back to reference Briët OJ, Chitnis N. Effects of changing mosquito host searching behaviour on the cost effectiveness of a mass distribution of long-lasting, insecticidal nets: a modelling study. Malaria J. 2013;12:215.CrossRef Briët OJ, Chitnis N. Effects of changing mosquito host searching behaviour on the cost effectiveness of a mass distribution of long-lasting, insecticidal nets: a modelling study. Malaria J. 2013;12:215.CrossRef
85.
go back to reference Briët OJ, Penny MA, Hardy D, Awolola TS, Bortel WV, Corbel V, et al. Effects of pyrethroid resistance on the cost effectiveness of a mass distribution of long-lasting insecticidal nets: a modelling study. Malaria J. 2013;12:77.CrossRef Briët OJ, Penny MA, Hardy D, Awolola TS, Bortel WV, Corbel V, et al. Effects of pyrethroid resistance on the cost effectiveness of a mass distribution of long-lasting insecticidal nets: a modelling study. Malaria J. 2013;12:77.CrossRef
86.
go back to reference Govella NJ, Chaki PP, Killeen GF. Entomological surveillance of behavioural resilience and resistance in residual malaria vector populations. Malaria J. 2013;12:124.CrossRef Govella NJ, Chaki PP, Killeen GF. Entomological surveillance of behavioural resilience and resistance in residual malaria vector populations. Malaria J. 2013;12:124.CrossRef
87.
go back to reference Ochomo EO, Bayoh NM, Walker ED, Abongo BO, Ombok MO, Ouma C, et al. The efficacy of long-lasting nets with declining physical integrity may be compromised in areas with high levels of pyrethroid resistance. Malaria J. 2013;12:368.CrossRef Ochomo EO, Bayoh NM, Walker ED, Abongo BO, Ombok MO, Ouma C, et al. The efficacy of long-lasting nets with declining physical integrity may be compromised in areas with high levels of pyrethroid resistance. Malaria J. 2013;12:368.CrossRef
88.
go back to reference Tokponnon FT, Ogouyémi AH, Sissinto Y, Sovi A, Gnanguenon V, Cornélie S, et al. Impact of long-lasting, insecticidal nets on anaemia and prevalence of Plasmodium falciparum among children under five years in areas with highly resistant malaria vectors. Malaria J. 2014;13:76.CrossRef Tokponnon FT, Ogouyémi AH, Sissinto Y, Sovi A, Gnanguenon V, Cornélie S, et al. Impact of long-lasting, insecticidal nets on anaemia and prevalence of Plasmodium falciparum among children under five years in areas with highly resistant malaria vectors. Malaria J. 2014;13:76.CrossRef
91.
go back to reference Nagpal BN, Sharma VP. Indian Anophelines. Delhi: Oxford and IBH Publishing Co Pvt Ltd; 1995. p.416. Nagpal BN, Sharma VP. Indian Anophelines. Delhi: Oxford and IBH Publishing Co Pvt Ltd; 1995. p.416.
92.
go back to reference Quraishi SM. Nocturnal prevalence of anopheline mosquitoes in Mymensingh District. East Pakistan1. J Econ Entomol. 1963;56:670–2.CrossRef Quraishi SM. Nocturnal prevalence of anopheline mosquitoes in Mymensingh District. East Pakistan1. J Econ Entomol. 1963;56:670–2.CrossRef
93.
go back to reference Floore TG, Grothaus RH, Miner WF. Mosquito population densities in I corps, South Vietnam, XXI: no. 5. Jacksonville: US Naval Medical Field, Research Laboratory, Camp LeJeune; 1971. Floore TG, Grothaus RH, Miner WF. Mosquito population densities in I corps, South Vietnam, XXI: no. 5. Jacksonville: US Naval Medical Field, Research Laboratory, Camp LeJeune; 1971.
94.
go back to reference Jaal Z, Macdonald WW. The ecology of anopheline mosquitos in northwest coastal Malaysia: larval habitats and adult seasonal abundance. Southeast Asian J Trop Med Public Health. 1993;24(3):522–9.PubMed Jaal Z, Macdonald WW. The ecology of anopheline mosquitos in northwest coastal Malaysia: larval habitats and adult seasonal abundance. Southeast Asian J Trop Med Public Health. 1993;24(3):522–9.PubMed
95.
go back to reference Kongmee M, Achee NL, Lerdthusnee K, Bangs MJ, Chowpongpang S, Prabaripai A, et al. Seasonal abundance and distribution of Anopheles larvae in a riparian malaria endemic area of western Thailand. Southeast Asian J Trop Med Public Health. 2012;43(3):601–13.PubMed Kongmee M, Achee NL, Lerdthusnee K, Bangs MJ, Chowpongpang S, Prabaripai A, et al. Seasonal abundance and distribution of Anopheles larvae in a riparian malaria endemic area of western Thailand. Southeast Asian J Trop Med Public Health. 2012;43(3):601–13.PubMed
96.
go back to reference Miller TA, Stryker RG, Wilkinson RN, Esah S. The influence of moonlight and other environmental factors on the abundance of certain mosquito species in light-trap collections in Thailand. J Med Entomol. 2012;7(5):555–61.CrossRef Miller TA, Stryker RG, Wilkinson RN, Esah S. The influence of moonlight and other environmental factors on the abundance of certain mosquito species in light-trap collections in Thailand. J Med Entomol. 2012;7(5):555–61.CrossRef
98.
go back to reference Alam MS, Chakma S, Al-Amin HM, Elahi R, Mohon AN, Khan WA, et al. Role of artificial containers as breeding sites for anopheline mosquitoes in malaria hypoendemic areas of rural Bandarban, Bangladesh: evidence from a baseline survey. Poster Presentation-210. Am J Trop Med Hyg. 2012. Alam MS, Chakma S, Al-Amin HM, Elahi R, Mohon AN, Khan WA, et al. Role of artificial containers as breeding sites for anopheline mosquitoes in malaria hypoendemic areas of rural Bandarban, Bangladesh: evidence from a baseline survey. Poster Presentation-210. Am J Trop Med Hyg. 2012.
99.
go back to reference Wiebe A, Longbottom J, Gleave K, Shearer FM, Sinka ME, Massey NC, et al. Geographical distributions of African malaria vector sibling species and evidence for insecticide resistance. Malaria J. 2017;16:85.CrossRef Wiebe A, Longbottom J, Gleave K, Shearer FM, Sinka ME, Massey NC, et al. Geographical distributions of African malaria vector sibling species and evidence for insecticide resistance. Malaria J. 2017;16:85.CrossRef
101.
go back to reference Kohn M. A survey on indoor resting mosquito species in Phnom Penh, Kampuchea. Folia parasitol. 1990;37:165–74.PubMed Kohn M. A survey on indoor resting mosquito species in Phnom Penh, Kampuchea. Folia parasitol. 1990;37:165–74.PubMed
102.
go back to reference Hair JD. Day-time indoor resting anophelines of the delta region of Vietnam. Mosq News. 1973;33:195–8. Hair JD. Day-time indoor resting anophelines of the delta region of Vietnam. Mosq News. 1973;33:195–8.
Metadata
Title
A spatial agent-based model of Anopheles vagus for malaria epidemiology: examining the impact of vector control interventions
Authors
Md. Zahangir Alam
S. M. Niaz Arifin
Hasan Mohammad Al-Amin
Mohammad Shafiul Alam
M. Sohel Rahman
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2017
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-017-2075-6

Other articles of this Issue 1/2017

Malaria Journal 1/2017 Go to the issue