Skip to main content
Top
Published in: Cancer and Metastasis Reviews 2/2008

Open Access 01-06-2008

The type 2C phosphatase Wip1: An oncogenic regulator of tumor suppressor and DNA damage response pathways

Authors: Xiongbin Lu, Thuy-Ai Nguyen, Sung-Hwan Moon, Yolanda Darlington, Matthias Sommer, Lawrence A. Donehower

Published in: Cancer and Metastasis Reviews | Issue 2/2008

Login to get access

Abstract

The Wild-type p53-induced phosphatase 1, Wip1 (or PPM1D), is unusual in that it is a serine/threonine phosphatase with oncogenic activity. A member of the type 2C phosphatases (PP2Cδ), Wip1 has been shown to be amplified and overexpressed in multiple human cancer types, including breast and ovarian carcinomas. In rodent primary fibroblast transformation assays, Wip1 cooperates with known oncogenes to induce transformed foci. The recent identification of target proteins that are dephosphorylated by Wip1 has provided mechanistic insights into its oncogenic functions. Wip1 acts as a homeostatic regulator of the DNA damage response by dephosphorylating proteins that are substrates of both ATM and ATR, important DNA damage sensor kinases. Wip1 also suppresses the activity of multiple tumor suppressors, including p53, ATM, p16INK4a and ARF. We present evidence that the suppression of p53, p38 MAP kinase, and ATM/ATR signaling pathways by Wip1 are important components of its oncogenicity when it is amplified and overexpressed in human cancers.
Literature
1.
go back to reference Abraham, R. T. (2001). Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes & Development, 15, 2177–2196.CrossRef Abraham, R. T. (2001). Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes & Development, 15, 2177–2196.CrossRef
2.
go back to reference Shiloh, Y. (2003). ATM and related protein kinases: safeguarding genome integrity. Nature Reviews Cancer, 3, 155–168.PubMedCrossRef Shiloh, Y. (2003). ATM and related protein kinases: safeguarding genome integrity. Nature Reviews Cancer, 3, 155–168.PubMedCrossRef
3.
go back to reference Kim, S. T., Lim, D. S., Canman, C. E., & Kastan, M. B. (1999). Substrate specificities and identification of putative substrates of ATM kinase family members. Journal of Biological Chemistry, 274, 37538–37543.PubMedCrossRef Kim, S. T., Lim, D. S., Canman, C. E., & Kastan, M. B. (1999). Substrate specificities and identification of putative substrates of ATM kinase family members. Journal of Biological Chemistry, 274, 37538–37543.PubMedCrossRef
4.
go back to reference Matsuoka, S., Ballif, B. A., Smogorzewska, A., McDonald 3rd, E. R., Hurov, K. E., Luo, J., et al. (2007). ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science, 316, 1160–1166.PubMedCrossRef Matsuoka, S., Ballif, B. A., Smogorzewska, A., McDonald 3rd, E. R., Hurov, K. E., Luo, J., et al. (2007). ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science, 316, 1160–1166.PubMedCrossRef
5.
go back to reference Gorgoulis, V. G., Vassiliou, L. V., Karakaidos, P., Zacharatos, P., Kotsinas, A., Liloglou, T., et al. (2005). Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature, 434, 907–913.PubMedCrossRef Gorgoulis, V. G., Vassiliou, L. V., Karakaidos, P., Zacharatos, P., Kotsinas, A., Liloglou, T., et al. (2005). Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature, 434, 907–913.PubMedCrossRef
6.
go back to reference Bartkova, J., Horejsi, Z., Koed, K., Kramer, A., Tort, F., Zieger, K., et al. (2005). DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature, 434, 864–870.PubMedCrossRef Bartkova, J., Horejsi, Z., Koed, K., Kramer, A., Tort, F., Zieger, K., et al. (2005). DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature, 434, 864–870.PubMedCrossRef
7.
go back to reference Shreeram, S., Demidov, O. N., Hee, W. K., Yamaguchi, H., Onishi, N., Kek, C., et al. (2006). Wip1 phosphatase modulates ATM-dependent signaling pathways. Molecular Cell, 23, 757–764.PubMedCrossRef Shreeram, S., Demidov, O. N., Hee, W. K., Yamaguchi, H., Onishi, N., Kek, C., et al. (2006). Wip1 phosphatase modulates ATM-dependent signaling pathways. Molecular Cell, 23, 757–764.PubMedCrossRef
8.
go back to reference Lu, X., Ma, O., Nguyen, T. A., Jones, S. N., Oren, M., & Donehower, L. A. (2007). The Wip1 phosphatase acts as a gatekeeper in the p53-Mdm2 autoregulatory loop. Cancer Cell, 12, 342–354.PubMedCrossRef Lu, X., Ma, O., Nguyen, T. A., Jones, S. N., Oren, M., & Donehower, L. A. (2007). The Wip1 phosphatase acts as a gatekeeper in the p53-Mdm2 autoregulatory loop. Cancer Cell, 12, 342–354.PubMedCrossRef
9.
go back to reference Fujimoto, H., Onishi, N., Kato, N., Takekawa, M., Xu, X. Z., Kosugi, A., et al. (2006). Regulation of the antioncogenic Chk2 kinase by the oncogenic Wip1 phosphatase. Cell Death and Differentiation, 13, 1170–1180.PubMedCrossRef Fujimoto, H., Onishi, N., Kato, N., Takekawa, M., Xu, X. Z., Kosugi, A., et al. (2006). Regulation of the antioncogenic Chk2 kinase by the oncogenic Wip1 phosphatase. Cell Death and Differentiation, 13, 1170–1180.PubMedCrossRef
10.
go back to reference Lu, X., Nannenga, B., & Donehower, L. A. (2005). PPM1D dephosphorylates Chk1 and p53 and abrogates cell cycle checkpoints. Genes & Development, 19, 1162–1174.CrossRef Lu, X., Nannenga, B., & Donehower, L. A. (2005). PPM1D dephosphorylates Chk1 and p53 and abrogates cell cycle checkpoints. Genes & Development, 19, 1162–1174.CrossRef
11.
go back to reference Takekawa, M., Adachi, M., Nakahata, A., Nakayama, I., Itoh, F., Tsukuda, H., et al. (2000). p53-inducible wip1 phosphatase mediates a negative feedback regulation of p38 MAPK-p53 signaling in response to UV radiation. EMBO Journal, 19, 6517–6526.PubMedCrossRef Takekawa, M., Adachi, M., Nakahata, A., Nakayama, I., Itoh, F., Tsukuda, H., et al. (2000). p53-inducible wip1 phosphatase mediates a negative feedback regulation of p38 MAPK-p53 signaling in response to UV radiation. EMBO Journal, 19, 6517–6526.PubMedCrossRef
12.
go back to reference Bulavin, D. V., Phillips, C., Nannenga, B., Timofeev, O., Donehower, L. A., Anderson, C. W., et al. (2004). Inactivation of the Wip1 phosphatase inhibits mammary tumorigenesis through p38 MAPK-mediated activation of the p16(Ink4a)-p19(Arf) pathway. Nature Genetics, 36, 343–350.PubMedCrossRef Bulavin, D. V., Phillips, C., Nannenga, B., Timofeev, O., Donehower, L. A., Anderson, C. W., et al. (2004). Inactivation of the Wip1 phosphatase inhibits mammary tumorigenesis through p38 MAPK-mediated activation of the p16(Ink4a)-p19(Arf) pathway. Nature Genetics, 36, 343–350.PubMedCrossRef
13.
go back to reference Fiscella, M., Zhang, H., Fan, S., Sakaguchi, K., Shen, S., Mercer, W. E., et al. (1997). Wip1, a novel human protein phosphatase that is induced in response to ionizing radiation in a p53-dependent manner. Proceedings of the National Academy of Sciences of the United States of America, 94, 6048–6053.PubMedCrossRef Fiscella, M., Zhang, H., Fan, S., Sakaguchi, K., Shen, S., Mercer, W. E., et al. (1997). Wip1, a novel human protein phosphatase that is induced in response to ionizing radiation in a p53-dependent manner. Proceedings of the National Academy of Sciences of the United States of America, 94, 6048–6053.PubMedCrossRef
14.
go back to reference Yoda, A., Xu, X. Z., Onishi, N., Toyoshima, K., Fujimoto, H., Kato, N., et al. (2006). Intrinsic kinase activity and SQ/TQ domain of Chk2 kinase as well as N-terminal domain of Wip1 phosphatase are required for regulation of Chk2 by Wip1. Journal of Biological Chemistry, 281, 24847–24862.PubMedCrossRef Yoda, A., Xu, X. Z., Onishi, N., Toyoshima, K., Fujimoto, H., Kato, N., et al. (2006). Intrinsic kinase activity and SQ/TQ domain of Chk2 kinase as well as N-terminal domain of Wip1 phosphatase are required for regulation of Chk2 by Wip1. Journal of Biological Chemistry, 281, 24847–24862.PubMedCrossRef
15.
go back to reference Yamaguchi, H., Minopoli, G., Demidov, O. N., Chatterjee, D. K., Anderson, C. W., Durell, S. R., et al. (2005). Substrate specificity of the human protein phosphatase 2Cdelta, Wip1. Biochemistry, 44, 5285–5294.PubMedCrossRef Yamaguchi, H., Minopoli, G., Demidov, O. N., Chatterjee, D. K., Anderson, C. W., Durell, S. R., et al. (2005). Substrate specificity of the human protein phosphatase 2Cdelta, Wip1. Biochemistry, 44, 5285–5294.PubMedCrossRef
16.
go back to reference Choi, J., Appella, E., & Donehower, L. A. (2000). The structure and expression of the murine wildtype p53-induced phosphatase 1 (Wip1) gene. Genomics, 64, 298–306.PubMedCrossRef Choi, J., Appella, E., & Donehower, L. A. (2000). The structure and expression of the murine wildtype p53-induced phosphatase 1 (Wip1) gene. Genomics, 64, 298–306.PubMedCrossRef
17.
go back to reference Bulavin, D. V., Demidov, O. N., Saito, S., Kauraniemi, P., Phillips, C., Amundson, S. A., et al. (2002). Amplification of PPM1D in human tumors abrogates p53 tumor-suppressor activity. Nature Genetics, 31, 210–215.PubMedCrossRef Bulavin, D. V., Demidov, O. N., Saito, S., Kauraniemi, P., Phillips, C., Amundson, S. A., et al. (2002). Amplification of PPM1D in human tumors abrogates p53 tumor-suppressor activity. Nature Genetics, 31, 210–215.PubMedCrossRef
18.
go back to reference Barford, D., Das, A. K., & Egloff, M. P. (1998). The structure and mechanism of protein phosphatases: insights into catalysis and regulation. Annual Review of Biophysics and Biomolecular Structure, 27, 133–164.PubMedCrossRef Barford, D., Das, A. K., & Egloff, M. P. (1998). The structure and mechanism of protein phosphatases: insights into catalysis and regulation. Annual Review of Biophysics and Biomolecular Structure, 27, 133–164.PubMedCrossRef
19.
go back to reference Moorhead, G. B., Trinkle-Mulcahy, L., & Ulke-Lemee, A. (2007). Emerging roles of nuclear protein phosphatases. Nature Reviews Molecular Cell Biology, 8, 234–244.PubMedCrossRef Moorhead, G. B., Trinkle-Mulcahy, L., & Ulke-Lemee, A. (2007). Emerging roles of nuclear protein phosphatases. Nature Reviews Molecular Cell Biology, 8, 234–244.PubMedCrossRef
20.
go back to reference Barford, D. (1996). Molecular mechanisms of the protein serine/threonine phosphatases. Trends in Biochemical Sciences, 21, 407–412.PubMedCrossRef Barford, D. (1996). Molecular mechanisms of the protein serine/threonine phosphatases. Trends in Biochemical Sciences, 21, 407–412.PubMedCrossRef
21.
go back to reference Jackson, M. D., & Denu, J. M. (2001). Molecular reactions of protein phosphatases—insights from structure and chemistry. Chemical Reviews, 101, 2313–2340.PubMedCrossRef Jackson, M. D., & Denu, J. M. (2001). Molecular reactions of protein phosphatases—insights from structure and chemistry. Chemical Reviews, 101, 2313–2340.PubMedCrossRef
22.
go back to reference Takekawa, M., Maeda, T., & Saito, H. (1998). Protein phosphatase 2Calpha inhibits the human stress-responsive p38 and JNK MAPK pathways. EMBO Journal, 17, 4744–4752.PubMedCrossRef Takekawa, M., Maeda, T., & Saito, H. (1998). Protein phosphatase 2Calpha inhibits the human stress-responsive p38 and JNK MAPK pathways. EMBO Journal, 17, 4744–4752.PubMedCrossRef
23.
go back to reference Hanada, M., Kobayashi, T., Ohnishi, M., Ikeda, S., Wang, H., Katsura, K., et al. (1998). Selective suppression of stress-activated protein kinase pathway by protein phosphatase 2C in mammalian cells. FEBS Letters, 437, 172–176.PubMedCrossRef Hanada, M., Kobayashi, T., Ohnishi, M., Ikeda, S., Wang, H., Katsura, K., et al. (1998). Selective suppression of stress-activated protein kinase pathway by protein phosphatase 2C in mammalian cells. FEBS Letters, 437, 172–176.PubMedCrossRef
24.
go back to reference Yamaguchi, H., Durell, S. R., Feng, H., Bai, Y., Anderson, C. W., & Appella, E. (2006). Development of a substrate-based cyclic phosphopeptide inhibitor of protein phosphatase 2Cdelta, Wip1. Biochemistry, 45, 13193–13202.PubMedCrossRef Yamaguchi, H., Durell, S. R., Feng, H., Bai, Y., Anderson, C. W., & Appella, E. (2006). Development of a substrate-based cyclic phosphopeptide inhibitor of protein phosphatase 2Cdelta, Wip1. Biochemistry, 45, 13193–13202.PubMedCrossRef
25.
go back to reference Lu, X., Bocangel, D., Nannenga, B., Yamaguchi, H., Appella, E., & Donehower, L. A. (2004). The p53-induced oncogenic phosphatase PPM1D interacts with uracil DNA glycosylase and suppresses base excision repair. Molecular Cell, 15, 621–634.PubMedCrossRef Lu, X., Bocangel, D., Nannenga, B., Yamaguchi, H., Appella, E., & Donehower, L. A. (2004). The p53-induced oncogenic phosphatase PPM1D interacts with uracil DNA glycosylase and suppresses base excision repair. Molecular Cell, 15, 621–634.PubMedCrossRef
26.
go back to reference Lu, X., Nguyen, T. A., & Donehower, L. A. (2005). Reversal of the ATM/ATR-mediated DNA damage response by the oncogenic phosphatase PPM1D. Cell Cycle, 4, 1060–1064.PubMed Lu, X., Nguyen, T. A., & Donehower, L. A. (2005). Reversal of the ATM/ATR-mediated DNA damage response by the oncogenic phosphatase PPM1D. Cell Cycle, 4, 1060–1064.PubMed
27.
go back to reference Siliciano, J. D., Canman, C. E., Taya, Y., Sakaguchi, K., Appella, E., & Kastan, M. B. (1997). DNA damage induces phosphorylation of the amino terminus of p53. Genes & Development, 11, 3471–3481.CrossRef Siliciano, J. D., Canman, C. E., Taya, Y., Sakaguchi, K., Appella, E., & Kastan, M. B. (1997). DNA damage induces phosphorylation of the amino terminus of p53. Genes & Development, 11, 3471–3481.CrossRef
28.
go back to reference Bulavin, D. V., Saito, S., Hollander, M. C., Sakaguchi, K., Anderson, C. W., Appella, E., et al. (1999). Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation. EMBO Journal, 18, 6845–6854.PubMedCrossRef Bulavin, D. V., Saito, S., Hollander, M. C., Sakaguchi, K., Anderson, C. W., Appella, E., et al. (1999). Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation. EMBO Journal, 18, 6845–6854.PubMedCrossRef
29.
go back to reference Liu, Q., Guntuku, S., Cui, X. S., Matsuoka, S., Cortez, D., Tamai, K., et al. (2000). Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes & Development, 14, 1448–1459.CrossRef Liu, Q., Guntuku, S., Cui, X. S., Matsuoka, S., Cortez, D., Tamai, K., et al. (2000). Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes & Development, 14, 1448–1459.CrossRef
30.
go back to reference Shieh, S. Y., Ahn, J., Tamai, K., Taya, Y., & Prives, C. (2000). The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes & Development, 14, 289–300. Shieh, S. Y., Ahn, J., Tamai, K., Taya, Y., & Prives, C. (2000). The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes & Development, 14, 289–300.
31.
go back to reference Maya, R., Balass, M., Kim, S. T., Shkedy, D., Leal, J. F., Shifman, O., et al. (2001). ATM-dependent phosphorylation of Mdm2 on serine 395: Role in p53 activation by DNA damage. Genes & Development, 15, 1067–1077.CrossRef Maya, R., Balass, M., Kim, S. T., Shkedy, D., Leal, J. F., Shifman, O., et al. (2001). ATM-dependent phosphorylation of Mdm2 on serine 395: Role in p53 activation by DNA damage. Genes & Development, 15, 1067–1077.CrossRef
32.
go back to reference Derijard, B., Raingeaud, J., Barrett, T., Wu, I. H., Han, J., Ulevitch, R. J., et al. (1995). Independent human MAP-kinase signal transduction pathways defined by MEK and MKK isoforms. Science, 267, 682–685.PubMedCrossRef Derijard, B., Raingeaud, J., Barrett, T., Wu, I. H., Han, J., Ulevitch, R. J., et al. (1995). Independent human MAP-kinase signal transduction pathways defined by MEK and MKK isoforms. Science, 267, 682–685.PubMedCrossRef
33.
go back to reference Raingeaud, J., Gupta, S., Rogers, J. S., Dickens, M., Han, J., Ulevitch, R. J., et al. (1995). Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. Journal of Biological Chemistry, 270, 7420–7426.PubMedCrossRef Raingeaud, J., Gupta, S., Rogers, J. S., Dickens, M., Han, J., Ulevitch, R. J., et al. (1995). Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. Journal of Biological Chemistry, 270, 7420–7426.PubMedCrossRef
34.
go back to reference She, Q. B., Chen, N., & Dong, Z. (2000). ERKs and p38 kinase phosphorylate p53 protein at serine 15 in response to UV radiation. Journal of Biological Chemistry, 275, 20444–20449.PubMedCrossRef She, Q. B., Chen, N., & Dong, Z. (2000). ERKs and p38 kinase phosphorylate p53 protein at serine 15 in response to UV radiation. Journal of Biological Chemistry, 275, 20444–20449.PubMedCrossRef
35.
go back to reference Huang, C., Ma, W. Y., Maxiner, A., Sun, Y., & Dong, Z. (1999). p38 kinase mediates UV-induced phosphorylation of p53 protein at serine 389. Journal of Biological Chemistry, 274, 12229–12235.PubMedCrossRef Huang, C., Ma, W. Y., Maxiner, A., Sun, Y., & Dong, Z. (1999). p38 kinase mediates UV-induced phosphorylation of p53 protein at serine 389. Journal of Biological Chemistry, 274, 12229–12235.PubMedCrossRef
36.
go back to reference Krokan, H. E., Drablos, F., & Slupphaug, G. (2002). Uracil in DNA—occurrence, consequences and repair. Oncogene, 21, 8935–8948.PubMedCrossRef Krokan, H. E., Drablos, F., & Slupphaug, G. (2002). Uracil in DNA—occurrence, consequences and repair. Oncogene, 21, 8935–8948.PubMedCrossRef
37.
go back to reference Rual, J. F., Venkatesan, K., Hao, T., Hirozane-Kishikawa, T., Dricot, A., Li, N., et al. (2005). Towards a proteome-scale map of the human protein-protein interaction network. Nature, 437, 1173–1178.PubMedCrossRef Rual, J. F., Venkatesan, K., Hao, T., Hirozane-Kishikawa, T., Dricot, A., Li, N., et al. (2005). Towards a proteome-scale map of the human protein-protein interaction network. Nature, 437, 1173–1178.PubMedCrossRef
38.
go back to reference Lu, X., Nguyen, T. A., Appella, E., & Donehower, L. A. (2004). Homeostatic regulation of base excision repair by a p53-induced phosphatase: Linking stress response pathways with DNA repair proteins. Cell Cycle, 3, 1363–1366.PubMed Lu, X., Nguyen, T. A., Appella, E., & Donehower, L. A. (2004). Homeostatic regulation of base excision repair by a p53-induced phosphatase: Linking stress response pathways with DNA repair proteins. Cell Cycle, 3, 1363–1366.PubMed
39.
go back to reference Bartek, J., & Lukas, J. (2003). Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell, 3, 421–429.PubMedCrossRef Bartek, J., & Lukas, J. (2003). Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell, 3, 421–429.PubMedCrossRef
40.
go back to reference Zhao, H., & Piwnica-Worms, H. (2001). ATR-mediated checkpoint pathways regulate phosphorylation and activation of human Chk1. Molecular Cell Biology, 21, 4129–4139.CrossRef Zhao, H., & Piwnica-Worms, H. (2001). ATR-mediated checkpoint pathways regulate phosphorylation and activation of human Chk1. Molecular Cell Biology, 21, 4129–4139.CrossRef
41.
go back to reference Karlsson-Rosenthal, C., & Millar, J. B. (2006). Cdc25: mechanisms of checkpoint inhibition and recovery. Trends in Cell Biology, 16, 285–292.PubMedCrossRef Karlsson-Rosenthal, C., & Millar, J. B. (2006). Cdc25: mechanisms of checkpoint inhibition and recovery. Trends in Cell Biology, 16, 285–292.PubMedCrossRef
42.
go back to reference Melchionna, R., Chen, X. B., Blasina, A., & McGowan, C. H. (2000). Threonine 68 is required for radiation-induced phosphorylation and activation of Cds1. Nature Cell Biology, 2, 762–765.PubMedCrossRef Melchionna, R., Chen, X. B., Blasina, A., & McGowan, C. H. (2000). Threonine 68 is required for radiation-induced phosphorylation and activation of Cds1. Nature Cell Biology, 2, 762–765.PubMedCrossRef
43.
go back to reference Matsuoka, S., Rotman, G., Ogawa, A., Shiloh, Y., Tamai, K., & Elledge, S. J. (2000). Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro. Proceedings of the National Academy of Sciences of the United States of America, 97, 10389–10394.PubMedCrossRef Matsuoka, S., Rotman, G., Ogawa, A., Shiloh, Y., Tamai, K., & Elledge, S. J. (2000). Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro. Proceedings of the National Academy of Sciences of the United States of America, 97, 10389–10394.PubMedCrossRef
44.
go back to reference Ahn, J. Y., Schwarz, J. K., Piwnica-Worms, H., & Canman, C. E. (2000). Threonine 68 phosphorylation by ataxia telangiectasia mutated is required for efficient activation of Chk2 in response to ionizing radiation. Cancer Research, 60, 5934–5936.PubMed Ahn, J. Y., Schwarz, J. K., Piwnica-Worms, H., & Canman, C. E. (2000). Threonine 68 phosphorylation by ataxia telangiectasia mutated is required for efficient activation of Chk2 in response to ionizing radiation. Cancer Research, 60, 5934–5936.PubMed
45.
go back to reference Gatei, M., Sloper, K., Sorensen, C., Syljuasen, R., Falck, J., Hobson, K., et al. (2003). Ataxia-telangiectasia-mutated (ATM) and NBS1-dependent phosphorylation of Chk1 on Ser-317 in response to ionizing radiation. Journal of Biological Chemistry, 278, 14806–14811.PubMedCrossRef Gatei, M., Sloper, K., Sorensen, C., Syljuasen, R., Falck, J., Hobson, K., et al. (2003). Ataxia-telangiectasia-mutated (ATM) and NBS1-dependent phosphorylation of Chk1 on Ser-317 in response to ionizing radiation. Journal of Biological Chemistry, 278, 14806–14811.PubMedCrossRef
46.
go back to reference Hirao, A., Cheung, A., Duncan, G., Girard, P. M., Elia, A. J., Wakeham, A., et al. (2002). Chk2 is a tumor suppressor that regulates apoptosis in both an ataxia telangiectasia mutated (ATM)-dependent and an ATM-independent manner. Molecular Cell Biology, 22, 6521–6532.CrossRef Hirao, A., Cheung, A., Duncan, G., Girard, P. M., Elia, A. J., Wakeham, A., et al. (2002). Chk2 is a tumor suppressor that regulates apoptosis in both an ataxia telangiectasia mutated (ATM)-dependent and an ATM-independent manner. Molecular Cell Biology, 22, 6521–6532.CrossRef
47.
go back to reference Cuadrado, M., Martinez-Pastor, B., & Fernandez-Capetillo, O. (2006). “ATR activation in response to ionizing radiation: still ATM territory”. Cell Division, 1, 7.PubMedCrossRef Cuadrado, M., Martinez-Pastor, B., & Fernandez-Capetillo, O. (2006). “ATR activation in response to ionizing radiation: still ATM territory”. Cell Division, 1, 7.PubMedCrossRef
48.
go back to reference Jazayeri, A., Falck, J., Lukas, C., Bartek, J., Smith, G. C., Lukas, J., et al. (2006). ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nature Cell Biology, 8, 37–45.PubMedCrossRef Jazayeri, A., Falck, J., Lukas, C., Bartek, J., Smith, G. C., Lukas, J., et al. (2006). ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nature Cell Biology, 8, 37–45.PubMedCrossRef
49.
go back to reference Nannenga, B., Lu, X., Dumble, M., Van Maanen, M., Nguyen, T. A., Sutton, R., et al. (2006). Augmented cancer resistance and DNA damage response phenotypes in PPM1D null mice. Molecular Carcinogenesis, 45, 594–604.PubMedCrossRef Nannenga, B., Lu, X., Dumble, M., Van Maanen, M., Nguyen, T. A., Sutton, R., et al. (2006). Augmented cancer resistance and DNA damage response phenotypes in PPM1D null mice. Molecular Carcinogenesis, 45, 594–604.PubMedCrossRef
50.
go back to reference Oliva-Trastoy, M., Berthonaud, V., Chevalier, A., Ducrot, C., Marsolier-Kergoat, M. C., Mann, C., et al. (2007). The Wip1 phosphatase (PPM1D) antagonizes activation of the Chk2 tumour suppressor kinase. Oncogene, 26, 1449–1458.PubMedCrossRef Oliva-Trastoy, M., Berthonaud, V., Chevalier, A., Ducrot, C., Marsolier-Kergoat, M. C., Mann, C., et al. (2007). The Wip1 phosphatase (PPM1D) antagonizes activation of the Chk2 tumour suppressor kinase. Oncogene, 26, 1449–1458.PubMedCrossRef
51.
go back to reference Fuku, T., Semba, S., Yutori, H., & Yokozaki, H. (2007). Increased wild-type p53-induced phosphatase 1 (Wip1 or PPM1D) expression correlated with downregulation of checkpoint kinase 2 in human gastric carcinoma. Pathology International, 57, 566–571.PubMedCrossRef Fuku, T., Semba, S., Yutori, H., & Yokozaki, H. (2007). Increased wild-type p53-induced phosphatase 1 (Wip1 or PPM1D) expression correlated with downregulation of checkpoint kinase 2 in human gastric carcinoma. Pathology International, 57, 566–571.PubMedCrossRef
52.
go back to reference Horn, H. F., & Vousden, K. H. (2007). Coping with stress: Multiple ways to activate p53. Oncogene, 26, 1306–1316.PubMedCrossRef Horn, H. F., & Vousden, K. H. (2007). Coping with stress: Multiple ways to activate p53. Oncogene, 26, 1306–1316.PubMedCrossRef
53.
go back to reference Olivier, M., Hussain, S. P., Caron de Fromentel, C., Hainaut, P., & Harris, C. C. (2004). TP53 mutation spectra and load: A tool for generating hypotheses on the etiology of cancer. IARC Scientific Publications, 157, 247–270.PubMed Olivier, M., Hussain, S. P., Caron de Fromentel, C., Hainaut, P., & Harris, C. C. (2004). TP53 mutation spectra and load: A tool for generating hypotheses on the etiology of cancer. IARC Scientific Publications, 157, 247–270.PubMed
54.
go back to reference Donehower, L. A., Harvey, M., Slagle, B. L., McArthur, M. J., Montgomery Jr., C. A., Butel, J. S., et al. (1992). Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature, 356, 215–221.PubMedCrossRef Donehower, L. A., Harvey, M., Slagle, B. L., McArthur, M. J., Montgomery Jr., C. A., Butel, J. S., et al. (1992). Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature, 356, 215–221.PubMedCrossRef
55.
go back to reference Bond, G. L., Hu, W., & Levine, A. J. (2005). MDM2 is a central node in the p53 pathway: 12 years and counting. Current Cancer Drug Targets, 5, 3–8.PubMedCrossRef Bond, G. L., Hu, W., & Levine, A. J. (2005). MDM2 is a central node in the p53 pathway: 12 years and counting. Current Cancer Drug Targets, 5, 3–8.PubMedCrossRef
56.
go back to reference Shieh, S. Y., Ikeda, M., Taya, Y., & Prives, C. (1997). DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell, 91, 325–334.PubMedCrossRef Shieh, S. Y., Ikeda, M., Taya, Y., & Prives, C. (1997). DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell, 91, 325–334.PubMedCrossRef
57.
go back to reference Shreeram, S., Hee, W. K., Demidov, O. N., Kek, C., Yamaguchi, H., Fornace Jr., A. J., et al. (2006). Regulation of ATM/p53-dependent suppression of myc-induced lymphomas by Wip1 phosphatase. Journal of Experimental Medicine, 203, 2793–2799.PubMedCrossRef Shreeram, S., Hee, W. K., Demidov, O. N., Kek, C., Yamaguchi, H., Fornace Jr., A. J., et al. (2006). Regulation of ATM/p53-dependent suppression of myc-induced lymphomas by Wip1 phosphatase. Journal of Experimental Medicine, 203, 2793–2799.PubMedCrossRef
58.
go back to reference Ostman, A., Hellberg, C., & Bohmer, F. D. (2006). Protein-tyrosine phosphatases and cancer. Nature Reviews Cancer, 6, 307–320.PubMedCrossRef Ostman, A., Hellberg, C., & Bohmer, F. D. (2006). Protein-tyrosine phosphatases and cancer. Nature Reviews Cancer, 6, 307–320.PubMedCrossRef
59.
go back to reference Arroyo, J. D., & Hahn, W. C. (2005). Involvement of PP2A in viral and cellular transformation. Oncogene, 24, 7746–7755.PubMedCrossRef Arroyo, J. D., & Hahn, W. C. (2005). Involvement of PP2A in viral and cellular transformation. Oncogene, 24, 7746–7755.PubMedCrossRef
60.
go back to reference Li, J., Yang, Y., Peng, Y., Austin, R. J., van Eyndhoven, W. G., Nguyen, K. C., et al. (2002). Oncogenic properties of PPM1D located within a breast cancer amplification epicenter at 17q23. Nature Genetics, 31, 133–134.PubMedCrossRef Li, J., Yang, Y., Peng, Y., Austin, R. J., van Eyndhoven, W. G., Nguyen, K. C., et al. (2002). Oncogenic properties of PPM1D located within a breast cancer amplification epicenter at 17q23. Nature Genetics, 31, 133–134.PubMedCrossRef
61.
go back to reference Momand, J., Jung, D., Wilczynski, S., & Niland, J. (1998). The MDM2 gene amplification database. Nucleic Acids Research, 26, 3453–3459.PubMedCrossRef Momand, J., Jung, D., Wilczynski, S., & Niland, J. (1998). The MDM2 gene amplification database. Nucleic Acids Research, 26, 3453–3459.PubMedCrossRef
62.
go back to reference Rauta, J., Alarmo, E. L., Kauraniemi, P., Karhu, R., Kuukasjarvi, T., & Kallioniemi, A. (2006). The serine-threonine protein phosphatase PPM1D is frequently activated through amplification in aggressive primary breast tumours. Breast Cancer Research and Treatment, 95, 257–263.PubMedCrossRef Rauta, J., Alarmo, E. L., Kauraniemi, P., Karhu, R., Kuukasjarvi, T., & Kallioniemi, A. (2006). The serine-threonine protein phosphatase PPM1D is frequently activated through amplification in aggressive primary breast tumours. Breast Cancer Research and Treatment, 95, 257–263.PubMedCrossRef
63.
go back to reference Yu, E., Ahn, Y. S., Jang, S. J., Kim, M. J., Yoon, H. S., Gong, G., et al. (2007). Overexpression of the wip1 gene abrogates the p38 MAPK/p53/Wip1 pathway and silences p16 expression in human breast cancers. Breast Cancer Research and Treatment, 101, 269–278.PubMedCrossRef Yu, E., Ahn, Y. S., Jang, S. J., Kim, M. J., Yoon, H. S., Gong, G., et al. (2007). Overexpression of the wip1 gene abrogates the p38 MAPK/p53/Wip1 pathway and silences p16 expression in human breast cancers. Breast Cancer Research and Treatment, 101, 269–278.PubMedCrossRef
64.
go back to reference Hirasawa, A., Saito-Ohara, F., Inoue, J., Aoki, D., Susumu, N., Yokoyama, T., et al. (2003). Association of 17q21-q24 gain in ovarian clear cell adenocarcinomas with poor prognosis and identification of PPM1D and APPBP2 as likely amplification targets. Clinical Cancer Research, 9, 1995–2004.PubMed Hirasawa, A., Saito-Ohara, F., Inoue, J., Aoki, D., Susumu, N., Yokoyama, T., et al. (2003). Association of 17q21-q24 gain in ovarian clear cell adenocarcinomas with poor prognosis and identification of PPM1D and APPBP2 as likely amplification targets. Clinical Cancer Research, 9, 1995–2004.PubMed
65.
go back to reference Saito-Ohara, F., Imoto, I., Inoue, J., Hosoi, H., Nakagawara, A., Sugimoto, T., et al. (2003). PPM1D is a potential target for 17q gain in neuroblastoma. Cancer Research, 63, 1876–1883.PubMed Saito-Ohara, F., Imoto, I., Inoue, J., Hosoi, H., Nakagawara, A., Sugimoto, T., et al. (2003). PPM1D is a potential target for 17q gain in neuroblastoma. Cancer Research, 63, 1876–1883.PubMed
66.
go back to reference Loukopoulos, P., Shibata, T., Katoh, H., Kokubu, A., Sakamoto, M., Yamazaki, K., et al. (2007). Genome-wide array-based comparative genomic hybridization analysis of pancreatic adenocarcinoma: Identification of genetic indicators that predict patient outcome. Cancer Science, 98, 392–400.PubMedCrossRef Loukopoulos, P., Shibata, T., Katoh, H., Kokubu, A., Sakamoto, M., Yamazaki, K., et al. (2007). Genome-wide array-based comparative genomic hybridization analysis of pancreatic adenocarcinoma: Identification of genetic indicators that predict patient outcome. Cancer Science, 98, 392–400.PubMedCrossRef
67.
go back to reference Ehrbrecht, A., Muller, U., Wolter, M., Hoischen, A., Koch, A., Radlwimmer, B., et al. (2006). Comprehensive genomic analysis of desmoplastic medulloblastomas: Identification of novel amplified genes and separate evaluation of the different histological components. Journal of Pathology, 208, 554–563.PubMedCrossRef Ehrbrecht, A., Muller, U., Wolter, M., Hoischen, A., Koch, A., Radlwimmer, B., et al. (2006). Comprehensive genomic analysis of desmoplastic medulloblastomas: Identification of novel amplified genes and separate evaluation of the different histological components. Journal of Pathology, 208, 554–563.PubMedCrossRef
68.
go back to reference Mendrzyk, F., Radlwimmer, B., Joos, S., Kokocinski, F., Benner, A., Stange, D. E., et al. (2005). Genomic and protein expression profiling identifies CDK6 as novel independent prognostic marker in medulloblastoma. Journal of Clinical Oncology, 23, 8853–8862.PubMedCrossRef Mendrzyk, F., Radlwimmer, B., Joos, S., Kokocinski, F., Benner, A., Stange, D. E., et al. (2005). Genomic and protein expression profiling identifies CDK6 as novel independent prognostic marker in medulloblastoma. Journal of Clinical Oncology, 23, 8853–8862.PubMedCrossRef
69.
go back to reference Castellino, C., De Bortoli, M., Moon S. H., Lu, X., Skapura, D. G., Lin, L. L., et al. (2007). Medulloblastomas overexpress the p53-Inactivating oncogene Wip1/PPM1D. J. Neuro-Onc. (in press). Castellino, C., De Bortoli, M., Moon S. H., Lu, X., Skapura, D. G., Lin, L. L., et al. (2007). Medulloblastomas overexpress the p53-Inactivating oncogene Wip1/PPM1D. J. Neuro-Onc. (in press).
70.
go back to reference Demidov, O. N., Kek, C., Shreeram, S., Timofeev, O., Fornace, A. J., Appella, E., et al. (2007). The role of the MKK6/p38 MAPK pathway in Wip1-dependent regulation of ErbB2-driven mammary gland tumorigenesis. Oncogene, 26, 2502–2506.PubMedCrossRef Demidov, O. N., Kek, C., Shreeram, S., Timofeev, O., Fornace, A. J., Appella, E., et al. (2007). The role of the MKK6/p38 MAPK pathway in Wip1-dependent regulation of ErbB2-driven mammary gland tumorigenesis. Oncogene, 26, 2502–2506.PubMedCrossRef
71.
go back to reference Choi, J., Nannenga, B., Demidov, O. N., Bulavin, D. V., Cooney, A., Brayton, C., et al. (2002). Mice deficient for the wild-type p53-induced phosphatase gene (Wip1) exhibit defects in reproductive organs, immune function, and cell cycle control. Molecular Cell Biology, 22, 1094–1105.CrossRef Choi, J., Nannenga, B., Demidov, O. N., Bulavin, D. V., Cooney, A., Brayton, C., et al. (2002). Mice deficient for the wild-type p53-induced phosphatase gene (Wip1) exhibit defects in reproductive organs, immune function, and cell cycle control. Molecular Cell Biology, 22, 1094–1105.CrossRef
72.
go back to reference Belova, G. I., Demidov, O. N., Fornace Jr., A. J., & Bulavin, D. V. (2005). Chemical inhibition of Wip1 phosphatase contributes to suppression of tumorigenesis. Cancer Biology and Therapy, 4, 1154–1158.PubMedCrossRef Belova, G. I., Demidov, O. N., Fornace Jr., A. J., & Bulavin, D. V. (2005). Chemical inhibition of Wip1 phosphatase contributes to suppression of tumorigenesis. Cancer Biology and Therapy, 4, 1154–1158.PubMedCrossRef
73.
go back to reference Rayter, S., Elliott, R., Travers, J., Rowlands, M. G., Richardson, T. B., Boxall, K., et al. (2007). A chemical inhibitor of PPM1D that selectively kills cells overexpressing PPM1D. Oncogene (in press). Rayter, S., Elliott, R., Travers, J., Rowlands, M. G., Richardson, T. B., Boxall, K., et al. (2007). A chemical inhibitor of PPM1D that selectively kills cells overexpressing PPM1D. Oncogene (in press).
74.
go back to reference Proia, D. A., Nannenga, B. W., Donehower, L. A., & Weigel, N. L. (2006). Dual roles for the phosphatase PPM1D in regulating progesterone receptor function. Journal of Biological Chemistry, 281, 7089–7101.PubMedCrossRef Proia, D. A., Nannenga, B. W., Donehower, L. A., & Weigel, N. L. (2006). Dual roles for the phosphatase PPM1D in regulating progesterone receptor function. Journal of Biological Chemistry, 281, 7089–7101.PubMedCrossRef
75.
go back to reference Schito, M. L., Demidov, O. N., Saito, S., Ashwell, J. D., & Appella, E. (2006). Wip1 phosphatase-deficient mice exhibit defective T cell maturation due to sustained p53 activation. Journal of Immunology, 176, 4818–4825. Schito, M. L., Demidov, O. N., Saito, S., Ashwell, J. D., & Appella, E. (2006). Wip1 phosphatase-deficient mice exhibit defective T cell maturation due to sustained p53 activation. Journal of Immunology, 176, 4818–4825.
Metadata
Title
The type 2C phosphatase Wip1: An oncogenic regulator of tumor suppressor and DNA damage response pathways
Authors
Xiongbin Lu
Thuy-Ai Nguyen
Sung-Hwan Moon
Yolanda Darlington
Matthias Sommer
Lawrence A. Donehower
Publication date
01-06-2008
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 2/2008
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-008-9127-x

Other articles of this Issue 2/2008

Cancer and Metastasis Reviews 2/2008 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine