Skip to main content
Top
Published in: Malaria Journal 1/2016

Open Access 01-12-2016 | Research

Environmental determinants of malaria transmission in African villages

Authors: Noriko Endo, Elfatih A. B. Eltahir

Published in: Malaria Journal | Issue 1/2016

Login to get access

Abstract

Background

Malaria transmission is complex, involving a range of hydroclimatological, biological, and environmental processes. The high degree of non-linearity in these processes makes it difficult to predict and intervene against malaria. This study seeks both to define a minimal number of malaria transmission determinants, and to provide a theoretical basis for sustainable environmental manipulation to prevent malaria transmission.

Methods

Using a field-tested mechanistic malaria model, HYDREMATS, a theoretical study was conducted under hypothetical conditions. Simulations were conducted with a range of hydroclimatological and environmental conditions: temperature (t), length of wet season (Twet), storm inter-arrival time (Tint), persistence of vector breeding pools (Ton), and distribution of houses from breeding pools and from each other (Xdist and Ydist, respectively). Based on the theoretical study, a malaria time scale, To, and a predictive theory of malaria transmission were introduced. The performance of the predictive theory was compared against the observational malaria transmission data in West Africa. Population density was used to estimate the scale that describes the spatial distribution of houses.

Results

The predictive theory shows a universality in malaria endemic conditions when plotted using two newly-introduced dimension-less parameters. The projected malaria transmission potential compared well with the observation data, and the apparent differences were discussed. The results illustrate the importance of spatial aspects in malaria transmission.

Conclusions

The predictive theory is useful in measuring malaria transmission potential, and it can also provide guidelines on how to plan the layout of human habitats in order to prevent endemic malaria. Malaria-resistant villages can be designed by locating houses further than critical distances away from breeding pools or by removing pools within a critical distance from houses; the critical distance is described in the context of local climatology and hydrology.
Appendix
Available only for authorised users
Literature
1.
go back to reference Gu W, Regens JL, Beier JC, Novak RJ. Source reduction of mosquito larval habitats has unexpected consequences on malaria transmission. Proc Natl Acad Sci USA. 2006;103:17560–3.CrossRefPubMedPubMedCentral Gu W, Regens JL, Beier JC, Novak RJ. Source reduction of mosquito larval habitats has unexpected consequences on malaria transmission. Proc Natl Acad Sci USA. 2006;103:17560–3.CrossRefPubMedPubMedCentral
3.
go back to reference Minakawa N, Seda P, Yan G. Influence of host and larval habitat distribution on the abundance of African malaria vectors in Western Kenya. Am J Trop Med Hyg. 2002;67:32–8.PubMed Minakawa N, Seda P, Yan G. Influence of host and larval habitat distribution on the abundance of African malaria vectors in Western Kenya. Am J Trop Med Hyg. 2002;67:32–8.PubMed
4.
go back to reference van der Hoek W, Konradsen F, Amerasinghe PH, Perera D, Piyaratne M, Amerasinghe FP. Towards a risk map of malaria for Sri Lanka: the importance of house location relative to vector breeding sites. Int J Epidemiol. 2003;32:280–5.CrossRef van der Hoek W, Konradsen F, Amerasinghe PH, Perera D, Piyaratne M, Amerasinghe FP. Towards a risk map of malaria for Sri Lanka: the importance of house location relative to vector breeding sites. Int J Epidemiol. 2003;32:280–5.CrossRef
5.
go back to reference Cano J, Descalzo MA, Moreno M, Chen Z, Nzambo S, Bobuakasi L, et al. Spatial variability in the density, distribution and vectorial capacity of anopheline species in a high transmission village (Equatorial Guinea). Malar J. 2006;5:21.CrossRefPubMedPubMedCentral Cano J, Descalzo MA, Moreno M, Chen Z, Nzambo S, Bobuakasi L, et al. Spatial variability in the density, distribution and vectorial capacity of anopheline species in a high transmission village (Equatorial Guinea). Malar J. 2006;5:21.CrossRefPubMedPubMedCentral
6.
go back to reference Zhou G, Munga S, Minakawa N, Githeko AK, Yan G. Spatial relationship between adult malaria vector abundance and environmental factors in Western Kenya highlands. Am J Trop Med Hyg. 2007;77:29–35.PubMed Zhou G, Munga S, Minakawa N, Githeko AK, Yan G. Spatial relationship between adult malaria vector abundance and environmental factors in Western Kenya highlands. Am J Trop Med Hyg. 2007;77:29–35.PubMed
8.
9.
go back to reference Yamana TK, Bomblies A, Eltahir EAB. Climate change unlikely to increase malaria burden in West Africa. Nat Clim Chang. 2016;6:1009–13.CrossRef Yamana TK, Bomblies A, Eltahir EAB. Climate change unlikely to increase malaria burden in West Africa. Nat Clim Chang. 2016;6:1009–13.CrossRef
11.
go back to reference WHO. World malaria report 2015. Geneva: World Health Organization; 2015. WHO. World malaria report 2015. Geneva: World Health Organization; 2015.
12.
go back to reference Craig M, Le Sueur D, Snow B. A climate-based distribution model of malaria transmission in sub-Saharan Africa. Parasitol Today. 1999;15:105–11.CrossRefPubMed Craig M, Le Sueur D, Snow B. A climate-based distribution model of malaria transmission in sub-Saharan Africa. Parasitol Today. 1999;15:105–11.CrossRefPubMed
13.
go back to reference Kleinschmidt I, Omumbo J, Briet O, Van De Giesen N, Sogoba N, Mensah NK, et al. An empirical malaria distribution map for West Africa. Trop Med Int Health. 2001;6:779–86.CrossRefPubMed Kleinschmidt I, Omumbo J, Briet O, Van De Giesen N, Sogoba N, Mensah NK, et al. An empirical malaria distribution map for West Africa. Trop Med Int Health. 2001;6:779–86.CrossRefPubMed
14.
go back to reference Mitchell TD, Jones PD. An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol. 2005;25:693–712.CrossRef Mitchell TD, Jones PD. An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol. 2005;25:693–712.CrossRef
15.
go back to reference Columbia University. Gridded Population of the World Version 3 (GPWv3). 2005. Columbia University. Gridded Population of the World Version 3 (GPWv3). 2005.
16.
go back to reference Depinay JMO, Mbogo CM, Killeen G, Knols B, Beier J, Carlson J, et al. A simulation model of African Anopheles ecology and population dynamics for the analysis of malaria transmission. Malar J. 2004;3:29.CrossRefPubMedPubMedCentral Depinay JMO, Mbogo CM, Killeen G, Knols B, Beier J, Carlson J, et al. A simulation model of African Anopheles ecology and population dynamics for the analysis of malaria transmission. Malar J. 2004;3:29.CrossRefPubMedPubMedCentral
17.
go back to reference Martens P, Gellert GA. Health and climate change: modelling the impacts of global warming and ozone depletion. Nature. 1998;393:176. Martens P, Gellert GA. Health and climate change: modelling the impacts of global warming and ozone depletion. Nature. 1998;393:176.
18.
go back to reference Detinova TS. Age-grouping methods in Diptera of medical importance with special reference to some vectors of malaria. Monograph Ser World Health Organ. 1962;47:13–191. Detinova TS. Age-grouping methods in Diptera of medical importance with special reference to some vectors of malaria. Monograph Ser World Health Organ. 1962;47:13–191.
19.
go back to reference Hay SI, Guerra CA, Gething PW, Patil A, Tatem AJ, Noor AM, et al. A world malaria map: Plasmodium falciparum endemicity in 2007. PLoS Med. 2009;6:0286–302.CrossRef Hay SI, Guerra CA, Gething PW, Patil A, Tatem AJ, Noor AM, et al. A world malaria map: Plasmodium falciparum endemicity in 2007. PLoS Med. 2009;6:0286–302.CrossRef
20.
go back to reference Ermert V, Fink AH, Jones AE, Morse AP. Development of a new version of the Liverpool Malaria Model. I. Refining the parameter settings and mathematical formulation of basic processes based on a literature review. Malar J. 2011;10:35.CrossRefPubMedPubMedCentral Ermert V, Fink AH, Jones AE, Morse AP. Development of a new version of the Liverpool Malaria Model. I. Refining the parameter settings and mathematical formulation of basic processes based on a literature review. Malar J. 2011;10:35.CrossRefPubMedPubMedCentral
21.
go back to reference Bomblies A. Modeling the role of rainfall patterns in seasonal malaria transmission. Clim Change. 2012;112:673–85.CrossRef Bomblies A. Modeling the role of rainfall patterns in seasonal malaria transmission. Clim Change. 2012;112:673–85.CrossRef
22.
go back to reference Grover-Kopec EK, Blumenthal MB, Ceccato P, Dinku T, Omumbo JA, Connor SJ. Web-based climate information resources for malaria control in Africa. Malar J. 2006;5:38.CrossRefPubMedPubMedCentral Grover-Kopec EK, Blumenthal MB, Ceccato P, Dinku T, Omumbo JA, Connor SJ. Web-based climate information resources for malaria control in Africa. Malar J. 2006;5:38.CrossRefPubMedPubMedCentral
23.
24.
go back to reference Tatem AJ, Guerra CA, Kabaria CW, Noor AM, Hay SI. Human population, urban settlement patterns and their impact on Plasmodium falciparum malaria endemicity. Malar J. 2008;7:218.CrossRefPubMedPubMedCentral Tatem AJ, Guerra CA, Kabaria CW, Noor AM, Hay SI. Human population, urban settlement patterns and their impact on Plasmodium falciparum malaria endemicity. Malar J. 2008;7:218.CrossRefPubMedPubMedCentral
25.
go back to reference Roll back malaria: focus on senegal. Progress & impact series, Number 4. Technical report, Geneva: World Health Organization; 2010. Roll back malaria: focus on senegal. Progress & impact series, Number 4. Technical report, Geneva: World Health Organization; 2010.
26.
go back to reference Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015;526:207–11.CrossRefPubMedPubMedCentral Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015;526:207–11.CrossRefPubMedPubMedCentral
27.
go back to reference Torcia MG, Santarlasci V, Cosmi L, Clemente A, Maggi L, Mangano VD, et al. Functional deficit of T regulatory cells in Fulani, an ethnic group with low susceptibility to Plasmodium falciparum malaria. Proc Natl Acad Sci USA. 2008;105:646–51.CrossRefPubMedPubMedCentral Torcia MG, Santarlasci V, Cosmi L, Clemente A, Maggi L, Mangano VD, et al. Functional deficit of T regulatory cells in Fulani, an ethnic group with low susceptibility to Plasmodium falciparum malaria. Proc Natl Acad Sci USA. 2008;105:646–51.CrossRefPubMedPubMedCentral
28.
go back to reference Lehmann T, Dao A, Yaro AS, Adamou A, Kassogue Y, Diallo M, et al. Aestivation of the African malaria mosquito, Anopheles gambiae in the Sahel. Am J Trop Med Hyg. 2010;83:601–6.CrossRefPubMedPubMedCentral Lehmann T, Dao A, Yaro AS, Adamou A, Kassogue Y, Diallo M, et al. Aestivation of the African malaria mosquito, Anopheles gambiae in the Sahel. Am J Trop Med Hyg. 2010;83:601–6.CrossRefPubMedPubMedCentral
Metadata
Title
Environmental determinants of malaria transmission in African villages
Authors
Noriko Endo
Elfatih A. B. Eltahir
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2016
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-016-1633-7

Other articles of this Issue 1/2016

Malaria Journal 1/2016 Go to the issue