Skip to main content
Top
Published in: Cancer and Metastasis Reviews 2/2008

01-06-2008

SV40 small T antigen and PP2A phosphatase in cell transformation

Authors: Anna A. Sablina, William C. Hahn

Published in: Cancer and Metastasis Reviews | Issue 2/2008

Login to get access

Abstract

The SV40 early region protein, SV40 small t antigen, promotes cell transformation through negative regulation of the protein phosphatase 2A (PP2A) family of serine–threonine phosphatases. More recently, reduced levels of PP2A activity have been found in different types of human cancer. This occurs either through inactivating mutations of PP2A structural subunits, or by upregulation of the cellular PP2A inhibitors, CIP2A and SET. Several distinct PP2A complexes have been identified that contribute directly to tumor suppression by regulating specific phosphorylation events. These studies provide us with new insights into the role of protein phosphatases in cancer initiation and maintenance.
Literature
1.
go back to reference Hahn, W. C., Dessain, S. K., Brooks, M. W., King, J. E., Elenbaas, B., Sabatini, D. M., et al. (2002). Enumeration of the simian virus 40 early region elements necessary for human cell transformation. Molecular and Cellular Biology, 22(7), 2111–2123.PubMedCrossRef Hahn, W. C., Dessain, S. K., Brooks, M. W., King, J. E., Elenbaas, B., Sabatini, D. M., et al. (2002). Enumeration of the simian virus 40 early region elements necessary for human cell transformation. Molecular and Cellular Biology, 22(7), 2111–2123.PubMedCrossRef
2.
go back to reference Kleinberger, T., & Shenk, T. (1993). Adenovirus e4orf4 protein binds to protein phosphatase 2A, and the complex down regulates e1a-enhanced Junb transcription. Journal of Virology, 67(12), 7556–7560.PubMed Kleinberger, T., & Shenk, T. (1993). Adenovirus e4orf4 protein binds to protein phosphatase 2A, and the complex down regulates e1a-enhanced Junb transcription. Journal of Virology, 67(12), 7556–7560.PubMed
3.
go back to reference Pallas, D. C., Shahrik, L. K., Martin, B. L., Jaspers, S., Miller, T. B., Brautigan, D. L., et al. (1990). Polyoma small and middle t antigens and SV40 small t antigen form stable complexes with protein phosphatase 2A. Cell, 60(1), 167–176.PubMedCrossRef Pallas, D. C., Shahrik, L. K., Martin, B. L., Jaspers, S., Miller, T. B., Brautigan, D. L., et al. (1990). Polyoma small and middle t antigens and SV40 small t antigen form stable complexes with protein phosphatase 2A. Cell, 60(1), 167–176.PubMedCrossRef
4.
go back to reference Rundell, K. (1987). Complete interaction of cellular 56,000- and 32,000-mr proteins with simian virus 40 small-t antigen in productively infected cells. Journal of Virology, 61(4), 1240–1243.PubMed Rundell, K. (1987). Complete interaction of cellular 56,000- and 32,000-mr proteins with simian virus 40 small-t antigen in productively infected cells. Journal of Virology, 61(4), 1240–1243.PubMed
5.
go back to reference Yu, J., Boyapati, A., & Rundell, K. (2001). Critical role for SV40 small-t antigen in human cell transformation. Virology, 290(2), 192–198.PubMedCrossRef Yu, J., Boyapati, A., & Rundell, K. (2001). Critical role for SV40 small-t antigen in human cell transformation. Virology, 290(2), 192–198.PubMedCrossRef
6.
go back to reference Calin, G. A., Di Iasio, M. G., Caprini, E., Vorechovsky, I., Natali, P. G., Sozzi, G., et al. (2000). Low frequency of alterations of the alpha (PPP2r1A) and beta (PPP2r1B) isoforms of the subunit a of the serine–threonine phosphatase 2A in human neoplasms. Oncogene, 19(9), 1191–1195.PubMedCrossRef Calin, G. A., Di Iasio, M. G., Caprini, E., Vorechovsky, I., Natali, P. G., Sozzi, G., et al. (2000). Low frequency of alterations of the alpha (PPP2r1A) and beta (PPP2r1B) isoforms of the subunit a of the serine–threonine phosphatase 2A in human neoplasms. Oncogene, 19(9), 1191–1195.PubMedCrossRef
7.
go back to reference Takagi, Y., Futamura, M., Yamaguchi, K., Aoki, S., Takahashi, T., & Saji, S. (2000). Alterations of the PPP2r1B gene located at 11q23 in human colorectal cancers. Gut, 47(2), 268–271.PubMedCrossRef Takagi, Y., Futamura, M., Yamaguchi, K., Aoki, S., Takahashi, T., & Saji, S. (2000). Alterations of the PPP2r1B gene located at 11q23 in human colorectal cancers. Gut, 47(2), 268–271.PubMedCrossRef
8.
go back to reference Tamaki, M., Goi, T., Hirono, Y., Katayama, K., & Yamaguchi, A. (2004). Ppp2r1b gene alterations inhibit interaction of PP2A Abeta and PP2A C proteins in colorectal cancers. Oncology Reports, 11(3), 655–659.PubMed Tamaki, M., Goi, T., Hirono, Y., Katayama, K., & Yamaguchi, A. (2004). Ppp2r1b gene alterations inhibit interaction of PP2A Abeta and PP2A C proteins in colorectal cancers. Oncology Reports, 11(3), 655–659.PubMed
9.
go back to reference Wang, S. S., Esplin, E. D., Li, J. L., Huang, L., Gazdar, A., Minna, J., et al. (1998). Alterations of the PPP2r1B gene in human lung and colon cancer. Science, 282(5387), 284–287.PubMedCrossRef Wang, S. S., Esplin, E. D., Li, J. L., Huang, L., Gazdar, A., Minna, J., et al. (1998). Alterations of the PPP2r1B gene in human lung and colon cancer. Science, 282(5387), 284–287.PubMedCrossRef
10.
go back to reference Ruediger, R., Pham, H. T., & Walter, G. (2001). Alterations in protein phosphatase 2A subunit interaction in human carcinomas of the lung and colon with mutations in the a beta subunit gene. Oncogene, 20(15), 1892–1899.PubMedCrossRef Ruediger, R., Pham, H. T., & Walter, G. (2001). Alterations in protein phosphatase 2A subunit interaction in human carcinomas of the lung and colon with mutations in the a beta subunit gene. Oncogene, 20(15), 1892–1899.PubMedCrossRef
11.
go back to reference Ruediger, R., Pham, H. T., & Walter, G. (2001). Disruption of protein phosphatase 2A subunit interaction in human cancers with mutations in the Aalpha subunit gene. Oncogene, 20(1), 10–15.PubMedCrossRef Ruediger, R., Pham, H. T., & Walter, G. (2001). Disruption of protein phosphatase 2A subunit interaction in human cancers with mutations in the Aalpha subunit gene. Oncogene, 20(1), 10–15.PubMedCrossRef
12.
go back to reference Sweet, B. H., & Hilleman, M. R. (1960). The vacuolating virus, SV40. Proceedings of the Society for Experimental Biology and Medicine, 105, 420–427.PubMed Sweet, B. H., & Hilleman, M. R. (1960). The vacuolating virus, SV40. Proceedings of the Society for Experimental Biology and Medicine, 105, 420–427.PubMed
13.
go back to reference Eddy, B. E., Borman, G. S., Berkeley, W. H., & Young, R. D. (1961). Tumors induced in hamsters by injection of rhesus monkey kidney cell extracts. Proceedings of the Society for Experimental Biology and Medicine, 107, 191–197.PubMed Eddy, B. E., Borman, G. S., Berkeley, W. H., & Young, R. D. (1961). Tumors induced in hamsters by injection of rhesus monkey kidney cell extracts. Proceedings of the Society for Experimental Biology and Medicine, 107, 191–197.PubMed
14.
go back to reference Eddy, B. E., Borman, G. S., Grubbs, G. E., & Young, R. D. (1962). Identification of the oncogenic substance in rhesus monkey kidney cell culture as simian virus 40. Virology, 17, 65–75.PubMedCrossRef Eddy, B. E., Borman, G. S., Grubbs, G. E., & Young, R. D. (1962). Identification of the oncogenic substance in rhesus monkey kidney cell culture as simian virus 40. Virology, 17, 65–75.PubMedCrossRef
15.
go back to reference Shein, H. M., & Enders, J. F. (1962). Transformation induced by simian virus 40 in human renal cell cultures. I. Morphology and growth characteristics. Proceedings of the National Academy of Sciences of the United States of America, 48, 1164–1172.PubMedCrossRef Shein, H. M., & Enders, J. F. (1962). Transformation induced by simian virus 40 in human renal cell cultures. I. Morphology and growth characteristics. Proceedings of the National Academy of Sciences of the United States of America, 48, 1164–1172.PubMedCrossRef
16.
go back to reference Rabson, A. S., O’conor, G. T., Kirschstein, R. L., & Branigan, W. J. (1962). Papillary ependymomas produced in Rattus (mastomys) natalensis inoculated with vacuolating virus (SV40). Journal of National Cancer Institute, 29, 765–787. Rabson, A. S., O’conor, G. T., Kirschstein, R. L., & Branigan, W. J. (1962). Papillary ependymomas produced in Rattus (mastomys) natalensis inoculated with vacuolating virus (SV40). Journal of National Cancer Institute, 29, 765–787.
17.
go back to reference Rundell, K., & Parakati, R. (2001). The role of the SV40 ST antigen in cell growth promotion and transformation. Seminars in Cancer Biology, 11(1), 5–13.PubMedCrossRef Rundell, K., & Parakati, R. (2001). The role of the SV40 ST antigen in cell growth promotion and transformation. Seminars in Cancer Biology, 11(1), 5–13.PubMedCrossRef
18.
go back to reference Sullivan, C. S., & Pipas, J. M. (2002). T antigens of simian virus 40: Molecular chaperones for viral replication and tumorigenesis. Microbiology and Molecular Biology Reviews, 66(2), 179–202.PubMedCrossRef Sullivan, C. S., & Pipas, J. M. (2002). T antigens of simian virus 40: Molecular chaperones for viral replication and tumorigenesis. Microbiology and Molecular Biology Reviews, 66(2), 179–202.PubMedCrossRef
19.
go back to reference Hirakawa, T., & Ruley, H. E. (1988). Rescue of cells from ras oncogene-induced growth arrest by a second, complementing, oncogene. Proceedings of the National Academy of Sciences of the United States of America, 85(5), 1519–1523.PubMedCrossRef Hirakawa, T., & Ruley, H. E. (1988). Rescue of cells from ras oncogene-induced growth arrest by a second, complementing, oncogene. Proceedings of the National Academy of Sciences of the United States of America, 85(5), 1519–1523.PubMedCrossRef
20.
go back to reference Michalovitz, D., Fischer-Fantuzzi, L., Vesco, C., Pipas, J. M., & Oren, M. (1987). Activated ha-ras can cooperate with defective simian virus 40 in the transformation of nonestablished rat embryo fibroblasts. Journal of Virology, 61(8), 2648–2654.PubMed Michalovitz, D., Fischer-Fantuzzi, L., Vesco, C., Pipas, J. M., & Oren, M. (1987). Activated ha-ras can cooperate with defective simian virus 40 in the transformation of nonestablished rat embryo fibroblasts. Journal of Virology, 61(8), 2648–2654.PubMed
21.
go back to reference Sager, R., Tanaka, K., Lau, C. C., Ebina, Y., & Anisowicz, A. (1983). Resistance of human cells to tumorigenesis induced by cloned transforming genes. Proceedings of the National Academy of Sciences of the United States of America, 80(24), 7601–7605.PubMedCrossRef Sager, R., Tanaka, K., Lau, C. C., Ebina, Y., & Anisowicz, A. (1983). Resistance of human cells to tumorigenesis induced by cloned transforming genes. Proceedings of the National Academy of Sciences of the United States of America, 80(24), 7601–7605.PubMedCrossRef
22.
go back to reference Chang, L. S., Pan, S., Pater, M. M., & Di Mayorca, G. (1985). Differential requirement for SV40 early genes in immortalization and transformation of primary rat and human embryonic cells. Virology, 146(2), 246–261.PubMedCrossRef Chang, L. S., Pan, S., Pater, M. M., & Di Mayorca, G. (1985). Differential requirement for SV40 early genes in immortalization and transformation of primary rat and human embryonic cells. Virology, 146(2), 246–261.PubMedCrossRef
23.
go back to reference Lustig, A. J. (1999). Crisis intervention: The role of telomerase. Proceedings of the National Academy of Sciences of the United States of America, 96(7), 3339–3341.PubMedCrossRef Lustig, A. J. (1999). Crisis intervention: The role of telomerase. Proceedings of the National Academy of Sciences of the United States of America, 96(7), 3339–3341.PubMedCrossRef
24.
go back to reference Rangarajan, A., Hong, S. J., Gifford, A., & Weinberg, R. A. (2004). Species- and cell type-specific requirements for cellular transformation. Cancer Cells, 6(2), 171–183.CrossRef Rangarajan, A., Hong, S. J., Gifford, A., & Weinberg, R. A. (2004). Species- and cell type-specific requirements for cellular transformation. Cancer Cells, 6(2), 171–183.CrossRef
25.
go back to reference Voorhoeve, P. M., & Agami, R. (2003). The tumor-suppressive functions of the human ink4a locus. Cancer Cells, 4(4), 311–319.CrossRef Voorhoeve, P. M., & Agami, R. (2003). The tumor-suppressive functions of the human ink4a locus. Cancer Cells, 4(4), 311–319.CrossRef
26.
go back to reference Mungre, S., Enderle, K., Turk, B., Porras, A., Wu, Y. Q., Mumby, M. C., et al. (1994). Mutations which affect the inhibition of protein phosphatase 2A by simian virus 40 small-t antigen in vitro decrease viral transformation. Journal of Virology, 68(3), 1675–1681.PubMed Mungre, S., Enderle, K., Turk, B., Porras, A., Wu, Y. Q., Mumby, M. C., et al. (1994). Mutations which affect the inhibition of protein phosphatase 2A by simian virus 40 small-t antigen in vitro decrease viral transformation. Journal of Virology, 68(3), 1675–1681.PubMed
27.
go back to reference Porras, A., Bennett, J., Howe, A., Tokos, K., Bouck, N., Henglein, B., et al. (1996). A novel simian virus 40 early-region domain mediates transactivation of the cyclin a promoter by small-t antigen and is required for transformation in small-t antigen-dependent assays. Journal of Virology, 70(10), 6902–6908.PubMed Porras, A., Bennett, J., Howe, A., Tokos, K., Bouck, N., Henglein, B., et al. (1996). A novel simian virus 40 early-region domain mediates transactivation of the cyclin a promoter by small-t antigen and is required for transformation in small-t antigen-dependent assays. Journal of Virology, 70(10), 6902–6908.PubMed
28.
go back to reference Janssens, V., & Goris, J. (2001). Protein phosphatase 2A: A highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochemistry Journal, 353(Pt 3), 417–439.CrossRef Janssens, V., & Goris, J. (2001). Protein phosphatase 2A: A highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochemistry Journal, 353(Pt 3), 417–439.CrossRef
29.
go back to reference Arino, J., Woon, C. W., Brautigan, D. L., Miller Jr., T. B., & Johnson, G. L. (1988). Human liver phosphatase 2A: cDNA and amino acid sequence of two catalytic subunit isotypes. Proceedings of the National Academy of Sciences of the United States of America, 85(12), 4252–4256.PubMedCrossRef Arino, J., Woon, C. W., Brautigan, D. L., Miller Jr., T. B., & Johnson, G. L. (1988). Human liver phosphatase 2A: cDNA and amino acid sequence of two catalytic subunit isotypes. Proceedings of the National Academy of Sciences of the United States of America, 85(12), 4252–4256.PubMedCrossRef
30.
go back to reference Cohen, P. (1989). The structure and regulation of protein phosphatases. Annual Reviews of Biochemistry, 58, 453–508.CrossRef Cohen, P. (1989). The structure and regulation of protein phosphatases. Annual Reviews of Biochemistry, 58, 453–508.CrossRef
31.
go back to reference Gotz, J., Probst, A., Mistl, C., Nitsch, R. M., & Ehler, E. (2000). Distinct role of protein phosphatase 2A subunit calpha in the regulation of E-cadherin and beta-catenin during development. Mechanisms of Development, 93(1–2), 83–93.PubMedCrossRef Gotz, J., Probst, A., Mistl, C., Nitsch, R. M., & Ehler, E. (2000). Distinct role of protein phosphatase 2A subunit calpha in the regulation of E-cadherin and beta-catenin during development. Mechanisms of Development, 93(1–2), 83–93.PubMedCrossRef
32.
go back to reference Hemmings, B. A., Adams-Pearson, C., Maurer, F., Muller, P., Goris, J., Merlevede, W., et al. (1990). Alpha- and beta-forms of the 65-kda subunit of protein phosphatase 2A have a similar 39 amino acid repeating structure. Biochemistry, 29(13), 3166–3173.PubMedCrossRef Hemmings, B. A., Adams-Pearson, C., Maurer, F., Muller, P., Goris, J., Merlevede, W., et al. (1990). Alpha- and beta-forms of the 65-kda subunit of protein phosphatase 2A have a similar 39 amino acid repeating structure. Biochemistry, 29(13), 3166–3173.PubMedCrossRef
33.
go back to reference Zhou, J., Pham, H. T., Ruediger, R., & Walter, G. (2003). Characterization of the Aalpha and Abeta subunit isoforms of protein phosphatase 2A: Differences in expression, subunit interaction, and evolution. Biochemical Journal, 369(Pt 2), 387–398.PubMedCrossRef Zhou, J., Pham, H. T., Ruediger, R., & Walter, G. (2003). Characterization of the Aalpha and Abeta subunit isoforms of protein phosphatase 2A: Differences in expression, subunit interaction, and evolution. Biochemical Journal, 369(Pt 2), 387–398.PubMedCrossRef
34.
go back to reference Cho, U. S., & Xu, W. (2007). Crystal structure of a protein phosphatase 2A heterotrimeric holoenzyme. Nature, 445(7123), 53–57.PubMedCrossRef Cho, U. S., & Xu, W. (2007). Crystal structure of a protein phosphatase 2A heterotrimeric holoenzyme. Nature, 445(7123), 53–57.PubMedCrossRef
35.
go back to reference Xu, Y., Xing, Y., Chen, Y., Chao, Y., Lin, Z., Fan, E., et al. (2006). Structure of the protein phosphatase 2A holoenzyme. Cell, 127(6), 1239–1251.PubMedCrossRef Xu, Y., Xing, Y., Chen, Y., Chao, Y., Lin, Z., Fan, E., et al. (2006). Structure of the protein phosphatase 2A holoenzyme. Cell, 127(6), 1239–1251.PubMedCrossRef
36.
go back to reference Mayer, R. E., Hendrix, P., Cron, P., Matthies, R., Stone, S. R., Goris, J., et al. (1991). Structure of the 55-kda regulatory subunit of protein phosphatase 2A: Evidence for a neuronal-specific isoform. Biochemistry, 30(15), 3589–3597.PubMedCrossRef Mayer, R. E., Hendrix, P., Cron, P., Matthies, R., Stone, S. R., Goris, J., et al. (1991). Structure of the 55-kda regulatory subunit of protein phosphatase 2A: Evidence for a neuronal-specific isoform. Biochemistry, 30(15), 3589–3597.PubMedCrossRef
37.
go back to reference Strack, S., Chang, D., Zaucha, J. A., Colbran, R. J., & Wadzinski, B. E. (1999). Cloning and characterization of b delta, a novel regulatory subunit of protein phosphatase 2A. FEBS Letters, 460(3), 462–466.PubMedCrossRef Strack, S., Chang, D., Zaucha, J. A., Colbran, R. J., & Wadzinski, B. E. (1999). Cloning and characterization of b delta, a novel regulatory subunit of protein phosphatase 2A. FEBS Letters, 460(3), 462–466.PubMedCrossRef
38.
go back to reference Zolnierowicz, S., Csortos, C., Bondor, J., Verin, A., Mumby, M. C., & Depaoli-Roach, A. A. (1994). Diversity in the regulatory b-subunits of protein phosphatase 2A: Identification of a novel isoform highly expressed in brain. Biochemistry, 33(39), 11858–11867.PubMedCrossRef Zolnierowicz, S., Csortos, C., Bondor, J., Verin, A., Mumby, M. C., & Depaoli-Roach, A. A. (1994). Diversity in the regulatory b-subunits of protein phosphatase 2A: Identification of a novel isoform highly expressed in brain. Biochemistry, 33(39), 11858–11867.PubMedCrossRef
39.
go back to reference Csortos, C., Zolnierowicz, S., Bako, E., Durbin, S. D., & Depaoli-Roach, A. A. (1996). High complexity in the expression of the B′ subunit of protein phosphatase 2A. Evidence for the existence of at least seven novel isoforms. Journal of Biological Chemistry, 271(5), 2578–2588.PubMedCrossRef Csortos, C., Zolnierowicz, S., Bako, E., Durbin, S. D., & Depaoli-Roach, A. A. (1996). High complexity in the expression of the B′ subunit of protein phosphatase 2A. Evidence for the existence of at least seven novel isoforms. Journal of Biological Chemistry, 271(5), 2578–2588.PubMedCrossRef
40.
go back to reference Mccright, B., & Virshup, D. M. (1995). Identification of a new family of protein phosphatase 2A regulatory subunits. Journal of Biological Chemistry, 270(44), 26123–26128.PubMedCrossRef Mccright, B., & Virshup, D. M. (1995). Identification of a new family of protein phosphatase 2A regulatory subunits. Journal of Biological Chemistry, 270(44), 26123–26128.PubMedCrossRef
41.
go back to reference Tehrani, M. A., Mumby, M. C., & Kamibayashi, C. (1996). Identification of a novel protein phosphatase 2A regulatory subunit highly expressed in muscle. Journal of Biological Chemistry, 271(9), 5164–5170.PubMedCrossRef Tehrani, M. A., Mumby, M. C., & Kamibayashi, C. (1996). Identification of a novel protein phosphatase 2A regulatory subunit highly expressed in muscle. Journal of Biological Chemistry, 271(9), 5164–5170.PubMedCrossRef
42.
go back to reference Hendrix, P., Mayer-Jackel, R. E., Cron, P., Goris, J., Hofsteenge, J., Merlevede, W., et al. (1993). Structure and expression of a 72-kda regulatory subunit of protein phosphatase 2A. Evidence for different size forms produced by alternative splicing. Journal of Biological Chemistry, 268(20), 15267–15276.PubMed Hendrix, P., Mayer-Jackel, R. E., Cron, P., Goris, J., Hofsteenge, J., Merlevede, W., et al. (1993). Structure and expression of a 72-kda regulatory subunit of protein phosphatase 2A. Evidence for different size forms produced by alternative splicing. Journal of Biological Chemistry, 268(20), 15267–15276.PubMed
43.
go back to reference Seger, Y. R., Garcia-Cao, M., Piccinin, S., Cunsolo, C. L., Doglioni, C., Blasco, M. A., et al. (2002). Transformation of normal human cells in the absence of telomerase activation. Cancer Cells, 2(5), 401–413.CrossRef Seger, Y. R., Garcia-Cao, M., Piccinin, S., Cunsolo, C. L., Doglioni, C., Blasco, M. A., et al. (2002). Transformation of normal human cells in the absence of telomerase activation. Cancer Cells, 2(5), 401–413.CrossRef
44.
go back to reference Stevens, I., Janssens, V., Martens, E., Dilworth, S., Goris, J., & Van Hoof, C. (2003). Identification and characterization of B″-subunits of protein phosphatase 2A in Xenopus laevis oocytes and adult tissues. European Journal of Biochemistry, 270(2), 376–387.PubMedCrossRef Stevens, I., Janssens, V., Martens, E., Dilworth, S., Goris, J., & Van Hoof, C. (2003). Identification and characterization of B″-subunits of protein phosphatase 2A in Xenopus laevis oocytes and adult tissues. European Journal of Biochemistry, 270(2), 376–387.PubMedCrossRef
45.
go back to reference Yan, Z., Fedorov, S. A., Mumby, M. C., & Williams, R. S. (2000). Pr48, a novel regulatory subunit of protein phosphatase 2A, interacts with cdc6 and modulates DNA replication in human cells. Molecular and Cellular Biology, 20(3), 1021–1029.PubMedCrossRef Yan, Z., Fedorov, S. A., Mumby, M. C., & Williams, R. S. (2000). Pr48, a novel regulatory subunit of protein phosphatase 2A, interacts with cdc6 and modulates DNA replication in human cells. Molecular and Cellular Biology, 20(3), 1021–1029.PubMedCrossRef
46.
go back to reference Moreno, C. S., Ramachandran, S., Ashby, D. G., Laycock, N., Plattner, C. A., Chen, W., et al. (2004). Signaling and transcriptional changes critical for transformation of human cells by simian virus 40 small tumor antigen or protein phosphatase 2A B56gamma knockdown. Cancer Research, 64(19), 6978–6988.PubMedCrossRef Moreno, C. S., Ramachandran, S., Ashby, D. G., Laycock, N., Plattner, C. A., Chen, W., et al. (2004). Signaling and transcriptional changes critical for transformation of human cells by simian virus 40 small tumor antigen or protein phosphatase 2A B56gamma knockdown. Cancer Research, 64(19), 6978–6988.PubMedCrossRef
47.
go back to reference Mccright, B., Brothman, A. R., & Virshup, D. M. (1996). Assignment of human protein phosphatase 2A regulatory subunit genes B56alpha, B56beta, B56gamma, B56delta, and B56epsilon (PPP2r5A–PPP2r5E), highly expressed in muscle and brain, to chromosome regions 1q41, 11q12, 3p21, 6p21.1, and 7p11.2 → p12. Genomics, 36(1), 168–170.PubMedCrossRef Mccright, B., Brothman, A. R., & Virshup, D. M. (1996). Assignment of human protein phosphatase 2A regulatory subunit genes B56alpha, B56beta, B56gamma, B56delta, and B56epsilon (PPP2r5A–PPP2r5E), highly expressed in muscle and brain, to chromosome regions 1q41, 11q12, 3p21, 6p21.1, and 7p11.2 → p12. Genomics, 36(1), 168–170.PubMedCrossRef
48.
go back to reference Millward, T. A., Zolnierowicz, S., & Hemmings, B. A. (1999). Regulation of protein kinase cascades by protein phosphatase 2A. Trends in Biochemical Sciences, 24(5), 186–191.PubMedCrossRef Millward, T. A., Zolnierowicz, S., & Hemmings, B. A. (1999). Regulation of protein kinase cascades by protein phosphatase 2A. Trends in Biochemical Sciences, 24(5), 186–191.PubMedCrossRef
49.
go back to reference Kong, M., Fox, C. J., Mu, J., Solt, L., Xu, A., Cinalli, R. M., et al. (2004). The PP2A-associated protein alpha4 is an essential inhibitor of apoptosis. Science, 306(5696), 695–698.PubMedCrossRef Kong, M., Fox, C. J., Mu, J., Solt, L., Xu, A., Cinalli, R. M., et al. (2004). The PP2A-associated protein alpha4 is an essential inhibitor of apoptosis. Science, 306(5696), 695–698.PubMedCrossRef
50.
go back to reference Chao, Y., Xing, Y., Chen, Y., Xu, Y., Lin, Z., Li, Z., et al. (2006). Structure and mechanism of the phosphotyrosyl phosphatase activator. Molecular Cell, 23(4), 535–546.PubMedCrossRef Chao, Y., Xing, Y., Chen, Y., Xu, Y., Lin, Z., Li, Z., et al. (2006). Structure and mechanism of the phosphotyrosyl phosphatase activator. Molecular Cell, 23(4), 535–546.PubMedCrossRef
51.
go back to reference Leulliot, N., Vicentini, G., Jordens, J., Quevillon-Cheruel, S., Schiltz, M., Barford, D., et al. (2006). Crystal structure of the PP2A phosphatase activator: Implications for its PP2A-specific PPiase activity. Molecular Cell, 23(3), 413–424.PubMedCrossRef Leulliot, N., Vicentini, G., Jordens, J., Quevillon-Cheruel, S., Schiltz, M., Barford, D., et al. (2006). Crystal structure of the PP2A phosphatase activator: Implications for its PP2A-specific PPiase activity. Molecular Cell, 23(3), 413–424.PubMedCrossRef
52.
go back to reference Chen, Y., Xu, Y., Bao, Q., Xing, Y., Li, Z., Lin, Z., et al. (2007). Structural and biochemical insights into the regulation of protein phosphatase 2A by small t antigen of SV40. Nature Structural & Molecular Biology, 14(6), 527–534.CrossRef Chen, Y., Xu, Y., Bao, Q., Xing, Y., Li, Z., Lin, Z., et al. (2007). Structural and biochemical insights into the regulation of protein phosphatase 2A by small t antigen of SV40. Nature Structural & Molecular Biology, 14(6), 527–534.CrossRef
53.
go back to reference Cho, U. S., Morrone, S., Sablina, A. A., Arroyo, J. D., Hahn, W. C., & Xu, W. (2007). Structural basis of PP2A inhibition by small t antigen. PLoS Biology, 5(8), e202.PubMedCrossRef Cho, U. S., Morrone, S., Sablina, A. A., Arroyo, J. D., Hahn, W. C., & Xu, W. (2007). Structural basis of PP2A inhibition by small t antigen. PLoS Biology, 5(8), e202.PubMedCrossRef
54.
go back to reference Kamibayashi, C., Estes, R., Lickteig, R. L., Yang, S. I., Craft, C., & Mumby, M. C. (1994). Comparison of heterotrimeric protein phosphatase 2A containing different b subunits. Journal of Biological Chemistry, 269(31), 20139–20148.PubMed Kamibayashi, C., Estes, R., Lickteig, R. L., Yang, S. I., Craft, C., & Mumby, M. C. (1994). Comparison of heterotrimeric protein phosphatase 2A containing different b subunits. Journal of Biological Chemistry, 269(31), 20139–20148.PubMed
55.
go back to reference Chen, W., Possemato, R., Campbell, K. T., Plattner, C. A., Pallas, D. C., & Hahn, W. C. (2004). Identification of specific PP2A complexes involved in human cell transformation. Cancer Cells, 5(2), 127–136.CrossRef Chen, W., Possemato, R., Campbell, K. T., Plattner, C. A., Pallas, D. C., & Hahn, W. C. (2004). Identification of specific PP2A complexes involved in human cell transformation. Cancer Cells, 5(2), 127–136.CrossRef
56.
go back to reference Sontag, E., Fedorov, S., Kamibayashi, C., Robbins, D., Cobb, M., & Mumby, M. (1993). The interaction of SV40 small tumor antigen with protein phosphatase 2A stimulates the map kinase pathway and induces cell proliferation. Cell, 75(5), 887–897.PubMedCrossRef Sontag, E., Fedorov, S., Kamibayashi, C., Robbins, D., Cobb, M., & Mumby, M. (1993). The interaction of SV40 small tumor antigen with protein phosphatase 2A stimulates the map kinase pathway and induces cell proliferation. Cell, 75(5), 887–897.PubMedCrossRef
57.
go back to reference Sontag, E., Sontag, J. M., & Garcia, A. (1997). Protein phosphatase 2A is a critical regulator of protein kinase c zeta signaling targeted by SV40 small t to promote cell growth and nf-kappab activation. EMBO Journal, 16(18), 5662–5671.PubMedCrossRef Sontag, E., Sontag, J. M., & Garcia, A. (1997). Protein phosphatase 2A is a critical regulator of protein kinase c zeta signaling targeted by SV40 small t to promote cell growth and nf-kappab activation. EMBO Journal, 16(18), 5662–5671.PubMedCrossRef
58.
go back to reference Nunbhakdi-Craig, V., Craig, L., Machleidt, T., & Sontag, E. (2003). Simian virus 40 small tumor antigen induces deregulation of the actin cytoskeleton and tight junctions in kidney epithelial cells. Journal of Virology, 77(5), 2807–2818.PubMedCrossRef Nunbhakdi-Craig, V., Craig, L., Machleidt, T., & Sontag, E. (2003). Simian virus 40 small tumor antigen induces deregulation of the actin cytoskeleton and tight junctions in kidney epithelial cells. Journal of Virology, 77(5), 2807–2818.PubMedCrossRef
59.
go back to reference Howe, A. K., Gaillard, S., Bennett, J. S., & Rundell, K. (1998). Cell cycle progression in monkey cells expressing simian virus 40 small t antigen from adenovirus vectors. Journal of Virology, 72(12), 9637–9644.PubMed Howe, A. K., Gaillard, S., Bennett, J. S., & Rundell, K. (1998). Cell cycle progression in monkey cells expressing simian virus 40 small t antigen from adenovirus vectors. Journal of Virology, 72(12), 9637–9644.PubMed
60.
go back to reference Dougherty, M. K., Muller, J., Ritt, D. A., Zhou, M., Zhou, X. Z., Copeland, T. D., et al. (2005). Regulation of raf-1 by direct feedback phosphorylation. Molecular Cell, 17(2), 215–224.PubMedCrossRef Dougherty, M. K., Muller, J., Ritt, D. A., Zhou, M., Zhou, X. Z., Copeland, T. D., et al. (2005). Regulation of raf-1 by direct feedback phosphorylation. Molecular Cell, 17(2), 215–224.PubMedCrossRef
61.
go back to reference Frost, J. A., Alberts, A. S., Sontag, E., Guan, K., Mumby, M. C., & Feramisco, J. R. (1994). Simian virus 40 small t antigen cooperates with mitogen-activated kinases to stimulate ap-1 activity. Molecular and Cellular Biology, 14(9), 6244–6252.PubMed Frost, J. A., Alberts, A. S., Sontag, E., Guan, K., Mumby, M. C., & Feramisco, J. R. (1994). Simian virus 40 small t antigen cooperates with mitogen-activated kinases to stimulate ap-1 activity. Molecular and Cellular Biology, 14(9), 6244–6252.PubMed
62.
go back to reference Ory, S., Zhou, M., Conrads, T. P., Veenstra, T. D., & Morrison, D. K. (2003). Protein phosphatase 2A positively regulates ras signaling by dephosphorylating ksr1 and raf-1 on critical 14-3-3 binding sites. Current Biology, 13(16), 1356–1364.PubMedCrossRef Ory, S., Zhou, M., Conrads, T. P., Veenstra, T. D., & Morrison, D. K. (2003). Protein phosphatase 2A positively regulates ras signaling by dephosphorylating ksr1 and raf-1 on critical 14-3-3 binding sites. Current Biology, 13(16), 1356–1364.PubMedCrossRef
63.
go back to reference Alberts, A. S., Deng, T., Lin, A., Meinkoth, J. L., Schonthal, A., Mumby, M. C., et al. (1993). Protein phosphatase 2A potentates activity of promoters containing AP-1-binding elements. Molecular and Cellular Biology, 13(4), 2104–2112.PubMed Alberts, A. S., Deng, T., Lin, A., Meinkoth, J. L., Schonthal, A., Mumby, M. C., et al. (1993). Protein phosphatase 2A potentates activity of promoters containing AP-1-binding elements. Molecular and Cellular Biology, 13(4), 2104–2112.PubMed
64.
go back to reference Sears, R., Leone, G., Degregori, J., & Nevins, J. R. (1999). Ras enhances myc protein stability. Molecular Cell, 3(2), 169–179.PubMedCrossRef Sears, R., Leone, G., Degregori, J., & Nevins, J. R. (1999). Ras enhances myc protein stability. Molecular Cell, 3(2), 169–179.PubMedCrossRef
65.
go back to reference Yeh, E., Cunningham, M., Arnold, H., Chasse, D., Monteith, T., Ivaldi, G., et al. (2004). A signalling pathway controlling c-myc degradation that impacts oncogenic transformation of human cells. Nature Cell Biology, 6(4), 308–318.PubMedCrossRef Yeh, E., Cunningham, M., Arnold, H., Chasse, D., Monteith, T., Ivaldi, G., et al. (2004). A signalling pathway controlling c-myc degradation that impacts oncogenic transformation of human cells. Nature Cell Biology, 6(4), 308–318.PubMedCrossRef
66.
go back to reference Arnold, H. K., & Sears, R. C. (2006). Protein phosphatase 2A regulatory subunit B56alpha associates with c-myc and negatively regulates c-myc accumulation. Molecular and Cellular Biology, 26(7), 2832–2844.PubMedCrossRef Arnold, H. K., & Sears, R. C. (2006). Protein phosphatase 2A regulatory subunit B56alpha associates with c-myc and negatively regulates c-myc accumulation. Molecular and Cellular Biology, 26(7), 2832–2844.PubMedCrossRef
67.
go back to reference Garcia, A., Cereghini, S., & Sontag, E. (2000). Protein phosphatase 2A and phosphatidylinositol 3-kinase regulate the activity of SP1-responsive promoters. Journal of Biological Chemistry, 275(13), 9385–9389.PubMedCrossRef Garcia, A., Cereghini, S., & Sontag, E. (2000). Protein phosphatase 2A and phosphatidylinositol 3-kinase regulate the activity of SP1-responsive promoters. Journal of Biological Chemistry, 275(13), 9385–9389.PubMedCrossRef
68.
go back to reference Skoczylas, C., Henglein, B., & Rundell, K. (2005). PP2A-dependent transactivation of the cyclin a promoter by SV40 st is mediated by a cell cycle-regulated E2F site. Virology, 332(2), 596–601.PubMedCrossRef Skoczylas, C., Henglein, B., & Rundell, K. (2005). PP2A-dependent transactivation of the cyclin a promoter by SV40 st is mediated by a cell cycle-regulated E2F site. Virology, 332(2), 596–601.PubMedCrossRef
69.
go back to reference Watanabe, G., Howe, A., Lee, R. J., Albanese, C., Shu, I. W., Karnezis, A. N., et al. (1996). Induction of cyclin D1 by simian virus 40 small tumor antigen. Proceedings of the National Academy of Sciences of the United States of America, 93(23), 12861–12866.PubMedCrossRef Watanabe, G., Howe, A., Lee, R. J., Albanese, C., Shu, I. W., Karnezis, A. N., et al. (1996). Induction of cyclin D1 by simian virus 40 small tumor antigen. Proceedings of the National Academy of Sciences of the United States of America, 93(23), 12861–12866.PubMedCrossRef
70.
go back to reference Wheat, W. H., Roesler, W. J., & Klemm, D. J. (1994). Simian virus 40 small tumor antigen inhibits dephosphorylation of protein kinase a-phosphorylated CREB and regulates CREB transcriptional stimulation. Molecular and Cellular Biology, 14(9), 5881–5890.PubMed Wheat, W. H., Roesler, W. J., & Klemm, D. J. (1994). Simian virus 40 small tumor antigen inhibits dephosphorylation of protein kinase a-phosphorylated CREB and regulates CREB transcriptional stimulation. Molecular and Cellular Biology, 14(9), 5881–5890.PubMed
71.
go back to reference Didonato, J. A., Hayakawa, M., Rothwarf, D. M., Zandi, E., & Karin, M. (1997). A cytokine-responsive Ikappab kinase that activates the transcription factor NF-kappab. Nature, 388(6642), 548–554.PubMedCrossRef Didonato, J. A., Hayakawa, M., Rothwarf, D. M., Zandi, E., & Karin, M. (1997). A cytokine-responsive Ikappab kinase that activates the transcription factor NF-kappab. Nature, 388(6642), 548–554.PubMedCrossRef
72.
go back to reference Zhao, J. J., Gjoerup, O. V., Subramanian, R. R., Cheng, Y., Chen, W., Roberts, T. M., et al. (2003). Human mammary epithelial cell transformation through the activation of phosphatidylinositol 3-kinase. Cancer Cells, 3(5), 483–495.CrossRef Zhao, J. J., Gjoerup, O. V., Subramanian, R. R., Cheng, Y., Chen, W., Roberts, T. M., et al. (2003). Human mammary epithelial cell transformation through the activation of phosphatidylinositol 3-kinase. Cancer Cells, 3(5), 483–495.CrossRef
73.
go back to reference Andjelkovic, M., Jakubowicz, T., Cron, P., Ming, X. F., Han, J. W., & Hemmings, B. A. (1996). Activation and phosphorylation of a pleckstrin homology domain containing protein kinase (rac-PK/PKB) promoted by serum and protein phosphatase inhibitors. Proceedings of the Society for Experimental Biology and Medicine, 93(12), 5699–5704. Andjelkovic, M., Jakubowicz, T., Cron, P., Ming, X. F., Han, J. W., & Hemmings, B. A. (1996). Activation and phosphorylation of a pleckstrin homology domain containing protein kinase (rac-PK/PKB) promoted by serum and protein phosphatase inhibitors. Proceedings of the Society for Experimental Biology and Medicine, 93(12), 5699–5704.
74.
go back to reference Yuan, H., Veldman, T., Rundell, K., & Schlegel, R. (2002). Simian virus 40 small tumor antigen activates akt and telomerase and induces anchorage-independent growth of human epithelial cells. Journal of Virology, 76(21), 10685–10691.PubMedCrossRef Yuan, H., Veldman, T., Rundell, K., & Schlegel, R. (2002). Simian virus 40 small tumor antigen activates akt and telomerase and induces anchorage-independent growth of human epithelial cells. Journal of Virology, 76(21), 10685–10691.PubMedCrossRef
75.
go back to reference Ballou, L. M., Jiang, Y. P., Du, G., Frohman, M. A., & Lin, R. Z. (2003). Ca(2+)- and phospholipase D-dependent and -independent pathways activate mTOR signaling. FEBS Letters, 550(1–3), 51–56.PubMedCrossRef Ballou, L. M., Jiang, Y. P., Du, G., Frohman, M. A., & Lin, R. Z. (2003). Ca(2+)- and phospholipase D-dependent and -independent pathways activate mTOR signaling. FEBS Letters, 550(1–3), 51–56.PubMedCrossRef
76.
go back to reference Westphal, R. S., Coffee Jr., R. L., Marotta, A., Pelech, S. L., & Wadzinski, B. E. (1999). Identification of kinase-phosphatase signaling modules composed of p70 S6 kinase-protein phosphatase 2A (PP2A) and p21-activated kinase-PP2A. Journal of Biological Chemistry, 274(2), 687–692.PubMedCrossRef Westphal, R. S., Coffee Jr., R. L., Marotta, A., Pelech, S. L., & Wadzinski, B. E. (1999). Identification of kinase-phosphatase signaling modules composed of p70 S6 kinase-protein phosphatase 2A (PP2A) and p21-activated kinase-PP2A. Journal of Biological Chemistry, 274(2), 687–692.PubMedCrossRef
77.
go back to reference Sontag, J. M., & Sontag, E. (2006). Regulation of cell adhesion by PP2A and SV40 small tumor antigen: An important link to cell transformation. Cellular and Molecular Life Science, 63(24), 2979–2991.CrossRef Sontag, J. M., & Sontag, E. (2006). Regulation of cell adhesion by PP2A and SV40 small tumor antigen: An important link to cell transformation. Cellular and Molecular Life Science, 63(24), 2979–2991.CrossRef
78.
go back to reference Graessmann, A., Graessmann, M., Tjian, R., & Topp, W. C. (1980). Simian virus 40 small-t protein is required for loss of actin cable networks in rat cells. Journal of Virology, 33(3), 1182–1191.PubMed Graessmann, A., Graessmann, M., Tjian, R., & Topp, W. C. (1980). Simian virus 40 small-t protein is required for loss of actin cable networks in rat cells. Journal of Virology, 33(3), 1182–1191.PubMed
79.
go back to reference Suzuki, K., Chikamatsu, Y., & Takahashi, K. (2005). Requirement of protein phosphatase 2A for recruitment of IQGAP1 to rac-bound beta1 integrin. Journal of Cell Physiology, 203(3), 487–492.CrossRef Suzuki, K., Chikamatsu, Y., & Takahashi, K. (2005). Requirement of protein phosphatase 2A for recruitment of IQGAP1 to rac-bound beta1 integrin. Journal of Cell Physiology, 203(3), 487–492.CrossRef
80.
go back to reference Colella, S., Ohgaki, H., Ruediger, R., Yang, F., Nakamura, M., Fujisawa, H., et al. (2001). Reduced expression of the Aalpha subunit of protein phosphatase 2A in human gliomas in the absence of mutations in the Aalpha and Abeta subunit genes. International Journal of Cancer, 93(6), 798–804.CrossRef Colella, S., Ohgaki, H., Ruediger, R., Yang, F., Nakamura, M., Fujisawa, H., et al. (2001). Reduced expression of the Aalpha subunit of protein phosphatase 2A in human gliomas in the absence of mutations in the Aalpha and Abeta subunit genes. International Journal of Cancer, 93(6), 798–804.CrossRef
81.
go back to reference Suzuki, K., & Takahashi, K. (2003). Reduced expression of the regulatory a subunit of serine/threonine protein phosphatase 2A in human breast cancer MCF-7 cells. International Journal of Oncology, 23(5), 1263–1268.PubMed Suzuki, K., & Takahashi, K. (2003). Reduced expression of the regulatory a subunit of serine/threonine protein phosphatase 2A in human breast cancer MCF-7 cells. International Journal of Oncology, 23(5), 1263–1268.PubMed
82.
go back to reference Chen, W., Arroyo, J. D., Timmons, J. C., Possemato, R., & Hahn, W. C. (2005). Cancer-associated PP2A Aalpha subunits induce functional haploinsufficiency and tumorigenicity. Cancer Research, 65(18), 8183–8192.PubMedCrossRef Chen, W., Arroyo, J. D., Timmons, J. C., Possemato, R., & Hahn, W. C. (2005). Cancer-associated PP2A Aalpha subunits induce functional haploinsufficiency and tumorigenicity. Cancer Research, 65(18), 8183–8192.PubMedCrossRef
83.
go back to reference Sablina, A. A., Chen, W., Arroyo, J. D., Corral, L., Hector, M., Bulmer, S. E., et al. (2007). The tumor suppressor PP2A Abeta regulates the RalA GTPase. Cell, 129(5), 969–982.PubMedCrossRef Sablina, A. A., Chen, W., Arroyo, J. D., Corral, L., Hector, M., Bulmer, S. E., et al. (2007). The tumor suppressor PP2A Abeta regulates the RalA GTPase. Cell, 129(5), 969–982.PubMedCrossRef
84.
go back to reference Li, X., Scuderi, A., Letsou, A., & Virshup, D. M. (2002). B56-associated protein phosphatase 2A is required for survival and protects from apoptosis in drosophila melanogaster. Molecular and Cellular Biology, 22(11), 3674–3684.PubMedCrossRef Li, X., Scuderi, A., Letsou, A., & Virshup, D. M. (2002). B56-associated protein phosphatase 2A is required for survival and protects from apoptosis in drosophila melanogaster. Molecular and Cellular Biology, 22(11), 3674–3684.PubMedCrossRef
85.
go back to reference Strack, S., Cribbs, J. T., & Gomez, L. (2004). Critical role for protein phosphatase 2A heterotrimers in mammalian cell survival. Journal of Biological Chemistry, 279(46), 47732–47739.PubMedCrossRef Strack, S., Cribbs, J. T., & Gomez, L. (2004). Critical role for protein phosphatase 2A heterotrimers in mammalian cell survival. Journal of Biological Chemistry, 279(46), 47732–47739.PubMedCrossRef
86.
go back to reference Francia, G., Mitchell, S. D., Moss, S. E., Hanby, A. M., Marshall, J. F., & Hart, I. R. (1996). Identification by differential display of annexin-vi, a gene differentially expressed during melanoma progression. Cancer Research, 56(17), 3855–3858.PubMed Francia, G., Mitchell, S. D., Moss, S. E., Hanby, A. M., Marshall, J. F., & Hart, I. R. (1996). Identification by differential display of annexin-vi, a gene differentially expressed during melanoma progression. Cancer Research, 56(17), 3855–3858.PubMed
87.
go back to reference Deichmann, M., Polychronidis, M., Wacker, J., Thome, M., & Naher, H. (2001). The protein phosphatase 2A subunit B56gamma gene is identified to be differentially expressed in malignant melanomas by subtractive suppression hybridization. Melanoma Research, 11(6), 577–585.PubMedCrossRef Deichmann, M., Polychronidis, M., Wacker, J., Thome, M., & Naher, H. (2001). The protein phosphatase 2A subunit B56gamma gene is identified to be differentially expressed in malignant melanomas by subtractive suppression hybridization. Melanoma Research, 11(6), 577–585.PubMedCrossRef
88.
go back to reference Polakis, P. (2000). Wnt signaling and cancer. Genes and Development, 14(15), 1837–1851.PubMed Polakis, P. (2000). Wnt signaling and cancer. Genes and Development, 14(15), 1837–1851.PubMed
89.
go back to reference Li, H. H., Cai, X., Shouse, G. P., Piluso, L. G., & Liu, X. (2007). A specific PP2A regulatory subunit, B56gamma, mediates DNA damage-induced dephosphorylation of p53 at Thr55. EMBO Journal, 26(2), 402–411.PubMedCrossRef Li, H. H., Cai, X., Shouse, G. P., Piluso, L. G., & Liu, X. (2007). A specific PP2A regulatory subunit, B56gamma, mediates DNA damage-induced dephosphorylation of p53 at Thr55. EMBO Journal, 26(2), 402–411.PubMedCrossRef
90.
go back to reference Okamoto, K., Li, H., Jensen, M. R., Zhang, T., Taya, Y., Thorgeirsson, S. S., & Prives, C. (2002). Cyclin g recruits PP2A to dephosphorylate Mdm2. Molecular Cell, 9(4), 761–771.PubMedCrossRef Okamoto, K., Li, H., Jensen, M. R., Zhang, T., Taya, Y., Thorgeirsson, S. S., & Prives, C. (2002). Cyclin g recruits PP2A to dephosphorylate Mdm2. Molecular Cell, 9(4), 761–771.PubMedCrossRef
91.
go back to reference Wei, W., Jobling, W. A., Chen, W., Hahn, W. C., & Sedivy, J. M. (2003). Abolition of cyclin-dependent kinase inhibitor p16ink4a and p21cip1/waf1 functions permits ras-induced anchorage-independent growth in telomerase-immortalized human fibroblasts. Molecular and Cellular Biology, 23(8), 2859–2870.PubMedCrossRef Wei, W., Jobling, W. A., Chen, W., Hahn, W. C., & Sedivy, J. M. (2003). Abolition of cyclin-dependent kinase inhibitor p16ink4a and p21cip1/waf1 functions permits ras-induced anchorage-independent growth in telomerase-immortalized human fibroblasts. Molecular and Cellular Biology, 23(8), 2859–2870.PubMedCrossRef
92.
go back to reference Camonis, J. H., & White, M. A. (2005). Ral GTPases: Corrupting the exocyst in cancer cells. Trends in Cell Biology, 15(6), 327–332.PubMedCrossRef Camonis, J. H., & White, M. A. (2005). Ral GTPases: Corrupting the exocyst in cancer cells. Trends in Cell Biology, 15(6), 327–332.PubMedCrossRef
93.
go back to reference Feig, L. A. (2003). Ral-GTPases: Approaching their 15 minutes of fame. Trends in Cell Biology, 13(8), 419–425.PubMedCrossRef Feig, L. A. (2003). Ral-GTPases: Approaching their 15 minutes of fame. Trends in Cell Biology, 13(8), 419–425.PubMedCrossRef
94.
go back to reference Feinstein, E. (2005). Ral-GTPases: Good chances for a long-lasting fame. Oncogene, 24(3), 326–328.PubMedCrossRef Feinstein, E. (2005). Ral-GTPases: Good chances for a long-lasting fame. Oncogene, 24(3), 326–328.PubMedCrossRef
95.
go back to reference Goi, T., Shipitsin, M., Lu, Z., Foster, D. A., Klinz, S. G., & Feig, L. A. (2000). An egf receptor/ral-GTPase signaling cascade regulates c-src activity and substrate specificity. EMBO Journal, 19(4), 623–630.PubMedCrossRef Goi, T., Shipitsin, M., Lu, Z., Foster, D. A., Klinz, S. G., & Feig, L. A. (2000). An egf receptor/ral-GTPase signaling cascade regulates c-src activity and substrate specificity. EMBO Journal, 19(4), 623–630.PubMedCrossRef
96.
go back to reference Jiang, H., Luo, J. Q., Urano, T., Frankel, P., Lu, Z., Foster, D. A., & Feig, L. A. (1995). Involvement of ral GTPase in v-src-induced phospholipase D activation. Nature, 378(6555), 409–412.PubMedCrossRef Jiang, H., Luo, J. Q., Urano, T., Frankel, P., Lu, Z., Foster, D. A., & Feig, L. A. (1995). Involvement of ral GTPase in v-src-induced phospholipase D activation. Nature, 378(6555), 409–412.PubMedCrossRef
97.
go back to reference Moskalenko, S., Henry, D. O., Rosse, C., Mirey, G., Camonis, J. H., & White, M. A. (2002). The exocyst is a ral effector complex. Nature Cell Biology, 4(1), 66–72.PubMedCrossRef Moskalenko, S., Henry, D. O., Rosse, C., Mirey, G., Camonis, J. H., & White, M. A. (2002). The exocyst is a ral effector complex. Nature Cell Biology, 4(1), 66–72.PubMedCrossRef
98.
go back to reference Adler, H. T., Nallaseth, F. S., Walter, G., & Tkachuk, D. C. (1997). Hrx leukemic fusion proteins form a heterocomplex with the leukemia-associated protein SET and protein phosphatase 2A. Journal of Biological Chemistry, 272(45), 28407–28414.PubMedCrossRef Adler, H. T., Nallaseth, F. S., Walter, G., & Tkachuk, D. C. (1997). Hrx leukemic fusion proteins form a heterocomplex with the leukemia-associated protein SET and protein phosphatase 2A. Journal of Biological Chemistry, 272(45), 28407–28414.PubMedCrossRef
99.
go back to reference Gildea, J. J., Harding, M. A., Seraj, M. J., Gulding, K. M., & Theodorescu, D. (2002). The role of RalA in epidermal growth factor receptor-regulated cell motility. Cancer Research, 62(4), 982–985.PubMed Gildea, J. J., Harding, M. A., Seraj, M. J., Gulding, K. M., & Theodorescu, D. (2002). The role of RalA in epidermal growth factor receptor-regulated cell motility. Cancer Research, 62(4), 982–985.PubMed
100.
go back to reference Ohta, Y., Suzuki, N., Nakamura, S., Hartwig, J. H., & Stossel, T. P. (1999). The small GTPase RalA targets filamin to induce filopodia. Proceedings of the Society for Experimental Biology and Medicine, 96(5), 2122–2128. Ohta, Y., Suzuki, N., Nakamura, S., Hartwig, J. H., & Stossel, T. P. (1999). The small GTPase RalA targets filamin to induce filopodia. Proceedings of the Society for Experimental Biology and Medicine, 96(5), 2122–2128.
101.
go back to reference Tchevkina, E., Agapova, L., Dyakova, N., Martinjuk, A., Komelkov, A., & Tatosyan, A. (2005). The small G-protein RalA stimulates metastasis of transformed cells. Oncogene, 24(3), 329–335.PubMedCrossRef Tchevkina, E., Agapova, L., Dyakova, N., Martinjuk, A., Komelkov, A., & Tatosyan, A. (2005). The small G-protein RalA stimulates metastasis of transformed cells. Oncogene, 24(3), 329–335.PubMedCrossRef
102.
go back to reference Chien, Y., & White, M. A. (2003). Ral GTPases are linchpin modulators of human tumor-cell proliferation and survival. EMBO Reports, 4(8), 800–806.PubMedCrossRef Chien, Y., & White, M. A. (2003). Ral GTPases are linchpin modulators of human tumor-cell proliferation and survival. EMBO Reports, 4(8), 800–806.PubMedCrossRef
103.
go back to reference Lim, K. H., Baines, A. T., Fiordalisi, J. J., Shipitsin, M., Feig, L. A., Cox, A. D., et al. (2005). Activation of RalA is critical for ras-induced tumorigenesis of human cells. Cancer Cells, 7(6), 533–545.CrossRef Lim, K. H., Baines, A. T., Fiordalisi, J. J., Shipitsin, M., Feig, L. A., Cox, A. D., et al. (2005). Activation of RalA is critical for ras-induced tumorigenesis of human cells. Cancer Cells, 7(6), 533–545.CrossRef
104.
go back to reference Panner, A., Nakamura, J. L., Parsa, A. T., Rodriguez-Viciana, P., Berger, M. S., Stokoe, D., et al. (2006). mTOR-independent translational control of the extrinsic cell death pathway by RalA. Molecular and Cellular Biology, 26(20), 7345–7357.PubMedCrossRef Panner, A., Nakamura, J. L., Parsa, A. T., Rodriguez-Viciana, P., Berger, M. S., Stokoe, D., et al. (2006). mTOR-independent translational control of the extrinsic cell death pathway by RalA. Molecular and Cellular Biology, 26(20), 7345–7357.PubMedCrossRef
105.
go back to reference Li, M., Makkinje, A., & Damuni, Z. (1996). The myeloid leukemia-associated protein set is a potent inhibitor of protein phosphatase 2A. Journal of Biological Chemistry, 271(19), 11059–11062.PubMedCrossRef Li, M., Makkinje, A., & Damuni, Z. (1996). The myeloid leukemia-associated protein set is a potent inhibitor of protein phosphatase 2A. Journal of Biological Chemistry, 271(19), 11059–11062.PubMedCrossRef
106.
go back to reference Seo, S. B., Mcnamara, P., Heo, S., Turner, A., Lane, W. S., & Chakravarti, D. (2001). Regulation of histone acetylation and transcription by INHAT, a human cellular complex containing the SET oncoprotein. Cell, 104(1), 119–130.PubMedCrossRef Seo, S. B., Mcnamara, P., Heo, S., Turner, A., Lane, W. S., & Chakravarti, D. (2001). Regulation of histone acetylation and transcription by INHAT, a human cellular complex containing the SET oncoprotein. Cell, 104(1), 119–130.PubMedCrossRef
107.
go back to reference Canela, N., Rodriguez-Vilarrupla, A., Estanyol, J. M., Diaz, C., Pujol, M. J., Agell, N., et al. (2003). The set protein regulates G2/M transition by modulating cyclin B-cyclin-dependent kinase 1 activity. Journal of Biological Chemistry, 278(2), 1158–1164.PubMedCrossRef Canela, N., Rodriguez-Vilarrupla, A., Estanyol, J. M., Diaz, C., Pujol, M. J., Agell, N., et al. (2003). The set protein regulates G2/M transition by modulating cyclin B-cyclin-dependent kinase 1 activity. Journal of Biological Chemistry, 278(2), 1158–1164.PubMedCrossRef
108.
go back to reference Kumar, R. N., Radhakrishnan, R., Ha, J. H., & Dhanasekaran, N. (2004). Proteome analysis of NIH3T3 cells transformed by activated Galpha12: Regulation of leukemia-associated protein set. Journal of Proteome Research, 3(6), 1177–1183.PubMedCrossRef Kumar, R. N., Radhakrishnan, R., Ha, J. H., & Dhanasekaran, N. (2004). Proteome analysis of NIH3T3 cells transformed by activated Galpha12: Regulation of leukemia-associated protein set. Journal of Proteome Research, 3(6), 1177–1183.PubMedCrossRef
109.
go back to reference Carlson, S. G., Eng, E., Kim, E. G., Perlman, E. J., Copeland, T. D., & Ballermann, B. J. (1998). Expression of set, an inhibitor of protein phosphatase 2A, in renal development and Wilms’ tumor. Journal of the American Society of Nephrology, 9(10), 1873–1880.PubMed Carlson, S. G., Eng, E., Kim, E. G., Perlman, E. J., Copeland, T. D., & Ballermann, B. J. (1998). Expression of set, an inhibitor of protein phosphatase 2A, in renal development and Wilms’ tumor. Journal of the American Society of Nephrology, 9(10), 1873–1880.PubMed
110.
go back to reference Fornerod, M., Boer, J., Van Baal, S., Jaegle, M., Von Lindern, M., Murti, K. G., et al. (1995). Relocation of the carboxyterminal part of CAN from the nuclear envelope to the nucleus as a result of leukemia-specific chromosome rearrangements. Oncogene, 10(9), 1739–1748.PubMed Fornerod, M., Boer, J., Van Baal, S., Jaegle, M., Von Lindern, M., Murti, K. G., et al. (1995). Relocation of the carboxyterminal part of CAN from the nuclear envelope to the nucleus as a result of leukemia-specific chromosome rearrangements. Oncogene, 10(9), 1739–1748.PubMed
111.
go back to reference Von Lindern, M., Van Baal, S., Wiegant, J., Raap, A., Hagemeijer, A., & Grosveld, G. (1992). Can, a putative oncogene associated with myeloid leukemogenesis, may be activated by fusion of its 3′ half to different genes: Characterization of the set gene. Molecular and Cellular Biology, 12(8), 3346–3355. Von Lindern, M., Van Baal, S., Wiegant, J., Raap, A., Hagemeijer, A., & Grosveld, G. (1992). Can, a putative oncogene associated with myeloid leukemogenesis, may be activated by fusion of its 3′ half to different genes: Characterization of the set gene. Molecular and Cellular Biology, 12(8), 3346–3355.
112.
go back to reference Fan, Z., Beresford, P. J., Oh, D. Y., Zhang, D., & Lieberman, J. (2003). Tumor suppressor NM23-H1 is a granzyme A-activated DNAase during CTL-mediated apoptosis, and the nucleosome assembly protein set is its inhibitor. Cell, 112(5), 659–672.PubMedCrossRef Fan, Z., Beresford, P. J., Oh, D. Y., Zhang, D., & Lieberman, J. (2003). Tumor suppressor NM23-H1 is a granzyme A-activated DNAase during CTL-mediated apoptosis, and the nucleosome assembly protein set is its inhibitor. Cell, 112(5), 659–672.PubMedCrossRef
113.
go back to reference Junttila, M. R., Puustinen, P., Niemela, M., Ahola, R., Arnold, H., Bottzauw, T., et al. (2007). CIP2A inhibits PP2A in human malignancies. Cell, 130(1), 51–62.PubMedCrossRef Junttila, M. R., Puustinen, P., Niemela, M., Ahola, R., Arnold, H., Bottzauw, T., et al. (2007). CIP2A inhibits PP2A in human malignancies. Cell, 130(1), 51–62.PubMedCrossRef
Metadata
Title
SV40 small T antigen and PP2A phosphatase in cell transformation
Authors
Anna A. Sablina
William C. Hahn
Publication date
01-06-2008
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 2/2008
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-008-9116-0

Other articles of this Issue 2/2008

Cancer and Metastasis Reviews 2/2008 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine