Skip to main content
Top
Published in: Cancer and Metastasis Reviews 2/2008

01-06-2008

A tumor suppressor role for PP2A-B56α through negative regulation of c-Myc and other key oncoproteins

Authors: Hugh K. Arnold, Rosalie C. Sears

Published in: Cancer and Metastasis Reviews | Issue 2/2008

Login to get access

Abstract

Loss or inhibition of the serine/threonine protein phosphatase 2A (PP2A) has revealed a critical tumor suppressor function for PP2A. However, PP2A has also been shown to have important roles in cell cycle progression and survival. Therefore, PP2A is not a typical tumor suppressor. This is most likely due to the fact that PP2A represents a large number of different holoenzymes. Further understanding of PP2A function(s), and especially its tumor suppressor activity, will depend largely on our ability to determine specific targets for these different PP2A holoenzymes and to gain an understanding of how these targets confer tumor suppressor activity or contribute to cell cycle progression and cell survival. Recent work has identified c-Myc as a target of the PP2A holoenzyme, PP2A-B56α. This holoenzyme also negatively regulates β-catenin expression and modulates the anti-apoptotic activity of Bcl2, thus characterizing PP2A-B56α as a tumor suppressor PP2A holoenzyme. This review will focus on the role of PP2A-B56α in regulating c-Myc and will place this tumor suppressor activity of PP2A within the context of its other tumor suppressor functions. Finally, the mechanism(s) through which PP2A-B56α tumor suppressor activity may be lost in cancer will be discussed.
Literature
1.
go back to reference Sansal, I., & Sellers, W. R. (2004). The biology and clinical relevance of the PTEN tumor suppressor pathway. Journal of Clinical Oncology, 22, 2954–2963.PubMedCrossRef Sansal, I., & Sellers, W. R. (2004). The biology and clinical relevance of the PTEN tumor suppressor pathway. Journal of Clinical Oncology, 22, 2954–2963.PubMedCrossRef
2.
3.
go back to reference Van Hoof, C., & Goris, J. (2004). PP2A fulfills its promises as tumor suppressor: Which subunits are important. Cancer Cell, 5, 105–106.PubMedCrossRef Van Hoof, C., & Goris, J. (2004). PP2A fulfills its promises as tumor suppressor: Which subunits are important. Cancer Cell, 5, 105–106.PubMedCrossRef
4.
go back to reference Schonthal, A. H. (2001). Role of serine/threonine protein phosphatase 2A in cancer. Cancer Letters, 170, 1–13.PubMedCrossRef Schonthal, A. H. (2001). Role of serine/threonine protein phosphatase 2A in cancer. Cancer Letters, 170, 1–13.PubMedCrossRef
5.
go back to reference Galaktionov, K., Lee, A. K., Eckstein, J., Draetta, G., Meckler, J., Loda, M., et al. (1995). CDC25 phosphatases as potential human oncogenes. Science, 269, 1575–1577.PubMedCrossRef Galaktionov, K., Lee, A. K., Eckstein, J., Draetta, G., Meckler, J., Loda, M., et al. (1995). CDC25 phosphatases as potential human oncogenes. Science, 269, 1575–1577.PubMedCrossRef
6.
go back to reference Yan, Z., Fedorov, S. A., Mumby, M. C., & Williams, R. S. (2000). PR48, a novel regulatory subunit of protein phosphatase 2A, interacts with Cdc6 and modulates DNA replication in human cells. Molecular and Cellular Biology, 20, 1021–1029.PubMedCrossRef Yan, Z., Fedorov, S. A., Mumby, M. C., & Williams, R. S. (2000). PR48, a novel regulatory subunit of protein phosphatase 2A, interacts with Cdc6 and modulates DNA replication in human cells. Molecular and Cellular Biology, 20, 1021–1029.PubMedCrossRef
7.
go back to reference Li, X., Scuderi, A., Letsou, A., & Virshup, D. M. (2002). B56-associated protein phosphatase 2A is required for survival and protects from apoptosis in Drosophila melanogaster. Molecular and Cellular Biology, 22, 3674–3684.PubMedCrossRef Li, X., Scuderi, A., Letsou, A., & Virshup, D. M. (2002). B56-associated protein phosphatase 2A is required for survival and protects from apoptosis in Drosophila melanogaster. Molecular and Cellular Biology, 22, 3674–3684.PubMedCrossRef
8.
go back to reference Lin, X. H., Walter, J., Scheidtmann, K., Ohst, K., Newport, J., & Walter, G. (1998). Protein phosphatase 2A is required for the initiation of chromosomal DNA replication. Proceedings of the National Academy of Sciences of the United States of America, 95, 14693–14698.PubMedCrossRef Lin, X. H., Walter, J., Scheidtmann, K., Ohst, K., Newport, J., & Walter, G. (1998). Protein phosphatase 2A is required for the initiation of chromosomal DNA replication. Proceedings of the National Academy of Sciences of the United States of America, 95, 14693–14698.PubMedCrossRef
9.
go back to reference Mayer-Jaekel, R. E., Ohkura, H., Gomes, R., Sunkel, C. E., Baumgartner, S., Hemmings, B. A., et al. (1993). The 55 kd regulatory subunit of Drosophila protein phosphatase 2A is required for anaphase. Cell, 72, 621–633.PubMedCrossRef Mayer-Jaekel, R. E., Ohkura, H., Gomes, R., Sunkel, C. E., Baumgartner, S., Hemmings, B. A., et al. (1993). The 55 kd regulatory subunit of Drosophila protein phosphatase 2A is required for anaphase. Cell, 72, 621–633.PubMedCrossRef
10.
go back to reference Sakai, A., & Fujiki, H. (1991). Promotion of BALB/3T3 cell transformation by the okadaic acid class of tumor promoters, okadaic acid and dinophysistoxin-1. Japanese Journal of Cancer Research, 82, 518–523.PubMed Sakai, A., & Fujiki, H. (1991). Promotion of BALB/3T3 cell transformation by the okadaic acid class of tumor promoters, okadaic acid and dinophysistoxin-1. Japanese Journal of Cancer Research, 82, 518–523.PubMed
11.
go back to reference Nagao, M., Sakai, R., Kitagawa, Y., Ikeda, I., Sasaki, K., Shima, H., et al. (1989). Role of protein phosphatases in malignant transformation. Princess Takamatsu Symposia, 20, 177–184.PubMed Nagao, M., Sakai, R., Kitagawa, Y., Ikeda, I., Sasaki, K., Shima, H., et al. (1989). Role of protein phosphatases in malignant transformation. Princess Takamatsu Symposia, 20, 177–184.PubMed
12.
go back to reference Zheng, B., Woo, C. F., & Kuo, J. F. (1991). Mitotic arrest and enhanced nuclear protein phosphorylation in human leukemia K562 cells by okadaic acid, a potent protein phosphatase inhibitor and tumor promoter. The Journal of Biological Chemistry, 266, 10031–10034.PubMed Zheng, B., Woo, C. F., & Kuo, J. F. (1991). Mitotic arrest and enhanced nuclear protein phosphorylation in human leukemia K562 cells by okadaic acid, a potent protein phosphatase inhibitor and tumor promoter. The Journal of Biological Chemistry, 266, 10031–10034.PubMed
13.
go back to reference Kremmer, E., Ohst, K., Kiefer, J., Brewis, N., & Walter, G. (1997). Separation of PP2A core enzyme and holoenzyme with monoclonal antibodies against the regulatory A subunit: Abundant expression of both forms in cells. Molecular and Cellular Biology, 17, 1692–1701.PubMed Kremmer, E., Ohst, K., Kiefer, J., Brewis, N., & Walter, G. (1997). Separation of PP2A core enzyme and holoenzyme with monoclonal antibodies against the regulatory A subunit: Abundant expression of both forms in cells. Molecular and Cellular Biology, 17, 1692–1701.PubMed
14.
go back to reference Xu, Y., Xing, Y., Chen, Y., Chao, Y., Lin, Z., Fan, E., et al. (2006). Structure of the protein phosphatase 2A holoenzyme. Cell, 127, 1239–1251.PubMedCrossRef Xu, Y., Xing, Y., Chen, Y., Chao, Y., Lin, Z., Fan, E., et al. (2006). Structure of the protein phosphatase 2A holoenzyme. Cell, 127, 1239–1251.PubMedCrossRef
15.
go back to reference Shenolikar, S. (1994). Protein serine/threonine phosphatases—new avenues for cell regulation. Annual Review of Cell Biology, 10, 55–86.PubMedCrossRef Shenolikar, S. (1994). Protein serine/threonine phosphatases—new avenues for cell regulation. Annual Review of Cell Biology, 10, 55–86.PubMedCrossRef
16.
go back to reference Chen, W., Possemato, R., Campbell, K. T., Plattner, C. A., Pallas, D. C., & Hahn, W. C. (2004). Identification of specific PP2A complexes involved in human cell transformation. Cancer Cell, 5, 127–136.PubMedCrossRef Chen, W., Possemato, R., Campbell, K. T., Plattner, C. A., Pallas, D. C., & Hahn, W. C. (2004). Identification of specific PP2A complexes involved in human cell transformation. Cancer Cell, 5, 127–136.PubMedCrossRef
17.
go back to reference Millward, T. A., Zolnierowicz, S., & Hemmings, B. A. (1999). Regulation of protein kinase cascades by protein phosphatase 2A. Trends in Biochemical Sciences, 24, 186–191.PubMedCrossRef Millward, T. A., Zolnierowicz, S., & Hemmings, B. A. (1999). Regulation of protein kinase cascades by protein phosphatase 2A. Trends in Biochemical Sciences, 24, 186–191.PubMedCrossRef
18.
go back to reference Virshup, D. M. (2000). Protein phosphatase 2A: A panoply of enzymes. Current Opinion in Cell Biology, 12, 180–185.PubMedCrossRef Virshup, D. M. (2000). Protein phosphatase 2A: A panoply of enzymes. Current Opinion in Cell Biology, 12, 180–185.PubMedCrossRef
19.
go back to reference Schonthal, A. H. (1998). Role of PP2A in intracellular signal transduction pathways. Frontiers in Bioscience, 3, D1262–D1273.PubMed Schonthal, A. H. (1998). Role of PP2A in intracellular signal transduction pathways. Frontiers in Bioscience, 3, D1262–D1273.PubMed
20.
go back to reference Jaumot, M., & Hancock, J. F. (2001). Protein phosphatases 1 and 2A promote Raf-1 activation by regulating 14-3-3 interactions. Oncogene, 20, 3949–3958.PubMedCrossRef Jaumot, M., & Hancock, J. F. (2001). Protein phosphatases 1 and 2A promote Raf-1 activation by regulating 14-3-3 interactions. Oncogene, 20, 3949–3958.PubMedCrossRef
21.
go back to reference Abraham, D., Podar, K., Pacher, M., Kubicek, M., Welzel, N., Hemmings, B. A., et al. (2000). Raf-1-associated protein phosphatase 2A as a positive regulator of kinase activation. The Journal of Biological Chemistry, 275, 22300–22304.PubMedCrossRef Abraham, D., Podar, K., Pacher, M., Kubicek, M., Welzel, N., Hemmings, B. A., et al. (2000). Raf-1-associated protein phosphatase 2A as a positive regulator of kinase activation. The Journal of Biological Chemistry, 275, 22300–22304.PubMedCrossRef
22.
go back to reference Yang, J., Wu, J., Tan, C., & Klein, P. S. (2003). PP2A:B56epsilon is required for Wnt/beta-catenin signaling during embryonic development. Development, 130, 5569–5578.PubMedCrossRef Yang, J., Wu, J., Tan, C., & Klein, P. S. (2003). PP2A:B56epsilon is required for Wnt/beta-catenin signaling during embryonic development. Development, 130, 5569–5578.PubMedCrossRef
23.
go back to reference Li, H. H., Cai, X., Shouse, G. P., Piluso, L. G., & Liu, X. (2007). A specific PP2A regulatory subunit, B56gamma, mediates DNA damage-induced dephosphorylation of p53 at Thr55. The EMBO Journal, 26, 402–411.PubMedCrossRef Li, H. H., Cai, X., Shouse, G. P., Piluso, L. G., & Liu, X. (2007). A specific PP2A regulatory subunit, B56gamma, mediates DNA damage-induced dephosphorylation of p53 at Thr55. The EMBO Journal, 26, 402–411.PubMedCrossRef
24.
go back to reference Chen, J., St-Germain, J. R., & Li, Q. (2005). B56 regulatory subunit of protein phosphatase 2A mediates valproic acid-induced p300 degradation. Molecular and Cellular Biology, 25, 525–532.PubMedCrossRef Chen, J., St-Germain, J. R., & Li, Q. (2005). B56 regulatory subunit of protein phosphatase 2A mediates valproic acid-induced p300 degradation. Molecular and Cellular Biology, 25, 525–532.PubMedCrossRef
25.
go back to reference Goodman, R. H., & Smolik, S. (2000). CBP/p300 in cell growth, transformation, and development. Genes and Development, 14, 1553–1577.PubMed Goodman, R. H., & Smolik, S. (2000). CBP/p300 in cell growth, transformation, and development. Genes and Development, 14, 1553–1577.PubMed
26.
go back to reference Dozier, C., Bonyadi, M., Baricault, L., Tonasso, L., & Darbon, J. M. (2004). Regulation of Chk2 phosphorylation by interaction with protein phosphatase 2A via its B′ regulatory subunit. Biology of the Cell, 96, 509–517.PubMedCrossRef Dozier, C., Bonyadi, M., Baricault, L., Tonasso, L., & Darbon, J. M. (2004). Regulation of Chk2 phosphorylation by interaction with protein phosphatase 2A via its B′ regulatory subunit. Biology of the Cell, 96, 509–517.PubMedCrossRef
27.
go back to reference Liang, X., Reed, E., & Yu, J. J. (2006). Protein phosphatase 2A interacts with Chk2 and regulates phosphorylation at Thr-68 after cisplatin treatment of human ovarian cancer cells. International Journal of Molecular Medicine, 17, 703–708.PubMed Liang, X., Reed, E., & Yu, J. J. (2006). Protein phosphatase 2A interacts with Chk2 and regulates phosphorylation at Thr-68 after cisplatin treatment of human ovarian cancer cells. International Journal of Molecular Medicine, 17, 703–708.PubMed
28.
go back to reference Ito, A., Kataoka, T. R., Watanabe, M., Nishiyama, K., Mazaki, Y., Sabe, H., et al. (2000). A truncated isoform of the PP2A B56 subunit promotes cell motility through paxillin phosphorylation. The EMBO Journal, 19, 562–571.PubMedCrossRef Ito, A., Kataoka, T. R., Watanabe, M., Nishiyama, K., Mazaki, Y., Sabe, H., et al. (2000). A truncated isoform of the PP2A B56 subunit promotes cell motility through paxillin phosphorylation. The EMBO Journal, 19, 562–571.PubMedCrossRef
29.
go back to reference Ito, A., Koma, Y., Sohda, M., Watabe, K., Nagano, T., Misumi, Y., et al. (2003). Localization of the PP2A B56gamma regulatory subunit at the Golgi complex: Possible role in vesicle transport and migration. American Journal of Pathology, 162, 479–489.PubMed Ito, A., Koma, Y., Sohda, M., Watabe, K., Nagano, T., Misumi, Y., et al. (2003). Localization of the PP2A B56gamma regulatory subunit at the Golgi complex: Possible role in vesicle transport and migration. American Journal of Pathology, 162, 479–489.PubMed
30.
go back to reference Koma, Y. I., Ito, A., Watabe, K., Kimura, S. H., & Kitamura, Y. (2004). A truncated isoform of the PP2A B56gamma regulatory subunit reduces irradiation-induced Mdm2 phosphorylation and could contribute to metastatic melanoma cell radioresistance. Histology and Histopathology, 19, 391–400.PubMed Koma, Y. I., Ito, A., Watabe, K., Kimura, S. H., & Kitamura, Y. (2004). A truncated isoform of the PP2A B56gamma regulatory subunit reduces irradiation-induced Mdm2 phosphorylation and could contribute to metastatic melanoma cell radioresistance. Histology and Histopathology, 19, 391–400.PubMed
31.
go back to reference Ma, J., Arnold, H. K., Lilly, M. B., Sears, R. C., & Kraft, A. S. (2007). Negative regulation of Pim-1 protein kinase levels by the B56beta subunit of PP2A. Oncogene, 26, 5145–5153.PubMedCrossRef Ma, J., Arnold, H. K., Lilly, M. B., Sears, R. C., & Kraft, A. S. (2007). Negative regulation of Pim-1 protein kinase levels by the B56beta subunit of PP2A. Oncogene, 26, 5145–5153.PubMedCrossRef
32.
go back to reference Allen, J. D., & Berns, A. (1996). Complementation tagging of cooperating oncogenes in knockout mice. Seminars in Cancer Biology, 7, 299–306.PubMedCrossRef Allen, J. D., & Berns, A. (1996). Complementation tagging of cooperating oncogenes in knockout mice. Seminars in Cancer Biology, 7, 299–306.PubMedCrossRef
33.
go back to reference Margolis, S. S., Perry, J. A., Forester, C. M., Nutt, L. K., Guo, Y., Jardim, M. J., et al. (2006). Role for the PP2A/B56delta phosphatase in regulating 14-3-3 release from Cdc25 to control mitosis. Cell, 127, 759–773.PubMedCrossRef Margolis, S. S., Perry, J. A., Forester, C. M., Nutt, L. K., Guo, Y., Jardim, M. J., et al. (2006). Role for the PP2A/B56delta phosphatase in regulating 14-3-3 release from Cdc25 to control mitosis. Cell, 127, 759–773.PubMedCrossRef
34.
go back to reference Ahn, J. H., McAvoy, T., Rakhilin, S. V., Nishi, A., Greengard, P., & Nairn, A. C. (2007). Protein kinase A activates protein phosphatase 2A by phosphorylation of the B56delta subunit. Proceedings of the National Academy of Sciences of the United States of America, 104, 2979–2984.PubMedCrossRef Ahn, J. H., McAvoy, T., Rakhilin, S. V., Nishi, A., Greengard, P., & Nairn, A. C. (2007). Protein kinase A activates protein phosphatase 2A by phosphorylation of the B56delta subunit. Proceedings of the National Academy of Sciences of the United States of America, 104, 2979–2984.PubMedCrossRef
35.
go back to reference Firulli, B. A., Howard, M. J., McDaid, J. R., McIlreavey, L., Dionne, K. M., Centonze, V. E., et al. (2003). PKA, PKC, and the protein phosphatase 2A influence HAND factor function: A mechanism for tissue-specific transcriptional regulation. Molecular Cell, 12, 1225–1237.PubMedCrossRef Firulli, B. A., Howard, M. J., McDaid, J. R., McIlreavey, L., Dionne, K. M., Centonze, V. E., et al. (2003). PKA, PKC, and the protein phosphatase 2A influence HAND factor function: A mechanism for tissue-specific transcriptional regulation. Molecular Cell, 12, 1225–1237.PubMedCrossRef
36.
go back to reference White, R. J. (2005). RNA polymerases I and III, growth control and cancer. Nature Reviews. Molecular Cell Biology, 6, 69–78.PubMedCrossRef White, R. J. (2005). RNA polymerases I and III, growth control and cancer. Nature Reviews. Molecular Cell Biology, 6, 69–78.PubMedCrossRef
37.
go back to reference Cole, M. D. (1986). The myc oncogene: Its role in transformation and differentiation. Annual Review of Genetics, 20, 361–384.PubMedCrossRef Cole, M. D. (1986). The myc oncogene: Its role in transformation and differentiation. Annual Review of Genetics, 20, 361–384.PubMedCrossRef
38.
go back to reference Luscher, B., & Eisenman, R. N. (1990). New light on Myc and Myb. Part I. Myc. Genes and Development, 4, 2025–2035.PubMedCrossRef Luscher, B., & Eisenman, R. N. (1990). New light on Myc and Myb. Part I. Myc. Genes and Development, 4, 2025–2035.PubMedCrossRef
39.
40.
go back to reference Baudino, T. A., McKay, C., Pendeville-Samain, H., Nilsson, J. A., Maclean, K. H., White, E. L., et al. (2002). c-Myc is essential for vasculogenesis and angiogenesis during development and tumor progression. Genes and Development, 16, 2530–2543.PubMedCrossRef Baudino, T. A., McKay, C., Pendeville-Samain, H., Nilsson, J. A., Maclean, K. H., White, E. L., et al. (2002). c-Myc is essential for vasculogenesis and angiogenesis during development and tumor progression. Genes and Development, 16, 2530–2543.PubMedCrossRef
41.
go back to reference Davis, A. C., Wims, M., Spotts, G. D., Hann, S. R., & Bradley, A. (1993). A null c-myc mutation causes lethality before 10.5 days of gestation in homozygotes and reduced fertility in heterozygous female mice. Genes and Development, 7, 671–682.PubMedCrossRef Davis, A. C., Wims, M., Spotts, G. D., Hann, S. R., & Bradley, A. (1993). A null c-myc mutation causes lethality before 10.5 days of gestation in homozygotes and reduced fertility in heterozygous female mice. Genes and Development, 7, 671–682.PubMedCrossRef
42.
go back to reference Nesbit, C. E., Tersak, J. M., & Prochownik, E. V. (1999). MYC oncogenes and human neoplastic disease. Oncogene, 18, 3004–3016.PubMedCrossRef Nesbit, C. E., Tersak, J. M., & Prochownik, E. V. (1999). MYC oncogenes and human neoplastic disease. Oncogene, 18, 3004–3016.PubMedCrossRef
43.
go back to reference Felsher, D. W., & Bishop, J. M. (1999). Reversible tumorigenesis by MYC in hematopoietic lineages. Molecular Cell, 4, 199–207.PubMedCrossRef Felsher, D. W., & Bishop, J. M. (1999). Reversible tumorigenesis by MYC in hematopoietic lineages. Molecular Cell, 4, 199–207.PubMedCrossRef
44.
go back to reference Pelengaris, S., Littlewood, T., Khan, M., Elia, G., & Evan, G. (1999). Reversible activation of c-Myc in skin: Induction of a complex neoplastic phenotype by a single oncogenic lesion. Molecular Cell, 3, 565–577.PubMedCrossRef Pelengaris, S., Littlewood, T., Khan, M., Elia, G., & Evan, G. (1999). Reversible activation of c-Myc in skin: Induction of a complex neoplastic phenotype by a single oncogenic lesion. Molecular Cell, 3, 565–577.PubMedCrossRef
45.
go back to reference Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676.PubMedCrossRef Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676.PubMedCrossRef
46.
go back to reference Coppola, J. A., & Cole, M. D. (1986). Constitutive c-myc oncogene expression blocks mouse erythroleukaemia cell differentiation but not commitment. Nature, 320, 760–763.PubMedCrossRef Coppola, J. A., & Cole, M. D. (1986). Constitutive c-myc oncogene expression blocks mouse erythroleukaemia cell differentiation but not commitment. Nature, 320, 760–763.PubMedCrossRef
47.
go back to reference Yeh, E., Cunningham, M., Arnold, H., Chasse, D., Monteith, T., Ivaldi, G., et al. (2004). A signalling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells. Nature Cell Biology, 6, 308–318.PubMedCrossRef Yeh, E., Cunningham, M., Arnold, H., Chasse, D., Monteith, T., Ivaldi, G., et al. (2004). A signalling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells. Nature Cell Biology, 6, 308–318.PubMedCrossRef
48.
go back to reference Flinn, E. M., Busch, C. M., & Wright, A. P. (1998). myc boxes, which are conserved in myc family proteins, are signals for protein degradation via the proteasome. Molecular and Cellular Biology, 18, 5961–5969.PubMed Flinn, E. M., Busch, C. M., & Wright, A. P. (1998). myc boxes, which are conserved in myc family proteins, are signals for protein degradation via the proteasome. Molecular and Cellular Biology, 18, 5961–5969.PubMed
49.
go back to reference Jones, T. R., & Cole, M. D. (1987). Rapid cytoplasmic turnover of c-myc mRNA: Requirement of the 3″ untranslated sequences. Molecular and Cellular Biology, 7, 4513–4521.PubMed Jones, T. R., & Cole, M. D. (1987). Rapid cytoplasmic turnover of c-myc mRNA: Requirement of the 3″ untranslated sequences. Molecular and Cellular Biology, 7, 4513–4521.PubMed
50.
go back to reference Kelly, K., Cochran, B. H., Stiles, C. D., & Leder, P. (1983). Cell-specific regulation of the c-myc gene by lymphocyte mitogens and platelet-derived growth factor. Cell, 35, 603–610.PubMedCrossRef Kelly, K., Cochran, B. H., Stiles, C. D., & Leder, P. (1983). Cell-specific regulation of the c-myc gene by lymphocyte mitogens and platelet-derived growth factor. Cell, 35, 603–610.PubMedCrossRef
51.
go back to reference Sears, R., Leone, G., DeGregori, J., & Nevins, J. R. (1999). Ras enhances Myc protein stability. Molecular Cell, 3, 169–179.PubMedCrossRef Sears, R., Leone, G., DeGregori, J., & Nevins, J. R. (1999). Ras enhances Myc protein stability. Molecular Cell, 3, 169–179.PubMedCrossRef
52.
go back to reference Sears, R., Nuckolls, F., Haura, E., Taya, Y., Tamai, K., & Nevins, J. R. (2000). Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes and Development, 14, 2501–2514.PubMedCrossRef Sears, R., Nuckolls, F., Haura, E., Taya, Y., Tamai, K., & Nevins, J. R. (2000). Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes and Development, 14, 2501–2514.PubMedCrossRef
53.
go back to reference Arnold, H. K., & Sears, R. C. (2006). Protein phosphatase 2A regulatory subunit B56alpha associates with c-myc and negatively regulates c-myc accumulation. Molecular and Cellular Biology, 26, 2832–2844.PubMedCrossRef Arnold, H. K., & Sears, R. C. (2006). Protein phosphatase 2A regulatory subunit B56alpha associates with c-myc and negatively regulates c-myc accumulation. Molecular and Cellular Biology, 26, 2832–2844.PubMedCrossRef
54.
go back to reference Seth, A., Gonzalez, F. A., Gupta, S., Raden, D. L., & Davis, R. J. (1992). Signal transduction within the nucleus by mitogen-activated protein kinase. The Journal of Biological Chemistry, 267, 24796–24804.PubMed Seth, A., Gonzalez, F. A., Gupta, S., Raden, D. L., & Davis, R. J. (1992). Signal transduction within the nucleus by mitogen-activated protein kinase. The Journal of Biological Chemistry, 267, 24796–24804.PubMed
55.
go back to reference Pulverer, B. J., Fisher, C., Vousden, K., Littlewood, T., Evan, G., & Woodgett, J. R. (1994). Site-specific modulation of c-Myc cotransformation by residues phosphorylated in vivo. Oncogene, 9, 59–70.PubMed Pulverer, B. J., Fisher, C., Vousden, K., Littlewood, T., Evan, G., & Woodgett, J. R. (1994). Site-specific modulation of c-Myc cotransformation by residues phosphorylated in vivo. Oncogene, 9, 59–70.PubMed
56.
go back to reference Noguchi, K., Kitanaka, C., Yamana, H., Kokubu, A., Mochizuki, T., & Kuchino, Y. (1999). Regulation of c-Myc through phosphorylation at Ser-62 and Ser-71 by c-Jun N-terminal kinase. The Journal of Biological Chemistry, 274, 32580–32587.PubMedCrossRef Noguchi, K., Kitanaka, C., Yamana, H., Kokubu, A., Mochizuki, T., & Kuchino, Y. (1999). Regulation of c-Myc through phosphorylation at Ser-62 and Ser-71 by c-Jun N-terminal kinase. The Journal of Biological Chemistry, 274, 32580–32587.PubMedCrossRef
57.
go back to reference Lutterbach, B., & Hann, S. R. (1994). Hierarchical phosphorylation at N-terminal transformation-sensitive sites in c-Myc protein is regulated by mitogens and in mitosis. Molecular and Cellular Biology, 14, 5510–5522.PubMed Lutterbach, B., & Hann, S. R. (1994). Hierarchical phosphorylation at N-terminal transformation-sensitive sites in c-Myc protein is regulated by mitogens and in mitosis. Molecular and Cellular Biology, 14, 5510–5522.PubMed
58.
go back to reference Cross, D. A., Alessi, D. R., Cohen, P., Andjelkovich, M., & Hemmings, B. A. (1995). Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature, 378, 785–789.PubMedCrossRef Cross, D. A., Alessi, D. R., Cohen, P., Andjelkovich, M., & Hemmings, B. A. (1995). Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature, 378, 785–789.PubMedCrossRef
59.
go back to reference Welcker, M., Orian, A., Jin, J., Grim, J. A., Harper, J. W., Eisenman, R. N., et al. (2004). The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proceedings of the National Academy of Sciences of the United States of America, 101, 9085–9090.PubMedCrossRef Welcker, M., Orian, A., Jin, J., Grim, J. A., Harper, J. W., Eisenman, R. N., et al. (2004). The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proceedings of the National Academy of Sciences of the United States of America, 101, 9085–9090.PubMedCrossRef
60.
go back to reference Yada, M., Hatakeyama, S., Kamura, T., Nishiyama, M., Tsunematsu, R., Imaki, H., et al. (2004). Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. The EMBO Journal, 23, 2116–2125.PubMedCrossRef Yada, M., Hatakeyama, S., Kamura, T., Nishiyama, M., Tsunematsu, R., Imaki, H., et al. (2004). Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. The EMBO Journal, 23, 2116–2125.PubMedCrossRef
61.
go back to reference Malempati, S., Tibbitts, D., Cunningham, M., Akkari, Y., Olson, S., Fan, G., et al. (2006). Aberrant stabilization of c-Myc protein in some lymphoblastic leukemias. Leukemia, 20, 1572–1581.PubMedCrossRef Malempati, S., Tibbitts, D., Cunningham, M., Akkari, Y., Olson, S., Fan, G., et al. (2006). Aberrant stabilization of c-Myc protein in some lymphoblastic leukemias. Leukemia, 20, 1572–1581.PubMedCrossRef
62.
go back to reference Chen, J., Martin, B. L., & Brautigan, D. L. (1992). Regulation of protein serine-threonine phosphatase type-2A by tyrosine phosphorylation. Science, 257, 1261–1264.PubMedCrossRef Chen, J., Martin, B. L., & Brautigan, D. L. (1992). Regulation of protein serine-threonine phosphatase type-2A by tyrosine phosphorylation. Science, 257, 1261–1264.PubMedCrossRef
63.
go back to reference Xie, H., & Clarke, S. (1993). Methyl esterification of C-terminal leucine residues in cytosolic 36-kDa polypeptides of bovine brain. A novel eucaryotic protein carboxyl methylation reaction. The Journal of Biological Chemistry, 268, 13364–13371.PubMed Xie, H., & Clarke, S. (1993). Methyl esterification of C-terminal leucine residues in cytosolic 36-kDa polypeptides of bovine brain. A novel eucaryotic protein carboxyl methylation reaction. The Journal of Biological Chemistry, 268, 13364–13371.PubMed
64.
go back to reference Lee, J., & Stock, J. (1993). Protein phosphatase 2A catalytic subunit is methyl-esterified at its carboxyl terminus by a novel methyltransferase. The Journal of Biological Chemistry, 268, 19192–19195.PubMed Lee, J., & Stock, J. (1993). Protein phosphatase 2A catalytic subunit is methyl-esterified at its carboxyl terminus by a novel methyltransferase. The Journal of Biological Chemistry, 268, 19192–19195.PubMed
65.
go back to reference Favre, B., Zolnierowicz, S., Turowski, P., & Hemmings, B. A. (1994). The catalytic subunit of protein phosphatase 2A is carboxyl-methylated in vivo. The Journal of Biological Chemistry, 269, 16311–16317.PubMed Favre, B., Zolnierowicz, S., Turowski, P., & Hemmings, B. A. (1994). The catalytic subunit of protein phosphatase 2A is carboxyl-methylated in vivo. The Journal of Biological Chemistry, 269, 16311–16317.PubMed
66.
go back to reference Bryant, J. C., Westphal, R. S., & Wadzinski, B. E. (1999). Methylated C-terminal leucine residue of PP2A catalytic subunit is important for binding of regulatory Balpha subunit. Biochemical Journal, 339(Pt 2), 241–246.PubMedCrossRef Bryant, J. C., Westphal, R. S., & Wadzinski, B. E. (1999). Methylated C-terminal leucine residue of PP2A catalytic subunit is important for binding of regulatory Balpha subunit. Biochemical Journal, 339(Pt 2), 241–246.PubMedCrossRef
67.
go back to reference Tolstykh, T., Lee, J., Vafai, S., & Stock, J. B. (2000). Carboxyl methylation regulates phosphoprotein phosphatase 2A by controlling the association of regulatory B subunits. The EMBO Journal, 19, 5682–5691.PubMedCrossRef Tolstykh, T., Lee, J., Vafai, S., & Stock, J. B. (2000). Carboxyl methylation regulates phosphoprotein phosphatase 2A by controlling the association of regulatory B subunits. The EMBO Journal, 19, 5682–5691.PubMedCrossRef
68.
go back to reference Yu, X. X., Du, X., Moreno, C. S., Green, R. E., Ogris, E., Feng, Q., et al. (2001). Methylation of the protein phosphatase 2A catalytic subunit is essential for association of Balpha regulatory subunit but not SG2NA, striatin, or polyomavirus middle tumor antigen. Molecular and Cellular Biology, 12, 185–199.CrossRef Yu, X. X., Du, X., Moreno, C. S., Green, R. E., Ogris, E., Feng, Q., et al. (2001). Methylation of the protein phosphatase 2A catalytic subunit is essential for association of Balpha regulatory subunit but not SG2NA, striatin, or polyomavirus middle tumor antigen. Molecular and Cellular Biology, 12, 185–199.CrossRef
69.
go back to reference Okamoto, K., Li, H., Jensen, M. R., Zhang, T., Taya, Y., Thorgeirsson, S. S., et al. (2002). Cyclin G recruits PP2A to dephosphorylate Mdm2. Molecular Cell, 9, 761–771.PubMedCrossRef Okamoto, K., Li, H., Jensen, M. R., Zhang, T., Taya, Y., Thorgeirsson, S. S., et al. (2002). Cyclin G recruits PP2A to dephosphorylate Mdm2. Molecular Cell, 9, 761–771.PubMedCrossRef
70.
go back to reference Bhasin, N., Cunha, S. R., Mudannayake, M., Gigena, M. S., Rogers, T. B., & Mohler, P. J. (2007). Molecular basis for PP2A regulatory subunit B56alpha targeting in cardiomyocytes. American Journal of Physiology. Heart and Circulatory Physiology, 293, H109–H119.PubMedCrossRef Bhasin, N., Cunha, S. R., Mudannayake, M., Gigena, M. S., Rogers, T. B., & Mohler, P. J. (2007). Molecular basis for PP2A regulatory subunit B56alpha targeting in cardiomyocytes. American Journal of Physiology. Heart and Circulatory Physiology, 293, H109–H119.PubMedCrossRef
71.
go back to reference Li, X., Yost, H. J., Virshup, D. M., & Seeling, J. M. (2001). Protein phosphatase 2A and its B56 regulatory subunit inhibit Wnt signaling in Xenopus. The EMBO Journal, 20, 4122–4131.PubMedCrossRef Li, X., Yost, H. J., Virshup, D. M., & Seeling, J. M. (2001). Protein phosphatase 2A and its B56 regulatory subunit inhibit Wnt signaling in Xenopus. The EMBO Journal, 20, 4122–4131.PubMedCrossRef
72.
go back to reference Hart, M. J., de los Santos, R., Albert, I. N., Rubinfeld, B., & Polakis, P. (1998). Downregulation of beta-catenin by human Axin and its association with the APC tumor suppressor, beta-catenin and GSK3 beta. Current Biology, 8, 573–581.PubMedCrossRef Hart, M. J., de los Santos, R., Albert, I. N., Rubinfeld, B., & Polakis, P. (1998). Downregulation of beta-catenin by human Axin and its association with the APC tumor suppressor, beta-catenin and GSK3 beta. Current Biology, 8, 573–581.PubMedCrossRef
73.
go back to reference Ikeda, S., Kishida, S., Yamamoto, H., Murai, H., Koyama, S., & Kikuchi, A. (1998). Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin. The EMBO Journal, 17, 1371–1384.PubMedCrossRef Ikeda, S., Kishida, S., Yamamoto, H., Murai, H., Koyama, S., & Kikuchi, A. (1998). Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin. The EMBO Journal, 17, 1371–1384.PubMedCrossRef
74.
go back to reference Sakanaka, C., Weiss, J. B., & Williams, L. T. (1998). Bridging of beta-catenin and glycogen synthase kinase-3beta by axin and inhibition of beta-catenin-mediated transcription. Proceedings of the National Academy of Sciences of the United States of America, 95, 3020–3023.PubMedCrossRef Sakanaka, C., Weiss, J. B., & Williams, L. T. (1998). Bridging of beta-catenin and glycogen synthase kinase-3beta by axin and inhibition of beta-catenin-mediated transcription. Proceedings of the National Academy of Sciences of the United States of America, 95, 3020–3023.PubMedCrossRef
75.
go back to reference Seeling, J. M., Miller, J. R., Gil, R., Moon, R. T., White, R., & Virshup, D. M. (1999). Regulation of beta-catenin signaling by the B56 subunit of protein phosphatase 2A. Science, 283, 2089–2091.PubMedCrossRef Seeling, J. M., Miller, J. R., Gil, R., Moon, R. T., White, R., & Virshup, D. M. (1999). Regulation of beta-catenin signaling by the B56 subunit of protein phosphatase 2A. Science, 283, 2089–2091.PubMedCrossRef
76.
77.
go back to reference Ruvolo, P. P., Clark, W., Mumby, M., Gao, F., & May, W. S. (2002). A functional role for the B56 alpha-subunit of protein phosphatase 2A in ceramide-mediated regulation of Bcl2 phosphorylation status and function. The Journal of Biological Chemistry, 277, 22847–22852.PubMedCrossRef Ruvolo, P. P., Clark, W., Mumby, M., Gao, F., & May, W. S. (2002). A functional role for the B56 alpha-subunit of protein phosphatase 2A in ceramide-mediated regulation of Bcl2 phosphorylation status and function. The Journal of Biological Chemistry, 277, 22847–22852.PubMedCrossRef
78.
go back to reference Ruvolo, P. P., Deng, X., & May, W. S. (2001). Phosphorylation of Bcl2 and regulation of apoptosis. Leukemia, 15, 515–522.PubMedCrossRef Ruvolo, P. P., Deng, X., & May, W. S. (2001). Phosphorylation of Bcl2 and regulation of apoptosis. Leukemia, 15, 515–522.PubMedCrossRef
79.
go back to reference Deng, X., Gao, F., Flagg, T., Anderson, J., & May, W. S. (2006). Bcl2's flexible loop domain regulates p53 binding and survival. Molecular and Cellular Biology, 26, 4421–4434.PubMedCrossRef Deng, X., Gao, F., Flagg, T., Anderson, J., & May, W. S. (2006). Bcl2's flexible loop domain regulates p53 binding and survival. Molecular and Cellular Biology, 26, 4421–4434.PubMedCrossRef
80.
go back to reference Deng, X., Gao, F., Flagg, T., & May Jr., W. S. (2004). Mono- and multisite phosphorylation enhances Bcl2's antiapoptotic function and inhibition of cell cycle entry functions. Proceedings of the National Academy of Sciences of the United States of America, 101, 153–158.PubMedCrossRef Deng, X., Gao, F., Flagg, T., & May Jr., W. S. (2004). Mono- and multisite phosphorylation enhances Bcl2's antiapoptotic function and inhibition of cell cycle entry functions. Proceedings of the National Academy of Sciences of the United States of America, 101, 153–158.PubMedCrossRef
81.
go back to reference Xin, M., & Deng, X. (2006). Protein phosphatase 2A enhances the proapoptotic function of Bax through dephosphorylation. The Journal of Biological Chemistry, 281, 18859–18867.PubMedCrossRef Xin, M., & Deng, X. (2006). Protein phosphatase 2A enhances the proapoptotic function of Bax through dephosphorylation. The Journal of Biological Chemistry, 281, 18859–18867.PubMedCrossRef
82.
go back to reference Chiang, C. W., Kanies, C., Kim, K. W., Fang, W. B., Parkhurst, C., Xie, M., et al. (2003). Protein phosphatase 2A dephosphorylation of phosphoserine 112 plays the gatekeeper role for BAD-mediated apoptosis. Molecular and Cellular Biology, 23, 6350–6362.PubMedCrossRef Chiang, C. W., Kanies, C., Kim, K. W., Fang, W. B., Parkhurst, C., Xie, M., et al. (2003). Protein phosphatase 2A dephosphorylation of phosphoserine 112 plays the gatekeeper role for BAD-mediated apoptosis. Molecular and Cellular Biology, 23, 6350–6362.PubMedCrossRef
83.
go back to reference He, T. C., Sparks, A. B., Rago, C., Hermeking, H., Zawel, L., da Costa, L. T., et al. (1998). Identification of c-MYC as a target of the APC pathway. Science, 281, 1509–1512.PubMedCrossRef He, T. C., Sparks, A. B., Rago, C., Hermeking, H., Zawel, L., da Costa, L. T., et al. (1998). Identification of c-MYC as a target of the APC pathway. Science, 281, 1509–1512.PubMedCrossRef
84.
go back to reference Ozaki, S., Ikeda, S., Ishizaki, Y., Kurihara, T., Tokumoto, N., Iseki, M., et al. (2005). Alterations and correlations of the components in the Wnt signaling pathway and its target genes in breast cancer. Oncology Reports, 14, 1437–1443.PubMed Ozaki, S., Ikeda, S., Ishizaki, Y., Kurihara, T., Tokumoto, N., Iseki, M., et al. (2005). Alterations and correlations of the components in the Wnt signaling pathway and its target genes in breast cancer. Oncology Reports, 14, 1437–1443.PubMed
85.
go back to reference Shiina, H., Igawa, M., Shigeno, K., Terashima, M., Deguchi, M., Yamanaka, M., et al. (2002). Beta-catenin mutations correlate with over expression of C-myc and cyclin D1 genes in bladder cancer. Journal of Urology, 168, 2220–2226.PubMedCrossRef Shiina, H., Igawa, M., Shigeno, K., Terashima, M., Deguchi, M., Yamanaka, M., et al. (2002). Beta-catenin mutations correlate with over expression of C-myc and cyclin D1 genes in bladder cancer. Journal of Urology, 168, 2220–2226.PubMedCrossRef
86.
go back to reference Wang, S. S., Esplin, E. D., Li, J. L., Huang, L., Gazdar, A., Minna, J., et al. (1998). Alterations of the PPP2R1B gene in human lung and colon cancer. Science, 282, 284–287.PubMedCrossRef Wang, S. S., Esplin, E. D., Li, J. L., Huang, L., Gazdar, A., Minna, J., et al. (1998). Alterations of the PPP2R1B gene in human lung and colon cancer. Science, 282, 284–287.PubMedCrossRef
87.
go back to reference Takayasu, H., Horie, H., Hiyama, E., Matsunaga, T., Hayashi, Y., Watanabe, Y., et al. (2001). Frequent deletions and mutations of the beta-catenin gene are associated with overexpression of cyclin D1 and fibronectin and poorly differentiated histology in childhood hepatoblastoma. Clinical Cancer Research, 7, 901–908.PubMed Takayasu, H., Horie, H., Hiyama, E., Matsunaga, T., Hayashi, Y., Watanabe, Y., et al. (2001). Frequent deletions and mutations of the beta-catenin gene are associated with overexpression of cyclin D1 and fibronectin and poorly differentiated histology in childhood hepatoblastoma. Clinical Cancer Research, 7, 901–908.PubMed
88.
go back to reference Li, Q., Dashwood, W. M., Zhong, X., Nakagama, H., & Dashwood, R. H. (2007). Bcl-2 overexpression in PhIP-induced colon tumors: Cloning of the rat Bcl-2 promoter and characterization of a pathway involving beta-catenin, c-Myc and E2F1. Oncogene, 26, 6194–6202.PubMedCrossRef Li, Q., Dashwood, W. M., Zhong, X., Nakagama, H., & Dashwood, R. H. (2007). Bcl-2 overexpression in PhIP-induced colon tumors: Cloning of the rat Bcl-2 promoter and characterization of a pathway involving beta-catenin, c-Myc and E2F1. Oncogene, 26, 6194–6202.PubMedCrossRef
89.
go back to reference Eischen, C. M., Packham, G., Nip, J., Fee, B. E., Hiebert, S. W., Zambetti, G. P., et al. (2001). Bcl-2 is an apoptotic target suppressed by both c-Myc and E2F-1. Oncogene, 20, 6983–6993.PubMedCrossRef Eischen, C. M., Packham, G., Nip, J., Fee, B. E., Hiebert, S. W., Zambetti, G. P., et al. (2001). Bcl-2 is an apoptotic target suppressed by both c-Myc and E2F-1. Oncogene, 20, 6983–6993.PubMedCrossRef
90.
go back to reference Eischen, C. M., Woo, D., Roussel, M. F., & Cleveland, J. L. (2001). Apoptosis triggered by Myc-induced suppression of Bcl-X(L) or Bcl-2 is bypassed during lymphomagenesis. Molecular and Cellular Biology, 21, 5063–5070.PubMedCrossRef Eischen, C. M., Woo, D., Roussel, M. F., & Cleveland, J. L. (2001). Apoptosis triggered by Myc-induced suppression of Bcl-X(L) or Bcl-2 is bypassed during lymphomagenesis. Molecular and Cellular Biology, 21, 5063–5070.PubMedCrossRef
91.
go back to reference Patel, J. H., & McMahon, S. B. (2007). BCL2 is a downstream effector of MIZ-1 essential for blocking c-MYC-induced apoptosis. The Journal of Biological Chemistry, 282, 5–13.PubMedCrossRef Patel, J. H., & McMahon, S. B. (2007). BCL2 is a downstream effector of MIZ-1 essential for blocking c-MYC-induced apoptosis. The Journal of Biological Chemistry, 282, 5–13.PubMedCrossRef
92.
go back to reference Strasser, A., Harris, A. W., Bath, M. L., & Cory, S. (1990). Novel primitive lymphoid tumours induced in transgenic mice by cooperation between myc and bcl-2. Nature, 348, 331–333.PubMedCrossRef Strasser, A., Harris, A. W., Bath, M. L., & Cory, S. (1990). Novel primitive lymphoid tumours induced in transgenic mice by cooperation between myc and bcl-2. Nature, 348, 331–333.PubMedCrossRef
93.
go back to reference Letai, A., Sorcinelli, M. D., Beard, C., & Korsmeyer, S. J. (2004). Antiapoptotic BCL-2 is required for maintenance of a model leukemia. Cancer Cell, 6, 241–249.PubMedCrossRef Letai, A., Sorcinelli, M. D., Beard, C., & Korsmeyer, S. J. (2004). Antiapoptotic BCL-2 is required for maintenance of a model leukemia. Cancer Cell, 6, 241–249.PubMedCrossRef
94.
go back to reference Pallas, D. C., Shahrik, L. K., Martin, B. L., Jaspers, S., Miller, T. B., Brautigan, D. L., et al. (1990). Polyoma small and middle T antigens and SV40 small t antigen form stable complexes with protein phosphatase 2A. Cell, 60, 167–176.PubMedCrossRef Pallas, D. C., Shahrik, L. K., Martin, B. L., Jaspers, S., Miller, T. B., Brautigan, D. L., et al. (1990). Polyoma small and middle T antigens and SV40 small t antigen form stable complexes with protein phosphatase 2A. Cell, 60, 167–176.PubMedCrossRef
95.
go back to reference Mumby, M. (1995). Regulation by tumour antigens defines a role for PP2A in signal transduction. Seminars in Cancer Biology, 6, 229–237.PubMedCrossRef Mumby, M. (1995). Regulation by tumour antigens defines a role for PP2A in signal transduction. Seminars in Cancer Biology, 6, 229–237.PubMedCrossRef
96.
go back to reference Sontag, E., Fedorov, S., Kamibayashi, C., Robbins, D., Cobb, M., & Mumby, M. (1993). The interaction of SV40 small tumor antigen with protein phosphatase 2A stimulates the map kinase pathway and induces cell proliferation. Cell, 75, 887–897.PubMedCrossRef Sontag, E., Fedorov, S., Kamibayashi, C., Robbins, D., Cobb, M., & Mumby, M. (1993). The interaction of SV40 small tumor antigen with protein phosphatase 2A stimulates the map kinase pathway and induces cell proliferation. Cell, 75, 887–897.PubMedCrossRef
97.
go back to reference Hahn, W. C., Dessain, S. K., Brooks, M. W., King, J. E., Elenbaas, B., Sabatini, D. M., et al. (2002). Enumeration of the simian virus 40 early region elements necessary for human cell transformation. Molecular and Cellular Biology, 22, 2111–2123.PubMedCrossRef Hahn, W. C., Dessain, S. K., Brooks, M. W., King, J. E., Elenbaas, B., Sabatini, D. M., et al. (2002). Enumeration of the simian virus 40 early region elements necessary for human cell transformation. Molecular and Cellular Biology, 22, 2111–2123.PubMedCrossRef
98.
go back to reference Rundell, K., & Parakati, R. (2001). The role of the SV40 ST antigen in cell growth promotion and transformation. Seminars in Cancer Biology, 11, 5–13.PubMedCrossRef Rundell, K., & Parakati, R. (2001). The role of the SV40 ST antigen in cell growth promotion and transformation. Seminars in Cancer Biology, 11, 5–13.PubMedCrossRef
99.
go back to reference Yu, J., Boyapati, A., & Rundell, K. (2001). Critical role for SV40 small-t antigen in human cell transformation. Virology, 290, 192–198.PubMedCrossRef Yu, J., Boyapati, A., & Rundell, K. (2001). Critical role for SV40 small-t antigen in human cell transformation. Virology, 290, 192–198.PubMedCrossRef
100.
go back to reference Tamaki, M., Goi, T., Hirono, Y., Katayama, K., & Yamaguchi, A. (2004). PPP2R1B gene alterations inhibit interaction of PP2A-Abeta and PP2A-C proteins in colorectal cancers. Oncology Reports, 11, 655–659.PubMed Tamaki, M., Goi, T., Hirono, Y., Katayama, K., & Yamaguchi, A. (2004). PPP2R1B gene alterations inhibit interaction of PP2A-Abeta and PP2A-C proteins in colorectal cancers. Oncology Reports, 11, 655–659.PubMed
101.
go back to reference Kalla, C., Scheuermann, M. O., Kube, I., Schlotter, M., Mertens, D., Dohner, H., et al. (2007). Analysis of 11q22-q23 deletion target genes in B-cell chronic lymphocytic leukaemia: Evidence for a pathogenic role of NPAT, CUL5, and PPP2R1B. European Journal of Cancer, 43, 1328–1335.PubMedCrossRef Kalla, C., Scheuermann, M. O., Kube, I., Schlotter, M., Mertens, D., Dohner, H., et al. (2007). Analysis of 11q22-q23 deletion target genes in B-cell chronic lymphocytic leukaemia: Evidence for a pathogenic role of NPAT, CUL5, and PPP2R1B. European Journal of Cancer, 43, 1328–1335.PubMedCrossRef
102.
go back to reference Calin, G. A., di Iasio, M. G., Caprini, E., Vorechovsky, I., Natali, P. G., Sozzi, G., et al. (2000). Low frequency of alterations of the alpha (PPP2R1A) and beta (PPP2R1B) isoforms of the subunit A of the serine-threonine phosphatase 2A in human neoplasms. Oncogene, 19, 1191–1195.PubMedCrossRef Calin, G. A., di Iasio, M. G., Caprini, E., Vorechovsky, I., Natali, P. G., Sozzi, G., et al. (2000). Low frequency of alterations of the alpha (PPP2R1A) and beta (PPP2R1B) isoforms of the subunit A of the serine-threonine phosphatase 2A in human neoplasms. Oncogene, 19, 1191–1195.PubMedCrossRef
103.
go back to reference Ruediger, R., Pham, H. T., & Walter, G. (2001). Disruption of protein phosphatase 2A subunit interaction in human cancers with mutations in the A alpha subunit gene. Oncogene, 20, 10–15.PubMedCrossRef Ruediger, R., Pham, H. T., & Walter, G. (2001). Disruption of protein phosphatase 2A subunit interaction in human cancers with mutations in the A alpha subunit gene. Oncogene, 20, 10–15.PubMedCrossRef
104.
go back to reference Yeh, L. S., Hsieh, Y. Y., Chang, J. G., Chang, W. W., Chang, C. C., & Tsai, F. J. (2007). Mutation analysis of the tumor suppressor gene PPP2R1B in human cervical cancer. International Journal of Gynecological Cancer, 17, 868–871.PubMedCrossRef Yeh, L. S., Hsieh, Y. Y., Chang, J. G., Chang, W. W., Chang, C. C., & Tsai, F. J. (2007). Mutation analysis of the tumor suppressor gene PPP2R1B in human cervical cancer. International Journal of Gynecological Cancer, 17, 868–871.PubMedCrossRef
105.
go back to reference Ruteshouser, E. C., Ashworth, L. K., & Huff, V. (2001). Absence of PPP2R1A mutations in Wilms tumor. Oncogene, 20, 2050–2054.PubMedCrossRef Ruteshouser, E. C., Ashworth, L. K., & Huff, V. (2001). Absence of PPP2R1A mutations in Wilms tumor. Oncogene, 20, 2050–2054.PubMedCrossRef
106.
go back to reference Colella, S., Ohgaki, H., Ruediger, R., Yang, F., Nakamura, M., Fujisawa, H., et al. (2001). Reduced expression of the Aalpha subunit of protein phosphatase 2A in human gliomas in the absence of mutations in the Aalpha and Abeta subunit genes. International Journal of Cancer, 93, 798–804.CrossRef Colella, S., Ohgaki, H., Ruediger, R., Yang, F., Nakamura, M., Fujisawa, H., et al. (2001). Reduced expression of the Aalpha subunit of protein phosphatase 2A in human gliomas in the absence of mutations in the Aalpha and Abeta subunit genes. International Journal of Cancer, 93, 798–804.CrossRef
107.
go back to reference Patturajan, M., Nomoto, S., Sommer, M., Fomenkov, A., Hibi, K., Zangen, R., et al. (2002). DeltaNp63 induces beta-catenin nuclear accumulation and signaling. Cancer Cell, 1, 369–379.PubMedCrossRef Patturajan, M., Nomoto, S., Sommer, M., Fomenkov, A., Hibi, K., Zangen, R., et al. (2002). DeltaNp63 induces beta-catenin nuclear accumulation and signaling. Cancer Cell, 1, 369–379.PubMedCrossRef
108.
go back to reference Martens, E., Stevens, I., Janssens, V., Vermeesch, J., Gotz, J., Goris, J., et al. (2004). Genomic organisation, chromosomal localisation tissue distribution and developmental regulation of the PR61/B′ regulatory subunits of protein phosphatase 2A in mice. Journal of Molecular Biology, 336, 971–986.PubMedCrossRef Martens, E., Stevens, I., Janssens, V., Vermeesch, J., Gotz, J., Goris, J., et al. (2004). Genomic organisation, chromosomal localisation tissue distribution and developmental regulation of the PR61/B′ regulatory subunits of protein phosphatase 2A in mice. Journal of Molecular Biology, 336, 971–986.PubMedCrossRef
109.
go back to reference Salahshor, S., & Woodgett, J. R. (2005). The links between axin and carcinogenesis. Journal of Clinical Pathology, 58, 225–236.PubMedCrossRef Salahshor, S., & Woodgett, J. R. (2005). The links between axin and carcinogenesis. Journal of Clinical Pathology, 58, 225–236.PubMedCrossRef
Metadata
Title
A tumor suppressor role for PP2A-B56α through negative regulation of c-Myc and other key oncoproteins
Authors
Hugh K. Arnold
Rosalie C. Sears
Publication date
01-06-2008
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 2/2008
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-008-9128-9

Other articles of this Issue 2/2008

Cancer and Metastasis Reviews 2/2008 Go to the issue

PREFACE

Preface

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine