Skip to main content
Top
Published in: Cancer and Metastasis Reviews 2/2008

01-06-2008

PTPL1: a large phosphatase with a split personality

Authors: Ogan D. Abaan, Jeffrey A. Toretsky

Published in: Cancer and Metastasis Reviews | Issue 2/2008

Login to get access

Abstract

Protein tyrosine phosphatase, PTPL1, (also known as PTPN13, FAP-1, PTP-BAS, PTP1E) is a non-receptor type PTP and, at 270 kDa, is the largest phosphatase within this group. In addition to the well-conserved PTP domain, PTPL1 contains at least 7 putative macromolecular interaction domains. This structural complexity indicates that PTPL1 may modulate diverse cellular functions, perhaps exerting both positive and negative effects. In accordance with this idea, while certain studies suggest that PTPL1 can act as a tumor-promoting gene other experimental studies have suggested that PTPL1 may function as a tumor suppressor. The role of PTPL1 in the cancer cell is therefore likely to be both complex and context dependent with possible roles including the modulation of growth, stress-response, and cytoskeletal remodeling pathways. Understanding the nature of molecular complexes containing PTPL1, its interaction partners, substrates, regulation and subcellular localization are key to unraveling the complex personality of this protein phosphatase.
Literature
1.
go back to reference Alonso, A., Sasin, J., Bottini, N., Friedberg, I., Osterman, A., Godzik, A., et al. (2004). Protein tyrosine phosphatases in the human genome. Cell, 117(6), 699–711.PubMedCrossRef Alonso, A., Sasin, J., Bottini, N., Friedberg, I., Osterman, A., Godzik, A., et al. (2004). Protein tyrosine phosphatases in the human genome. Cell, 117(6), 699–711.PubMedCrossRef
2.
go back to reference Dube, N., & Tremblay, M. L. (2005). Involvement of the small protein tyrosine phosphatases TC-PTP and PTP1B in signal transduction and diseases: from diabetes, obesity to cell cycle, and cancer. Biochimica et Biophysica Acta, 1754(1–2), 108–117.PubMed Dube, N., & Tremblay, M. L. (2005). Involvement of the small protein tyrosine phosphatases TC-PTP and PTP1B in signal transduction and diseases: from diabetes, obesity to cell cycle, and cancer. Biochimica et Biophysica Acta, 1754(1–2), 108–117.PubMed
3.
go back to reference Mohi, M. G., & Neel, B. G. (2007). The role of Shp2 (PTPN11) in cancer. Current Opinion in Genetics & Development, 17(1), 23–30.CrossRef Mohi, M. G., & Neel, B. G. (2007). The role of Shp2 (PTPN11) in cancer. Current Opinion in Genetics & Development, 17(1), 23–30.CrossRef
4.
go back to reference Ostman, A., Hellberg, C., & Bohmer, F. D. (2006). Protein-tyrosine phosphatases and cancer. Nature Reviews Cancer, 6(4), 307–320.PubMedCrossRef Ostman, A., Hellberg, C., & Bohmer, F. D. (2006). Protein-tyrosine phosphatases and cancer. Nature Reviews Cancer, 6(4), 307–320.PubMedCrossRef
5.
go back to reference Tonks, N. K. (2006). Protein tyrosine phosphatases: from genes, to function, to disease. Nature Reviews. Molecular Cell Biology, 7(11), 833–846.PubMedCrossRef Tonks, N. K. (2006). Protein tyrosine phosphatases: from genes, to function, to disease. Nature Reviews. Molecular Cell Biology, 7(11), 833–846.PubMedCrossRef
6.
go back to reference Banville, D., Ahmad, S., Stocco, R., & Shen, S. H. (1994). A novel protein-tyrosine phosphatase with homology to both the cytoskeletal proteins of the band 4.1 family and junction-associated guanylate kinases. Journal of Biological Chemistry, 269(35), 22320–22327.PubMed Banville, D., Ahmad, S., Stocco, R., & Shen, S. H. (1994). A novel protein-tyrosine phosphatase with homology to both the cytoskeletal proteins of the band 4.1 family and junction-associated guanylate kinases. Journal of Biological Chemistry, 269(35), 22320–22327.PubMed
7.
go back to reference Maekawa, K., Imagawa, N., Nagamatsu, M., & Harada, S. (1994). Molecular cloning of a novel protein-tyrosine phosphatase containing a membrane-binding domain and GLGF repeats. FEBS Letters, 337(2), 200–206.PubMedCrossRef Maekawa, K., Imagawa, N., Nagamatsu, M., & Harada, S. (1994). Molecular cloning of a novel protein-tyrosine phosphatase containing a membrane-binding domain and GLGF repeats. FEBS Letters, 337(2), 200–206.PubMedCrossRef
8.
go back to reference Saras, J., Claesson-Welsh, L., Heldin, C. H., & Gonez, L. J. (1994). Cloning and characterization of PTPL1, a protein tyrosine phosphatase with similarities to cytoskeletal-associated proteins. Journal of Biological Chemistry, 269(39), 24082–24089.PubMed Saras, J., Claesson-Welsh, L., Heldin, C. H., & Gonez, L. J. (1994). Cloning and characterization of PTPL1, a protein tyrosine phosphatase with similarities to cytoskeletal-associated proteins. Journal of Biological Chemistry, 269(39), 24082–24089.PubMed
9.
go back to reference Sato, T., Irie, S., Kitada, S., & Reed, J. C. (1995). FAP-1: A protein tyrosine phosphatase that associates with Fas. Science, 268(5209), 411–415.PubMedCrossRef Sato, T., Irie, S., Kitada, S., & Reed, J. C. (1995). FAP-1: A protein tyrosine phosphatase that associates with Fas. Science, 268(5209), 411–415.PubMedCrossRef
10.
go back to reference Andersen, J. N., Jansen, P. G., Echwald, S. M., Mortensen, O. H., Fukada, T., Del Vecchio, R., et al. (2004). A genomic perspective on protein tyrosine phosphatases: Gene structure, pseudogenes, and genetic disease linkage. FASEB Journal, 18(1), 8–30.PubMedCrossRef Andersen, J. N., Jansen, P. G., Echwald, S. M., Mortensen, O. H., Fukada, T., Del Vecchio, R., et al. (2004). A genomic perspective on protein tyrosine phosphatases: Gene structure, pseudogenes, and genetic disease linkage. FASEB Journal, 18(1), 8–30.PubMedCrossRef
11.
go back to reference Chishti, A. H., Kim, A. C., Marfatia, S. M., Lutchman, M., Hanspal, M., Jindal, H., et al. (1998). The FERM domain: a unique module involved in the linkage of cytoplasmic proteins to the membrane. Trends in Biochemical Science, 23(8), 281–282.CrossRef Chishti, A. H., Kim, A. C., Marfatia, S. M., Lutchman, M., Hanspal, M., Jindal, H., et al. (1998). The FERM domain: a unique module involved in the linkage of cytoplasmic proteins to the membrane. Trends in Biochemical Science, 23(8), 281–282.CrossRef
12.
go back to reference Ciccarelli, F. D., Bork, P., & Kerkhoff, E. (2003). The KIND module: a putative signalling domain evolved from the C lobe of the protein kinase fold. Trends in Biochemical Science, 28(7), 349–352.CrossRef Ciccarelli, F. D., Bork, P., & Kerkhoff, E. (2003). The KIND module: a putative signalling domain evolved from the C lobe of the protein kinase fold. Trends in Biochemical Science, 28(7), 349–352.CrossRef
13.
go back to reference Bompard, G., Martin, M., Roy, C., Vignon, F., & Freiss, G. (2003). Membrane targeting of protein tyrosine phosphatase PTPL1 through its FERM domain via binding to phosphatidylinositol 4,5-biphosphate. Journal of Cell Science, 116(Pt 12), 2519–2530.PubMedCrossRef Bompard, G., Martin, M., Roy, C., Vignon, F., & Freiss, G. (2003). Membrane targeting of protein tyrosine phosphatase PTPL1 through its FERM domain via binding to phosphatidylinositol 4,5-biphosphate. Journal of Cell Science, 116(Pt 12), 2519–2530.PubMedCrossRef
14.
go back to reference Herrmann, L., Dittmar, T., & Erdmann, K. S. (2003). The protein tyrosine phosphatase PTP-BL associates with the midbody and is involved in the regulation of cytokinesis. Molecular Biology of the Cell, 14(1), 230–240.PubMedCrossRef Herrmann, L., Dittmar, T., & Erdmann, K. S. (2003). The protein tyrosine phosphatase PTP-BL associates with the midbody and is involved in the regulation of cytokinesis. Molecular Biology of the Cell, 14(1), 230–240.PubMedCrossRef
15.
go back to reference Andersen, J. N., Mortensen, O. H., Peters, G. H., Drake, P. G., Iversen, L. F., Olsen, O. H., et al. (2001). Structural and evolutionary relationships among protein tyrosine phosphatase domains. Molecular and Cellular Biology, 21(21), 7117–7136.PubMedCrossRef Andersen, J. N., Mortensen, O. H., Peters, G. H., Drake, P. G., Iversen, L. F., Olsen, O. H., et al. (2001). Structural and evolutionary relationships among protein tyrosine phosphatase domains. Molecular and Cellular Biology, 21(21), 7117–7136.PubMedCrossRef
16.
go back to reference Villa, F., Deak, M., Bloomberg, G. B., Alessi, D. R., & van Aalten, D. M. (2005). Crystal structure of the PTPL1/FAP-1 human tyrosine phosphatase mutated in colorectal cancer: Evidence for a second phosphotyrosine substrate recognition pocket. Journal of Biological Chemistry, 280(9), 8180–8187.PubMedCrossRef Villa, F., Deak, M., Bloomberg, G. B., Alessi, D. R., & van Aalten, D. M. (2005). Crystal structure of the PTPL1/FAP-1 human tyrosine phosphatase mutated in colorectal cancer: Evidence for a second phosphotyrosine substrate recognition pocket. Journal of Biological Chemistry, 280(9), 8180–8187.PubMedCrossRef
17.
go back to reference Yoshida, S., Harada, H., Nagai, H., Fukino, K., Teramoto, A., & Emi, M. (2002). Head-to-head juxtaposition of Fas-associated phosphatase-1 (FAP-1) and c-Jun NH2-terminal kinase 3 (JNK3) genes: Genomic structure and seven polymorphisms of the FAP-1 gene. Journal of Human Genetics, 47(11), 614–619.PubMedCrossRef Yoshida, S., Harada, H., Nagai, H., Fukino, K., Teramoto, A., & Emi, M. (2002). Head-to-head juxtaposition of Fas-associated phosphatase-1 (FAP-1) and c-Jun NH2-terminal kinase 3 (JNK3) genes: Genomic structure and seven polymorphisms of the FAP-1 gene. Journal of Human Genetics, 47(11), 614–619.PubMedCrossRef
18.
go back to reference Irie, S., Li, Y., Kanki, H., Ohyama, T., Deaven, L. L., Somlo, S., et al. (2001). Identification of two Fas-associated phosphatase-1 (FAP-1) promoters in human cancer cells. DNA Sequence, 11(6), 519–526.PubMedCrossRef Irie, S., Li, Y., Kanki, H., Ohyama, T., Deaven, L. L., Somlo, S., et al. (2001). Identification of two Fas-associated phosphatase-1 (FAP-1) promoters in human cancer cells. DNA Sequence, 11(6), 519–526.PubMedCrossRef
19.
go back to reference Abaan, O. D., Levenson, A., Khan, O., Furth, P. A., Uren, A., & Toretsky, J. A. (2005). PTPL1 is a direct transcriptional target of EWS-FLI1 and modulates Ewing’s Sarcoma tumorigenesis. Oncogene, 24(16), 2715–2722.PubMedCrossRef Abaan, O. D., Levenson, A., Khan, O., Furth, P. A., Uren, A., & Toretsky, J. A. (2005). PTPL1 is a direct transcriptional target of EWS-FLI1 and modulates Ewing’s Sarcoma tumorigenesis. Oncogene, 24(16), 2715–2722.PubMedCrossRef
20.
go back to reference Kachel, N., Erdmann, K. S., Kremer, W., Wolff, P., Gronwald, W., Heumann, R., et al. (2003). Structure determination and ligand interactions of the PDZ2b domain of PTP-Bas (hPTP1E): splicing-induced modulation of ligand specificity. Journal of Molecular Biology, 334(1), 143–155.PubMedCrossRef Kachel, N., Erdmann, K. S., Kremer, W., Wolff, P., Gronwald, W., Heumann, R., et al. (2003). Structure determination and ligand interactions of the PDZ2b domain of PTP-Bas (hPTP1E): splicing-induced modulation of ligand specificity. Journal of Molecular Biology, 334(1), 143–155.PubMedCrossRef
21.
go back to reference Zhu, J. H., Chen, R., Yi, W., Cantin, G. T., Fearns, C., Yang, Y., et al. (2008). Protein tyrosine phosphatase PTPN13 negatively regulates Her2/ErbB2 malignant signaling. Oncogene (in press). Zhu, J. H., Chen, R., Yi, W., Cantin, G. T., Fearns, C., Yang, Y., et al. (2008). Protein tyrosine phosphatase PTPN13 negatively regulates Her2/ErbB2 malignant signaling. Oncogene (in press).
22.
go back to reference Nedachi, T., & Conti, M. (2004). Potential role of protein tyrosine phosphatase nonreceptor type 13 in the control of oocyte meiotic maturation. Development, 131(20), 4987–4998.PubMedCrossRef Nedachi, T., & Conti, M. (2004). Potential role of protein tyrosine phosphatase nonreceptor type 13 in the control of oocyte meiotic maturation. Development, 131(20), 4987–4998.PubMedCrossRef
23.
go back to reference Dromard, M., Bompard, G., Glondu-Lassis, M., Puech, C., Chalbos, D., & Freiss, G. (2007). The putative tumor suppressor gene PTPN13/PTPL1 induces apoptosis through insulin receptor substrate-1 dephosphorylation. Cancer Research, 67(14), 6806–6813.PubMedCrossRef Dromard, M., Bompard, G., Glondu-Lassis, M., Puech, C., Chalbos, D., & Freiss, G. (2007). The putative tumor suppressor gene PTPN13/PTPL1 induces apoptosis through insulin receptor substrate-1 dephosphorylation. Cancer Research, 67(14), 6806–6813.PubMedCrossRef
24.
go back to reference Balla, T. (2005). Inositol–lipid binding motifs: signal integrators through protein–lipid and protein–protein interactions. Journal of Cell Science, 118(Pt 10), 2093–2104.PubMedCrossRef Balla, T. (2005). Inositol–lipid binding motifs: signal integrators through protein–lipid and protein–protein interactions. Journal of Cell Science, 118(Pt 10), 2093–2104.PubMedCrossRef
25.
go back to reference Kimber, W. A., Deak, M., Prescott, A. R., & Alessi, D. R. (2003). Interaction of the protein tyrosine phosphatase PTPL1 with the PtdIns(3,4)P2-binding adaptor protein TAPP1. Biochemical Journal, 376(Pt 2), 525–535.PubMedCrossRef Kimber, W. A., Deak, M., Prescott, A. R., & Alessi, D. R. (2003). Interaction of the protein tyrosine phosphatase PTPL1 with the PtdIns(3,4)P2-binding adaptor protein TAPP1. Biochemical Journal, 376(Pt 2), 525–535.PubMedCrossRef
26.
go back to reference Maekawa, K., Imagawa, N., Naito, A., Harada, S., Yoshie, O., & Takagi, S. (1999). Association of protein-tyrosine phosphatase PTP-BAS with the transcription-factor-inhibitory protein IkappaBalpha through interaction between the PDZ1 domain and ankyrin repeats. Biochemical Journal, 337(Pt 2), 179–184.PubMedCrossRef Maekawa, K., Imagawa, N., Naito, A., Harada, S., Yoshie, O., & Takagi, S. (1999). Association of protein-tyrosine phosphatase PTP-BAS with the transcription-factor-inhibitory protein IkappaBalpha through interaction between the PDZ1 domain and ankyrin repeats. Biochemical Journal, 337(Pt 2), 179–184.PubMedCrossRef
27.
go back to reference Zhang, W., Tong, Q., Conrad, K., Wozney, J., Cheung, J., & Miller, B. A. (2007). Regulation of the TRP channel TRPM2 by the tyrosine phosphatase PTPL1. American Journal of Physiology Cell Physiology, 292, C1746–C1758.PubMedCrossRef Zhang, W., Tong, Q., Conrad, K., Wozney, J., Cheung, J., & Miller, B. A. (2007). Regulation of the TRP channel TRPM2 by the tyrosine phosphatase PTPL1. American Journal of Physiology Cell Physiology, 292, C1746–C1758.PubMedCrossRef
28.
go back to reference Saras, J., Engstrom, U., Gonez, L. J., & Heldin, C. H. (1997). Characterization of the interactions between PDZ domains of the protein-tyrosine phosphatase PTPL1 and the carboxyl-terminal tail of Fas. Journal of Biological Chemistry, 272(34), 20979–20981.PubMedCrossRef Saras, J., Engstrom, U., Gonez, L. J., & Heldin, C. H. (1997). Characterization of the interactions between PDZ domains of the protein-tyrosine phosphatase PTPL1 and the carboxyl-terminal tail of Fas. Journal of Biological Chemistry, 272(34), 20979–20981.PubMedCrossRef
29.
go back to reference Yanagisawa, J., Takahashi, M., Kanki, H., Yano-Yanagisawa, H., Tazunoki, T., Sawa, E., et al. (1997). The molecular interaction of Fas and FAP-1. A tripeptide blocker of human Fas interaction with FAP-1 promotes Fas-induced apoptosis. Journal of Biological Chemistry, 272(13), 8539–8545.PubMedCrossRef Yanagisawa, J., Takahashi, M., Kanki, H., Yano-Yanagisawa, H., Tazunoki, T., Sawa, E., et al. (1997). The molecular interaction of Fas and FAP-1. A tripeptide blocker of human Fas interaction with FAP-1 promotes Fas-induced apoptosis. Journal of Biological Chemistry, 272(13), 8539–8545.PubMedCrossRef
30.
go back to reference Irie, S., Hachiya, T., Rabizadeh, S., Maruyama, W., Mukai, J., Li, Y., et al. (1999). Functional interaction of Fas-associated phosphatase-1 (FAP-1) with p75(NTR) and their effect on NF-kappaB activation. FEBS Letters, 460(2), 191–198.PubMedCrossRef Irie, S., Hachiya, T., Rabizadeh, S., Maruyama, W., Mukai, J., Li, Y., et al. (1999). Functional interaction of Fas-associated phosphatase-1 (FAP-1) with p75(NTR) and their effect on NF-kappaB activation. FEBS Letters, 460(2), 191–198.PubMedCrossRef
31.
go back to reference Murthy, K. K., Clark, K., Fortin, Y., Shen, S. H., & Banville, D. (1999). ZRP-1, a zyxin-related protein, interacts with the second PDZ domain of the cytosolic protein tyrosine phosphatase hPTP1E. Journal of Biological Chemistry, 274(29), 20679–20687.PubMedCrossRef Murthy, K. K., Clark, K., Fortin, Y., Shen, S. H., & Banville, D. (1999). ZRP-1, a zyxin-related protein, interacts with the second PDZ domain of the cytosolic protein tyrosine phosphatase hPTP1E. Journal of Biological Chemistry, 274(29), 20679–20687.PubMedCrossRef
32.
go back to reference Saras, J., Franzen, P., Aspenstrom, P., Hellman, U., Gonez, L. J., & Heldin, C. H. (1997). A novel GTPase-activating protein for Rho interacts with a PDZ domain of the protein-tyrosine phosphatase PTPL1. Journal of Biological Chemistry, 272(39), 24333–24338.PubMedCrossRef Saras, J., Franzen, P., Aspenstrom, P., Hellman, U., Gonez, L. J., & Heldin, C. H. (1997). A novel GTPase-activating protein for Rho interacts with a PDZ domain of the protein-tyrosine phosphatase PTPL1. Journal of Biological Chemistry, 272(39), 24333–24338.PubMedCrossRef
33.
go back to reference Lin, D., Gish, G. D., Songyang, Z., & Pawson, T. (1999). The carboxyl terminus of B class ephrins constitutes a PDZ domain binding motif. Journal of Biological Chemistry, 274(6), 3726–3733.PubMedCrossRef Lin, D., Gish, G. D., Songyang, Z., & Pawson, T. (1999). The carboxyl terminus of B class ephrins constitutes a PDZ domain binding motif. Journal of Biological Chemistry, 274(6), 3726–3733.PubMedCrossRef
34.
go back to reference Flint, A. J., Tiganis, T., Barford, D., & Tonks, N. K. (1997). Development of “substrate-trapping” mutants to identify physiological substrates of protein tyrosine phosphatases. Proceedings of the National Academy of Sciences of the United States of America, 94(5), 1680–1685.PubMedCrossRef Flint, A. J., Tiganis, T., Barford, D., & Tonks, N. K. (1997). Development of “substrate-trapping” mutants to identify physiological substrates of protein tyrosine phosphatases. Proceedings of the National Academy of Sciences of the United States of America, 94(5), 1680–1685.PubMedCrossRef
35.
go back to reference Tiganis, T., & Bennett, A. M. (2007). Protein tyrosine phosphatase function: the substrate perspective. Biochemical Journal, 402(1), 1–15.PubMedCrossRef Tiganis, T., & Bennett, A. M. (2007). Protein tyrosine phosphatase function: the substrate perspective. Biochemical Journal, 402(1), 1–15.PubMedCrossRef
36.
go back to reference Nakai, Y., Irie, S., & Sato, T. A. (2000). Identification of IkappaBalpha as a substrate of Fas-associated phosphatase-1. European Journal of Biochemistry, 267(24), 7170–7175.PubMedCrossRef Nakai, Y., Irie, S., & Sato, T. A. (2000). Identification of IkappaBalpha as a substrate of Fas-associated phosphatase-1. European Journal of Biochemistry, 267(24), 7170–7175.PubMedCrossRef
37.
go back to reference Nakahira, M., Tanaka, T., Robson, B. E., Mizgerd, J. P., & Grusby, M. J. (2007). Regulation of signal transducer and activator of transcription signaling by the tyrosine phosphatase PTP-BL. Immunity, 26(2), 163–176.PubMedCrossRef Nakahira, M., Tanaka, T., Robson, B. E., Mizgerd, J. P., & Grusby, M. J. (2007). Regulation of signal transducer and activator of transcription signaling by the tyrosine phosphatase PTP-BL. Immunity, 26(2), 163–176.PubMedCrossRef
38.
go back to reference Wansink, D. G., Peters, W., Schaafsma, I., Sutmuller, R. P., Oerlemans, F., Adema, G. J., et al. (2004). Mild impairment of motor nerve repair in mice lacking PTP-BL tyrosine phosphatase activity. Physiological Genomics, 19(1), 50–60.PubMedCrossRef Wansink, D. G., Peters, W., Schaafsma, I., Sutmuller, R. P., Oerlemans, F., Adema, G. J., et al. (2004). Mild impairment of motor nerve repair in mice lacking PTP-BL tyrosine phosphatase activity. Physiological Genomics, 19(1), 50–60.PubMedCrossRef
39.
go back to reference Lorber, B., Hendriks, W. J., Van der Zee, C. E., Berry, M., & Logan, A. (2005). Effects of LAR and PTP-BL phosphatase deficiency on adult mouse retinal cells activated by lens injury. European Journal of Neuroscience, 21(9), 2375–2383.PubMedCrossRef Lorber, B., Hendriks, W. J., Van der Zee, C. E., Berry, M., & Logan, A. (2005). Effects of LAR and PTP-BL phosphatase deficiency on adult mouse retinal cells activated by lens injury. European Journal of Neuroscience, 21(9), 2375–2383.PubMedCrossRef
40.
go back to reference Uren, A., & Toretsky, J. A. (2005). Ewing’s sarcoma oncoprotein EWS-FLI1: The perfect target without a therapeutic agent. Future Oncology, 1(4), 521–528.PubMedCrossRef Uren, A., & Toretsky, J. A. (2005). Ewing’s sarcoma oncoprotein EWS-FLI1: The perfect target without a therapeutic agent. Future Oncology, 1(4), 521–528.PubMedCrossRef
41.
go back to reference Baer, C., Nees, M., Breit, S., Selle, B., Kulozik, A. E., Schaefer, K. L., et al. (2004). Profiling and functional annotation of mRNA gene expression in pediatric rhabdomyosarcoma and Ewing’s sarcoma. International Journal of Cancer, 110(5), 687–694.CrossRef Baer, C., Nees, M., Breit, S., Selle, B., Kulozik, A. E., Schaefer, K. L., et al. (2004). Profiling and functional annotation of mRNA gene expression in pediatric rhabdomyosarcoma and Ewing’s sarcoma. International Journal of Cancer, 110(5), 687–694.CrossRef
42.
go back to reference Khan, J., Wei, J. S., Ringner, M., Saal, L. H., Ladanyi, M., Westermann, F., et al. (2001). Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature Medicine, 7(6), 673–679.PubMedCrossRef Khan, J., Wei, J. S., Ringner, M., Saal, L. H., Ladanyi, M., Westermann, F., et al. (2001). Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature Medicine, 7(6), 673–679.PubMedCrossRef
43.
go back to reference Lessnick, S. L., Dacwag, C. S., & Golub, T. R. (2002). The Ewing’s sarcoma oncoprotein EWS/FLI induces a p53-dependent growth arrest in primary human fibroblasts. Cancer Cell, 1(4), 393–401.PubMedCrossRef Lessnick, S. L., Dacwag, C. S., & Golub, T. R. (2002). The Ewing’s sarcoma oncoprotein EWS/FLI induces a p53-dependent growth arrest in primary human fibroblasts. Cancer Cell, 1(4), 393–401.PubMedCrossRef
44.
go back to reference Houston, A., & O’Connell, J. (2004). The Fas signalling pathway and its role in the pathogenesis of cancer. Current Opinion in Pharmacology, 4(4), 321–326.PubMedCrossRef Houston, A., & O’Connell, J. (2004). The Fas signalling pathway and its role in the pathogenesis of cancer. Current Opinion in Pharmacology, 4(4), 321–326.PubMedCrossRef
45.
go back to reference Ungefroren, H., Voss, M., Jansen, M., Roeder, C., Henne-Bruns, D., Kremer, B., et al. (1998). Human pancreatic adenocarcinomas express Fas and Fas ligand yet are resistant to Fas-mediated apoptosis. Cancer Research, 58(8), 1741–1749.PubMed Ungefroren, H., Voss, M., Jansen, M., Roeder, C., Henne-Bruns, D., Kremer, B., et al. (1998). Human pancreatic adenocarcinomas express Fas and Fas ligand yet are resistant to Fas-mediated apoptosis. Cancer Research, 58(8), 1741–1749.PubMed
46.
go back to reference Ungefroren, H., Kruse, M. L., Trauzold, A., Roeschmann, S., Roeder, C., Arlt, A., et al. (2001). FAP-1 in pancreatic cancer cells: functional and mechanistic studies on its inhibitory role in CD95-mediated apoptosis. Journal of Cell Science, 114(Pt 15), 2735–2746.PubMed Ungefroren, H., Kruse, M. L., Trauzold, A., Roeschmann, S., Roeder, C., Arlt, A., et al. (2001). FAP-1 in pancreatic cancer cells: functional and mechanistic studies on its inhibitory role in CD95-mediated apoptosis. Journal of Cell Science, 114(Pt 15), 2735–2746.PubMed
47.
go back to reference Ivanov, V. N., Lopez Bergami, P., Maulit, G., Sato, T. A., Sassoon, D., & Ronai, Z. (2003). FAP-1 association with Fas (Apo-1) inhibits Fas expression on the cell surface. Molecular and Cellular Biology, 23(10), 3623–3635.PubMedCrossRef Ivanov, V. N., Lopez Bergami, P., Maulit, G., Sato, T. A., Sassoon, D., & Ronai, Z. (2003). FAP-1 association with Fas (Apo-1) inhibits Fas expression on the cell surface. Molecular and Cellular Biology, 23(10), 3623–3635.PubMedCrossRef
48.
go back to reference Meinhold-Heerlein, I., Stenner-Liewen, F., Liewen, H., Kitada, S., Krajewska, M., Krajewski, S., et al. (2001). Expression and potential role of Fas-associated phosphatase-1 in ovarian cancer. American Journal of Pathology, 158(4), 1335–1344.PubMed Meinhold-Heerlein, I., Stenner-Liewen, F., Liewen, H., Kitada, S., Krajewska, M., Krajewski, S., et al. (2001). Expression and potential role of Fas-associated phosphatase-1 in ovarian cancer. American Journal of Pathology, 158(4), 1335–1344.PubMed
49.
go back to reference Yao, H., Song, E., Chen, J., & Hamar, P. (2004). Expression of FAP-1 by human colon adenocarcinoma: implication for resistance against Fas-mediated apoptosis in cancer. British Journal of Cancer, 91(9), 1718–1725.PubMed Yao, H., Song, E., Chen, J., & Hamar, P. (2004). Expression of FAP-1 by human colon adenocarcinoma: implication for resistance against Fas-mediated apoptosis in cancer. British Journal of Cancer, 91(9), 1718–1725.PubMed
50.
go back to reference Wieckowski, E., Atarashi, Y., Stanson, J., Sato, T. A., & Whiteside, T. L. (2007). FAP-1-mediated activation of NF-kappaB induces resistance of head and neck cancer to Fas-induced apoptosis. Journal of Cellular Biochemistry, 100(1), 16–28.PubMedCrossRef Wieckowski, E., Atarashi, Y., Stanson, J., Sato, T. A., & Whiteside, T. L. (2007). FAP-1-mediated activation of NF-kappaB induces resistance of head and neck cancer to Fas-induced apoptosis. Journal of Cellular Biochemistry, 100(1), 16–28.PubMedCrossRef
51.
go back to reference Lee, S. H., Shin, M. S., Lee, H. S., Bae, J. H., Lee, H. K., Kim, H. S., et al. (2001). Expression of Fas and Fas-related molecules in human hepatocellular carcinoma. Human Pathology, 32(3), 250–256.PubMedCrossRef Lee, S. H., Shin, M. S., Lee, H. S., Bae, J. H., Lee, H. K., Kim, H. S., et al. (2001). Expression of Fas and Fas-related molecules in human hepatocellular carcinoma. Human Pathology, 32(3), 250–256.PubMedCrossRef
52.
go back to reference Lee, S. H., Shin, M. S., Lee, J. Y., Park, W. S., Kim, S. Y., Jang, J. J., et al. (1999). In vivo expression of soluble Fas and FAP-1: possible mechanisms of Fas resistance in human hepatoblastomas. Journal of Pathology, 188(2), 207–212.PubMedCrossRef Lee, S. H., Shin, M. S., Lee, J. Y., Park, W. S., Kim, S. Y., Jang, J. J., et al. (1999). In vivo expression of soluble Fas and FAP-1: possible mechanisms of Fas resistance in human hepatoblastomas. Journal of Pathology, 188(2), 207–212.PubMedCrossRef
53.
go back to reference Eberle, A., Reinehr, R., Becker, S., & Haussinger, D. (2005). Fluorescence resonance energy transfer analysis of proapoptotic CD95-EGF receptor interactions in Huh7 cells. Hepatology, 41(2), 315–326.PubMedCrossRef Eberle, A., Reinehr, R., Becker, S., & Haussinger, D. (2005). Fluorescence resonance energy transfer analysis of proapoptotic CD95-EGF receptor interactions in Huh7 cells. Hepatology, 41(2), 315–326.PubMedCrossRef
54.
go back to reference Barker, P. A. (2004). p75NTR is positively promiscuous: novel partners and new insights. Neuron, 42(4), 529–533.PubMedCrossRef Barker, P. A. (2004). p75NTR is positively promiscuous: novel partners and new insights. Neuron, 42(4), 529–533.PubMedCrossRef
55.
go back to reference Mamidipudi, V., & Wooten, M. W. (2002). Dual role for p75(NTR) signaling in survival and cell death: Can intracellular mediators provide an explanation? Journal of Neuroscience Research, 68(4), 373–384.PubMedCrossRef Mamidipudi, V., & Wooten, M. W. (2002). Dual role for p75(NTR) signaling in survival and cell death: Can intracellular mediators provide an explanation? Journal of Neuroscience Research, 68(4), 373–384.PubMedCrossRef
56.
go back to reference Ohrt, T., Mancini, A., Tamura, T., & Niedenthal, R. (2004). c-Cbl binds to tyrosine-phosphorylated neurotrophin receptor p75 and induces its ubiquitination. Cell Signal, 16(11), 1291–1298.PubMedCrossRef Ohrt, T., Mancini, A., Tamura, T., & Niedenthal, R. (2004). c-Cbl binds to tyrosine-phosphorylated neurotrophin receptor p75 and induces its ubiquitination. Cell Signal, 16(11), 1291–1298.PubMedCrossRef
57.
go back to reference Imbert, V., Rupec, R. A., Livolsi, A., Pahl, H. L., Traenckner, E. B., Mueller-Dieckmann, C., et al. (1996). Tyrosine phosphorylation of I kappa B-alpha activates NF-kappa B without proteolytic degradation of I kappa B-alpha. Cell, 86(5), 787–798.PubMedCrossRef Imbert, V., Rupec, R. A., Livolsi, A., Pahl, H. L., Traenckner, E. B., Mueller-Dieckmann, C., et al. (1996). Tyrosine phosphorylation of I kappa B-alpha activates NF-kappa B without proteolytic degradation of I kappa B-alpha. Cell, 86(5), 787–798.PubMedCrossRef
58.
go back to reference Kawai, H., Nie, L., & Yuan, Z. M. (2002). Inactivation of NF-kappaB-dependent cell survival, a novel mechanism for the proapoptotic function of c-Abl. Molecular and Cellular Biology, 22(17), 6079–6088.PubMedCrossRef Kawai, H., Nie, L., & Yuan, Z. M. (2002). Inactivation of NF-kappaB-dependent cell survival, a novel mechanism for the proapoptotic function of c-Abl. Molecular and Cellular Biology, 22(17), 6079–6088.PubMedCrossRef
59.
go back to reference Fan, C., Yang, J., & Engelhardt, J. F. (2002). Temporal pattern of NFkappaB activation influences apoptotic cell fate in a stimuli-dependent fashion. Journal of Cell Science, 115(24), 4843–4853.PubMedCrossRef Fan, C., Yang, J., & Engelhardt, J. F. (2002). Temporal pattern of NFkappaB activation influences apoptotic cell fate in a stimuli-dependent fashion. Journal of Cell Science, 115(24), 4843–4853.PubMedCrossRef
60.
go back to reference Foehr, E. D., Lorente, G., Vincent, V., Nikolich, K., & Urfer, R. (2005). FAS associated phosphatase (FAP-1) blocks apoptosis of astrocytomas through dephosphorylation of FAS. Journal of Neurooncology, 74(3), 241–248.CrossRef Foehr, E. D., Lorente, G., Vincent, V., Nikolich, K., & Urfer, R. (2005). FAS associated phosphatase (FAP-1) blocks apoptosis of astrocytomas through dephosphorylation of FAS. Journal of Neurooncology, 74(3), 241–248.CrossRef
61.
go back to reference Hogan, A., Yakubchyk, Y., Chabot, J., Obagi, C., Daher, E., Maekawa, K., et al. (2004). The phosphoinositol 3,4-bisphosphate-binding protein TAPP1 interacts with syntrophins and regulates actin cytoskeletal organization. Journal of Biological Chemistry, 279(51), 53717–53724.PubMedCrossRef Hogan, A., Yakubchyk, Y., Chabot, J., Obagi, C., Daher, E., Maekawa, K., et al. (2004). The phosphoinositol 3,4-bisphosphate-binding protein TAPP1 interacts with syntrophins and regulates actin cytoskeletal organization. Journal of Biological Chemistry, 279(51), 53717–53724.PubMedCrossRef
62.
go back to reference Kullander, K., & Klein, R. (2002). Mechanisms and functions of Eph and ephrin signalling. Nature Reviews. Molecular and Cellular Biology, 3(7), 475–486.CrossRef Kullander, K., & Klein, R. (2002). Mechanisms and functions of Eph and ephrin signalling. Nature Reviews. Molecular and Cellular Biology, 3(7), 475–486.CrossRef
63.
go back to reference Palmer, A., Zimmer, M., Erdmann, K. S., Eulenburg, V., Porthin, A., Heumann, R., et al. (2002). EphrinB phosphorylation and reverse signaling: regulation by Src kinases and PTP-BL phosphatase. Molecular Cell, 9(4), 725–737.PubMedCrossRef Palmer, A., Zimmer, M., Erdmann, K. S., Eulenburg, V., Porthin, A., Heumann, R., et al. (2002). EphrinB phosphorylation and reverse signaling: regulation by Src kinases and PTP-BL phosphatase. Molecular Cell, 9(4), 725–737.PubMedCrossRef
64.
go back to reference Myagmar, B. E., Umikawa, M., Asato, T., Taira, K., Oshiro, M., Hino, A., et al. (2005). PARG1, a protein-tyrosine phosphatase-associated RhoGAP, as a putative Rap2 effector. Biochemical and Biophysical Research Communications, 329(3), 1046–1052.PubMedCrossRef Myagmar, B. E., Umikawa, M., Asato, T., Taira, K., Oshiro, M., Hino, A., et al. (2005). PARG1, a protein-tyrosine phosphatase-associated RhoGAP, as a putative Rap2 effector. Biochemical and Biophysical Research Communications, 329(3), 1046–1052.PubMedCrossRef
65.
go back to reference Lai, Y. J., Lin, W. C., & Lin, F. T. (2007). PTPL1/FAP-1 negatively regulates TRIP6 function in lysophosphatidic acid-induced cell migration. Journal of Biological Chemistry, 282(33), 24381–24387.PubMedCrossRef Lai, Y. J., Lin, W. C., & Lin, F. T. (2007). PTPL1/FAP-1 negatively regulates TRIP6 function in lysophosphatidic acid-induced cell migration. Journal of Biological Chemistry, 282(33), 24381–24387.PubMedCrossRef
66.
go back to reference Miyazaki, T., Atarashi, Y., Yasumura, S., Minatoya, I., Ogawa, K., Iwamoto, M., et al. (2006). Fas-associated phosphatase-1 promotes Fas-mediated apoptosis in human colon cancer cells: novel function of FAP-1. Journal of Gastroenterology and Hepatology, 21(1 Pt 1), 84–91.PubMedCrossRef Miyazaki, T., Atarashi, Y., Yasumura, S., Minatoya, I., Ogawa, K., Iwamoto, M., et al. (2006). Fas-associated phosphatase-1 promotes Fas-mediated apoptosis in human colon cancer cells: novel function of FAP-1. Journal of Gastroenterology and Hepatology, 21(1 Pt 1), 84–91.PubMedCrossRef
67.
go back to reference Tillman, D. M., Harwood, F. G., Gibson, A. A., & Houghton, J. A. (1998). Expression of genes that regulate Fas signalling and Fas-mediated apoptosis in colon carcinoma cells. Cell Death Differentiation, 5(5), 450–457.CrossRef Tillman, D. M., Harwood, F. G., Gibson, A. A., & Houghton, J. A. (1998). Expression of genes that regulate Fas signalling and Fas-mediated apoptosis in colon carcinoma cells. Cell Death Differentiation, 5(5), 450–457.CrossRef
68.
go back to reference Ying, J., Li, H., Cui, Y., Wong, A. H., Langford, C., & Tao, Q. (2006). Epigenetic disruption of two proapoptotic genes MAPK10/JNK3 and PTPN13/FAP-1 in multiple lymphomas and carcinomas through hypermethylation of a common bidirectional promoter. Leukemia, 20(6), 1173–1175.PubMedCrossRef Ying, J., Li, H., Cui, Y., Wong, A. H., Langford, C., & Tao, Q. (2006). Epigenetic disruption of two proapoptotic genes MAPK10/JNK3 and PTPN13/FAP-1 in multiple lymphomas and carcinomas through hypermethylation of a common bidirectional promoter. Leukemia, 20(6), 1173–1175.PubMedCrossRef
69.
go back to reference Yeh, S. H., Wu, D. C., Tsai, C. Y., Kuo, T. J., Yu, W. C., Chang, Y. S., et al. (2006). Genetic characterization of fas-associated phosphatase-1 as a putative tumor suppressor gene on chromosome 4q21.3 in hepatocellular carcinoma. Clinical Cancer Research, 12(4), 1097–1108.PubMedCrossRef Yeh, S. H., Wu, D. C., Tsai, C. Y., Kuo, T. J., Yu, W. C., Chang, Y. S., et al. (2006). Genetic characterization of fas-associated phosphatase-1 as a putative tumor suppressor gene on chromosome 4q21.3 in hepatocellular carcinoma. Clinical Cancer Research, 12(4), 1097–1108.PubMedCrossRef
70.
go back to reference Wang, Z., Shen, D., Parsons, D. W., Bardelli, A., Sager, J., Szabo, S., et al. (2004). Mutational analysis of the tyrosine phosphatome in colorectal cancers. Science, 304(5674), 1164–1166.PubMedCrossRef Wang, Z., Shen, D., Parsons, D. W., Bardelli, A., Sager, J., Szabo, S., et al. (2004). Mutational analysis of the tyrosine phosphatome in colorectal cancers. Science, 304(5674), 1164–1166.PubMedCrossRef
71.
go back to reference Freiss, G., Puech, C., & Vignon, F. (1998). Extinction of insulin-like growth factor-I mitogenic signaling by antiestrogen-stimulated Fas-associated protein tyrosine phosphatase-1 in human breast cancer cells. Molecular Endocrinology, 12(4), 568–579.PubMedCrossRef Freiss, G., Puech, C., & Vignon, F. (1998). Extinction of insulin-like growth factor-I mitogenic signaling by antiestrogen-stimulated Fas-associated protein tyrosine phosphatase-1 in human breast cancer cells. Molecular Endocrinology, 12(4), 568–579.PubMedCrossRef
72.
go back to reference Bompard, G., Puech, C., Prebois, C., Vignon, F., & Freiss, G. (2002). Protein-tyrosine phosphatase PTPL1/FAP-1 triggers apoptosis in human breast cancer cells. Journal of Biological Chemistry, 277(49), 47861–47869.PubMedCrossRef Bompard, G., Puech, C., Prebois, C., Vignon, F., & Freiss, G. (2002). Protein-tyrosine phosphatase PTPL1/FAP-1 triggers apoptosis in human breast cancer cells. Journal of Biological Chemistry, 277(49), 47861–47869.PubMedCrossRef
73.
go back to reference Cuppen, E., Nagata, S., Wieringa, B., & Hendriks, W. (1997). No evidence for involvement of mouse protein-tyrosine phosphatase-BAS-like Fas-associated phosphatase-1 in Fas-mediated apoptosis. Journal of Biological Chemistry, 272(48), 30215–30220.PubMedCrossRef Cuppen, E., Nagata, S., Wieringa, B., & Hendriks, W. (1997). No evidence for involvement of mouse protein-tyrosine phosphatase-BAS-like Fas-associated phosphatase-1 in Fas-mediated apoptosis. Journal of Biological Chemistry, 272(48), 30215–30220.PubMedCrossRef
74.
go back to reference Stuible, M., Zhao, L., Aubry, I., Schmidt-Arras, D., Bohmer, F. D., Li, C. J., et al. (2007). Cellular inhibition of protein tyrosine phosphatase 1B by uncharged thioxothiazolidinone derivatives. Chembiochem, 8(2), 179–186.PubMedCrossRef Stuible, M., Zhao, L., Aubry, I., Schmidt-Arras, D., Bohmer, F. D., Li, C. J., et al. (2007). Cellular inhibition of protein tyrosine phosphatase 1B by uncharged thioxothiazolidinone derivatives. Chembiochem, 8(2), 179–186.PubMedCrossRef
Metadata
Title
PTPL1: a large phosphatase with a split personality
Authors
Ogan D. Abaan
Jeffrey A. Toretsky
Publication date
01-06-2008
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 2/2008
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-008-9114-2

Other articles of this Issue 2/2008

Cancer and Metastasis Reviews 2/2008 Go to the issue

PREFACE

Preface

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine