Skip to main content
Top
Published in: Cancer and Metastasis Reviews 2/2008

01-06-2008

Dual-specificity MAP kinase phosphatases (MKPs) and cancer

Author: Stephen M. Keyse

Published in: Cancer and Metastasis Reviews | Issue 2/2008

Login to get access

Abstract

There are ten mitogen-activated protein kinase (MAPK) phosphatases (MKPs) that act as negative regulators of MAPK activity in mammalian cells and these can be subdivided into three groups. The first comprises DUSP1/MKP-1, DUSP2/PAC1, DUSP4/MKP-2 and DUSP5/hVH-3, which are inducible nuclear phosphatases. With the exception of DUSP5, these MKPs display a rather broad specificity for inactivation of the ERK, p38 and JNK MAP kinases. The second group contains three closely related ERK-specific and cytoplasmic MKPs encoded by DUSP6/MKP-3, DUSP7/MKP-X and DUSP9/MKP-4. The final group consists of three MKPs DUSP8/hVH-5, DUSP10/MKP-5 and DUSP16/MKP-7 all of which preferentially inactivate the stress-activated p38 and JNK MAP kinases. Abnormal MAPK signalling will have important consequences for processes critical to the development and progression of human cancer. In addition, MAPK signalling also plays a key role in determining the response of tumour cells to conventional cancer therapies. The emerging roles of the dual-specificity MKPs in the regulation of MAPK activities in normal tissues has highlighted the possible pathophysiological consequences of either loss (or gain) of function of these enzymes as part of the oncogenic process. This review summarises the current evidence implicating the dual-specificity MKPs in the initiation and development of cancer and also on the outcome of treatment.
Literature
1.
go back to reference Wada, T., & Penninger, J. M. (2004). Mitogen-activated protein kinases in apoptosis regulation. Oncogene, 23(16), 2838–2849.PubMedCrossRef Wada, T., & Penninger, J. M. (2004). Mitogen-activated protein kinases in apoptosis regulation. Oncogene, 23(16), 2838–2849.PubMedCrossRef
2.
3.
go back to reference Chang, L., & Karin, M. (2001). Mammalian MAP kinase signalling cascades. Nature, 410(6824), 37–40.PubMedCrossRef Chang, L., & Karin, M. (2001). Mammalian MAP kinase signalling cascades. Nature, 410(6824), 37–40.PubMedCrossRef
4.
go back to reference Johnson, G. L., & Lapadat, R. (2002). Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science, 298(5600), 1911–1912.PubMedCrossRef Johnson, G. L., & Lapadat, R. (2002). Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science, 298(5600), 1911–1912.PubMedCrossRef
5.
go back to reference Pearson, G., Robinson, F., Beers Gibson, T., Xu, B. E., Karandikar, M., Berman, K., et al. (2001). Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocrine Reviews, 22(2), 153–183.PubMedCrossRef Pearson, G., Robinson, F., Beers Gibson, T., Xu, B. E., Karandikar, M., Berman, K., et al. (2001). Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocrine Reviews, 22(2), 153–183.PubMedCrossRef
6.
go back to reference Marshall, C. J. (1994). MAP kinase kinase kinase, MAP kinase kinase and MAP kinase. Current Opinion in Genetics & Development, 4(1), 82–89.CrossRef Marshall, C. J. (1994). MAP kinase kinase kinase, MAP kinase kinase and MAP kinase. Current Opinion in Genetics & Development, 4(1), 82–89.CrossRef
7.
go back to reference Cohen, P. (1997). The search for physiological substrates of the MAP and SAP kinases in mammalian cells. Trends in Cell Biology, 7, 353–361.PubMedCrossRef Cohen, P. (1997). The search for physiological substrates of the MAP and SAP kinases in mammalian cells. Trends in Cell Biology, 7, 353–361.PubMedCrossRef
8.
go back to reference Dhillon, A. S., Hagan, S., Rath, O., & Kolch, W. (2007). MAP kinase signalling pathways in cancer. Oncogene, 26(22), 3279–3290.PubMedCrossRef Dhillon, A. S., Hagan, S., Rath, O., & Kolch, W. (2007). MAP kinase signalling pathways in cancer. Oncogene, 26(22), 3279–3290.PubMedCrossRef
9.
go back to reference Kennedy, N. J., & Davis, R. J. (2003). Role of JNK in tumor development. Cell Cycle, 2(3), 199–201.PubMed Kennedy, N. J., & Davis, R. J. (2003). Role of JNK in tumor development. Cell Cycle, 2(3), 199–201.PubMed
10.
go back to reference Kennedy, N. J., Sluss, H. K., Jones, S. N., Bar-Sagi, D., Flavell, R. A., & Davis, R. J. (2003). Suppression of Ras-stimulated transformation by the JNK signal transduction pathway. Genes & Development, 17(5), 629–637.CrossRef Kennedy, N. J., Sluss, H. K., Jones, S. N., Bar-Sagi, D., Flavell, R. A., & Davis, R. J. (2003). Suppression of Ras-stimulated transformation by the JNK signal transduction pathway. Genes & Development, 17(5), 629–637.CrossRef
11.
go back to reference Dolado, I., Swat, A., Ajenjo, N., De Vita, G., Cuadrado, A., & Nebreda, A. R. (2007). p38alpha MAP kinase as a sensor of reactive oxygen species in tumorigenesis. Cancer Cell, 11(2), 191–205.PubMedCrossRef Dolado, I., Swat, A., Ajenjo, N., De Vita, G., Cuadrado, A., & Nebreda, A. R. (2007). p38alpha MAP kinase as a sensor of reactive oxygen species in tumorigenesis. Cancer Cell, 11(2), 191–205.PubMedCrossRef
12.
go back to reference Ventura, J. J., Tenbaum, S., Perdiguero, E., Huth, M., Guerra, C., Barbacid, M., et al. (2007). p38alpha MAP kinase is essential in lung stem and progenitor cell proliferation and differentiation. Nature Genetics, 39(6), 750–758.PubMedCrossRef Ventura, J. J., Tenbaum, S., Perdiguero, E., Huth, M., Guerra, C., Barbacid, M., et al. (2007). p38alpha MAP kinase is essential in lung stem and progenitor cell proliferation and differentiation. Nature Genetics, 39(6), 750–758.PubMedCrossRef
13.
go back to reference Sun, P., Yoshizuka, N., New, L., Moser, B. A., Li, Y., Liao, R., et al. (2007). PRAK is essential for ras-induced senescence and tumor suppression. Cell, 128(2), 295–308.PubMedCrossRef Sun, P., Yoshizuka, N., New, L., Moser, B. A., Li, Y., Liao, R., et al. (2007). PRAK is essential for ras-induced senescence and tumor suppression. Cell, 128(2), 295–308.PubMedCrossRef
14.
go back to reference Han, J., & Sun, P. (2007). The pathways to tumor suppression via route p38. Trends in Biochemical Sciences, 32(8), 364–371.PubMedCrossRef Han, J., & Sun, P. (2007). The pathways to tumor suppression via route p38. Trends in Biochemical Sciences, 32(8), 364–371.PubMedCrossRef
15.
go back to reference Marshall, C. J. (1995). Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell, 80(2), 179–185.PubMedCrossRef Marshall, C. J. (1995). Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell, 80(2), 179–185.PubMedCrossRef
16.
go back to reference Keyse, S. M. (2000). Protein phosphatases and the regulation of mitogen-activated protein kinase signalling. Current Opinion in Cell Biology, 12(2), 186–192.PubMedCrossRef Keyse, S. M. (2000). Protein phosphatases and the regulation of mitogen-activated protein kinase signalling. Current Opinion in Cell Biology, 12(2), 186–192.PubMedCrossRef
17.
go back to reference Saxena, M., & Mustelin, T. (2000). Extracellular signals and scores of phosphatases: All roads lead to MAP kinase. Seminars in Immunology, 12(4), 387–396.PubMedCrossRef Saxena, M., & Mustelin, T. (2000). Extracellular signals and scores of phosphatases: All roads lead to MAP kinase. Seminars in Immunology, 12(4), 387–396.PubMedCrossRef
18.
go back to reference Theodosiou, A., & Ashworth, A. (2002). MAP kinase phosphatases. Genome Biol, 3(7), REVIEWS3009. Theodosiou, A., & Ashworth, A. (2002). MAP kinase phosphatases. Genome Biol, 3(7), REVIEWS3009.
19.
go back to reference Kondoh, K., & Nishida, E. (2007). Regulation of MAP kinases by MAP kinase phosphatases. Biochimica Et Biophysica Acta, 1773(8), 1227–1237.PubMed Kondoh, K., & Nishida, E. (2007). Regulation of MAP kinases by MAP kinase phosphatases. Biochimica Et Biophysica Acta, 1773(8), 1227–1237.PubMed
20.
go back to reference Owens, D. M., & Keyse, S. M. (2007). Differential regulation of MAP kinase signalling by dual-specificity protein phosphatases. Oncogene, 26(22), 3203–3213.PubMedCrossRef Owens, D. M., & Keyse, S. M. (2007). Differential regulation of MAP kinase signalling by dual-specificity protein phosphatases. Oncogene, 26(22), 3203–3213.PubMedCrossRef
21.
go back to reference Farooq, A., & Zhou, M. M. (2004). Structure and regulation of MAPK phosphatases. Cell Signal, 16(7), 769–779.PubMedCrossRef Farooq, A., & Zhou, M. M. (2004). Structure and regulation of MAPK phosphatases. Cell Signal, 16(7), 769–779.PubMedCrossRef
22.
go back to reference Dickinson, R. J., & Keyse, S. M. (2006). Diverse physiological functions for dual-specificity MAP kinase phosphatases. Journal of Cell Science, 119(Pt 22), 4607–4615.PubMedCrossRef Dickinson, R. J., & Keyse, S. M. (2006). Diverse physiological functions for dual-specificity MAP kinase phosphatases. Journal of Cell Science, 119(Pt 22), 4607–4615.PubMedCrossRef
23.
go back to reference Chi, H., Barry, S. P., Roth, R., Wu, J. J., Jones, E. A., Bennett, A. M., et al. (2006). Dynamic regulation of pro-and anti-inflammatory cytokines by MKP-1 in innate immune responses. Proceedings of the National Academy of Sciences of the United States of America, 103, 2274–2279.PubMedCrossRef Chi, H., Barry, S. P., Roth, R., Wu, J. J., Jones, E. A., Bennett, A. M., et al. (2006). Dynamic regulation of pro-and anti-inflammatory cytokines by MKP-1 in innate immune responses. Proceedings of the National Academy of Sciences of the United States of America, 103, 2274–2279.PubMedCrossRef
24.
go back to reference Hammer, M., Mages, J., Dietrich, H., Servatius, A., Howells, N., Cato, A. C., et al. (2006). Dual specificity phosphatase 1 (DUSP1) regulates a subset of LPS-induced genes and protects mice from lethal endotoxin shock. Journal of Experimental Medicine, 203(1), 15–20.PubMedCrossRef Hammer, M., Mages, J., Dietrich, H., Servatius, A., Howells, N., Cato, A. C., et al. (2006). Dual specificity phosphatase 1 (DUSP1) regulates a subset of LPS-induced genes and protects mice from lethal endotoxin shock. Journal of Experimental Medicine, 203(1), 15–20.PubMedCrossRef
25.
go back to reference Abraham, S. M., Lawrence, T., Kleiman, A., Warden, P., Medghalchi, M., Tuckermann, J., et al. (2006). Antiinflammatory effects of dexamethasone are partly dependent on induction of dual specificity phosphatase 1. Journal of Experimental Medicine, 203(8), 1883–1889.PubMedCrossRef Abraham, S. M., Lawrence, T., Kleiman, A., Warden, P., Medghalchi, M., Tuckermann, J., et al. (2006). Antiinflammatory effects of dexamethasone are partly dependent on induction of dual specificity phosphatase 1. Journal of Experimental Medicine, 203(8), 1883–1889.PubMedCrossRef
26.
go back to reference Zhao, Q., Wang, X., Nelin, L. D., Yao, Y., Matta, R., Manson, M. E., et al. (2006). MAP kinase phosphatase 1 controls innate immune responses and suppresses endotoxic shock. Journal of Experimental Medicine, 203(1), 131–140.PubMedCrossRef Zhao, Q., Wang, X., Nelin, L. D., Yao, Y., Matta, R., Manson, M. E., et al. (2006). MAP kinase phosphatase 1 controls innate immune responses and suppresses endotoxic shock. Journal of Experimental Medicine, 203(1), 131–140.PubMedCrossRef
27.
go back to reference Wu, J. J., Roth, R. J., Anderson, E. J., Hong, E. G., Lee, M. K., Choi, C. S., et al. (2006). Mice lacking MAP kinase phosphatase-1 have enhanced MAP kinase activity and resistance to diet-induced obesity. Cell Metabolism, 4(1), 61–73.PubMedCrossRef Wu, J. J., Roth, R. J., Anderson, E. J., Hong, E. G., Lee, M. K., Choi, C. S., et al. (2006). Mice lacking MAP kinase phosphatase-1 have enhanced MAP kinase activity and resistance to diet-induced obesity. Cell Metabolism, 4(1), 61–73.PubMedCrossRef
28.
go back to reference Zhang, Y., Blattman, J. N., Kennedy, N. J., Duong, J., Nguyen, T., Wang, Y., et al. (2004). Regulation of innate and adaptive immune responses by MAP kinase phosphatase 5. Nature, 430(7001), 793–797.PubMedCrossRef Zhang, Y., Blattman, J. N., Kennedy, N. J., Duong, J., Nguyen, T., Wang, Y., et al. (2004). Regulation of innate and adaptive immune responses by MAP kinase phosphatase 5. Nature, 430(7001), 793–797.PubMedCrossRef
29.
go back to reference Jeffrey, K. L., Brummer, T., Rolph, M. S., Liu, S. M., Callejas, N. A., Grumont, R. J., et al. (2006). Positive regulation of immune cell function and inflammatory responses by phosphatase PAC-1. Nature Immunology, 7(3), 274–283.PubMedCrossRef Jeffrey, K. L., Brummer, T., Rolph, M. S., Liu, S. M., Callejas, N. A., Grumont, R. J., et al. (2006). Positive regulation of immune cell function and inflammatory responses by phosphatase PAC-1. Nature Immunology, 7(3), 274–283.PubMedCrossRef
30.
go back to reference Li, C., Scott, D. A., Hatch, E., Tian, X., & Mansour, S. L. (2007). Dusp6 (Mkp3) is a negative feedback regulator of FGF-stimulated ERK signaling during mouse development. Development, 134(1), 167–176.PubMedCrossRef Li, C., Scott, D. A., Hatch, E., Tian, X., & Mansour, S. L. (2007). Dusp6 (Mkp3) is a negative feedback regulator of FGF-stimulated ERK signaling during mouse development. Development, 134(1), 167–176.PubMedCrossRef
31.
go back to reference Eblaghie, M. C., Lunn, J. S., Dickinson, R. J., Munsterberg, A. E., Sanz-Ezquerro, J. J., Farrell, E. R., et al. (2003). Negative feedback regulation of FGF signaling levels by Pyst1/MKP3 in chick embryos. Current Biology, 13(12), 1009–1018.PubMedCrossRef Eblaghie, M. C., Lunn, J. S., Dickinson, R. J., Munsterberg, A. E., Sanz-Ezquerro, J. J., Farrell, E. R., et al. (2003). Negative feedback regulation of FGF signaling levels by Pyst1/MKP3 in chick embryos. Current Biology, 13(12), 1009–1018.PubMedCrossRef
32.
go back to reference Christie, G. R., Williams, D. J., Macisaac, F., Dickinson, R. J., Rosewell, I., & Keyse, S. M. (2005). The dual-specificity protein phosphatase DUSP9/MKP-4 is essential for placental function but is not required for normal embryonic development. Molecular and Cellular Biology, 25(18), 8323–8333.PubMedCrossRef Christie, G. R., Williams, D. J., Macisaac, F., Dickinson, R. J., Rosewell, I., & Keyse, S. M. (2005). The dual-specificity protein phosphatase DUSP9/MKP-4 is essential for placental function but is not required for normal embryonic development. Molecular and Cellular Biology, 25(18), 8323–8333.PubMedCrossRef
33.
go back to reference Loda, M., Capodieci, P., Mishra, R., Yao, H., Corless, C., Grigioni, W., et al. (1996). Expression of mitogen-activated protein kinase phosphatase-1 in the early phases of human epithelial carcinogenesis. American Journal of Pathology, 149(5), 1553–1564.PubMed Loda, M., Capodieci, P., Mishra, R., Yao, H., Corless, C., Grigioni, W., et al. (1996). Expression of mitogen-activated protein kinase phosphatase-1 in the early phases of human epithelial carcinogenesis. American Journal of Pathology, 149(5), 1553–1564.PubMed
34.
go back to reference Zhang, L., Zhou, W., Velculescu, V. E., Kern, S. E., Hruban, R. H., Hamilton, S. R., et al. (1997). Gene expression profiles in normal and cancer cells. Science, 276(5316), 1268–1272.PubMedCrossRef Zhang, L., Zhou, W., Velculescu, V. E., Kern, S. E., Hruban, R. H., Hamilton, S. R., et al. (1997). Gene expression profiles in normal and cancer cells. Science, 276(5316), 1268–1272.PubMedCrossRef
35.
go back to reference Emslie, E. A., Jones, T. A., Sheer, D., & Keyse, S. M. (1994). The CL100 gene, which encodes a dual specificity (Tyr/Thr) MAP kinase phosphatase, is highly conserved and maps to human chromosome 5q34. Human Genetics, 93(5), 513–516.PubMedCrossRef Emslie, E. A., Jones, T. A., Sheer, D., & Keyse, S. M. (1994). The CL100 gene, which encodes a dual specificity (Tyr/Thr) MAP kinase phosphatase, is highly conserved and maps to human chromosome 5q34. Human Genetics, 93(5), 513–516.PubMedCrossRef
36.
go back to reference Li, M., Zhou, J. Y., Ge, Y., Matherly, L. H., & Wu, G. S. (2003). The phosphatase MKP1 is a transcriptional target of p53 involved in cell cycle regulation. Journal of Biological Chemistry, 278(42), 41059–41068.PubMedCrossRef Li, M., Zhou, J. Y., Ge, Y., Matherly, L. H., & Wu, G. S. (2003). The phosphatase MKP1 is a transcriptional target of p53 involved in cell cycle regulation. Journal of Biological Chemistry, 278(42), 41059–41068.PubMedCrossRef
37.
go back to reference Keyse, S. M., & Emslie, E. A. (1992). Oxidative stress and heat shock induce a human gene encoding a protein-tyrosine phosphatase. Nature, 359(6396), 644–647.PubMedCrossRef Keyse, S. M., & Emslie, E. A. (1992). Oxidative stress and heat shock induce a human gene encoding a protein-tyrosine phosphatase. Nature, 359(6396), 644–647.PubMedCrossRef
38.
go back to reference Laderoute, K. R., Mendonca, H. L., Calaoagan, J. M., Knapp, A. M., Giaccia, A. J., & Stork, P. J. (1999). Mitogen-activated protein kinase phosphatase-1 (MKP-1) expression is induced by low oxygen conditions found in solid tumor microenvironments. A candidate MKP for the inactivation of hypoxia-inducible stress-activated protein kinase/c-Jun N-terminal protein kinase activity. Journal of Biological Chemistry, 274(18), 12890–12897.PubMedCrossRef Laderoute, K. R., Mendonca, H. L., Calaoagan, J. M., Knapp, A. M., Giaccia, A. J., & Stork, P. J. (1999). Mitogen-activated protein kinase phosphatase-1 (MKP-1) expression is induced by low oxygen conditions found in solid tumor microenvironments. A candidate MKP for the inactivation of hypoxia-inducible stress-activated protein kinase/c-Jun N-terminal protein kinase activity. Journal of Biological Chemistry, 274(18), 12890–12897.PubMedCrossRef
39.
go back to reference Leav, I., Galluzzi, C. M., Ziar, J., Stork, P. J., Ho, S. M., & Loda, M. (1996). Mitogen-activated protein kinase and mitogen-activated kinase phosphatase-1 expression in the Noble rat model of sex hormone-induced prostatic dysplasia and carcinoma. Laboratory Investigation, 75(3), 361–370.PubMed Leav, I., Galluzzi, C. M., Ziar, J., Stork, P. J., Ho, S. M., & Loda, M. (1996). Mitogen-activated protein kinase and mitogen-activated kinase phosphatase-1 expression in the Noble rat model of sex hormone-induced prostatic dysplasia and carcinoma. Laboratory Investigation, 75(3), 361–370.PubMed
40.
go back to reference Magi-Galluzzi, C., Montironi, R., Cangi, M. G., Wishnow, K., & Loda, M. (1998). Mitogen-activated protein kinases and apoptosis in PIN. Virchows Archiv, 432(5), 407–413.PubMedCrossRef Magi-Galluzzi, C., Montironi, R., Cangi, M. G., Wishnow, K., & Loda, M. (1998). Mitogen-activated protein kinases and apoptosis in PIN. Virchows Archiv, 432(5), 407–413.PubMedCrossRef
41.
go back to reference Magi-Galluzzi, C., Mishra, R., Fiorentino, M., Montironi, R., Yao, H., Capodieci, P., et al. (1997). Mitogen-activated protein kinase phosphatase 1 is overexpressed in prostate cancers and is inversely related to apoptosis. Laboratory Investigation, 76(1), 37–51.PubMed Magi-Galluzzi, C., Mishra, R., Fiorentino, M., Montironi, R., Yao, H., Capodieci, P., et al. (1997). Mitogen-activated protein kinase phosphatase 1 is overexpressed in prostate cancers and is inversely related to apoptosis. Laboratory Investigation, 76(1), 37–51.PubMed
42.
go back to reference Srikanth, S., Franklin, C. C., Duke, R. C., & Kraft, R. S. (1999). Human DU145 prostate cancer cells overexpressing mitogen-activated protein kinase phosphatase-1 are resistant to Fas ligand-induced mitochondrial perturbations and cellular apoptosis. Molecular and Cellular Biochemistry, 199(1–2), 169–178.PubMedCrossRef Srikanth, S., Franklin, C. C., Duke, R. C., & Kraft, R. S. (1999). Human DU145 prostate cancer cells overexpressing mitogen-activated protein kinase phosphatase-1 are resistant to Fas ligand-induced mitochondrial perturbations and cellular apoptosis. Molecular and Cellular Biochemistry, 199(1–2), 169–178.PubMedCrossRef
43.
go back to reference Denkert, C., Schmitt, W. D., Berger, S., Reles, A., Pest, S., Siegert, A., et al. (2002). Expression of mitogen-activated protein kinase phosphatase-1 (MKP-1) in primary human ovarian carcinoma. International Journal of Cancer, 102(5), 507–513.CrossRef Denkert, C., Schmitt, W. D., Berger, S., Reles, A., Pest, S., Siegert, A., et al. (2002). Expression of mitogen-activated protein kinase phosphatase-1 (MKP-1) in primary human ovarian carcinoma. International Journal of Cancer, 102(5), 507–513.CrossRef
44.
go back to reference Wang, H. Y., Cheng, Z., & Malbon, C. C. (2003). Overexpression of mitogen-activated protein kinase phosphatases MKP1, MKP2 in human breast cancer. Cancer Letters, 191(2), 229–237.PubMedCrossRef Wang, H. Y., Cheng, Z., & Malbon, C. C. (2003). Overexpression of mitogen-activated protein kinase phosphatases MKP1, MKP2 in human breast cancer. Cancer Letters, 191(2), 229–237.PubMedCrossRef
45.
go back to reference Small, G. W., Shi, Y. Y., Higgins, L. S., & Orlowski, R. Z. (2007). Mitogen-activated protein kinase phosphatase-1 is a mediator of breast cancer chemoresistance. Cancer Research, 67(9), 4459–4466.PubMedCrossRef Small, G. W., Shi, Y. Y., Higgins, L. S., & Orlowski, R. Z. (2007). Mitogen-activated protein kinase phosphatase-1 is a mediator of breast cancer chemoresistance. Cancer Research, 67(9), 4459–4466.PubMedCrossRef
46.
go back to reference Sanchez-Perez, I., Martinez-Gomariz, M., Williams, D., Keyse, S. M., & Perona, R. (2000). CL100/MKP-1 modulates JNK activation and apoptosis in response to cisplatin. Oncogene, 19(45), 5142–5152.PubMedCrossRef Sanchez-Perez, I., Martinez-Gomariz, M., Williams, D., Keyse, S. M., & Perona, R. (2000). CL100/MKP-1 modulates JNK activation and apoptosis in response to cisplatin. Oncogene, 19(45), 5142–5152.PubMedCrossRef
47.
go back to reference Wang, Z., Xu, J., Zhou, J. Y., Liu, Y., & Wu, G. S. (2006). Mitogen-activated protein kinase phosphatase-1 is required for cisplatin resistance. Cancer Research, 66(17), 8870–8877.PubMedCrossRef Wang, Z., Xu, J., Zhou, J. Y., Liu, Y., & Wu, G. S. (2006). Mitogen-activated protein kinase phosphatase-1 is required for cisplatin resistance. Cancer Research, 66(17), 8870–8877.PubMedCrossRef
48.
go back to reference Vicent, S., Garayoa, M., Lopez-Picazo, J. M., Lozano, M. D., Toledo, G., Thunnissen, F. B., et al. (2004). Mitogen-activated protein kinase phosphatase-1 is overexpressed in non-small cell lung cancer and is an independent predictor of outcome in patients. Clinical Cancer Research, 10(11), 3639–3649.PubMedCrossRef Vicent, S., Garayoa, M., Lopez-Picazo, J. M., Lozano, M. D., Toledo, G., Thunnissen, F. B., et al. (2004). Mitogen-activated protein kinase phosphatase-1 is overexpressed in non-small cell lung cancer and is an independent predictor of outcome in patients. Clinical Cancer Research, 10(11), 3639–3649.PubMedCrossRef
49.
go back to reference Lim, E. H., Aggarwal, A., Agasthian, T., Wong, P. S., Tan, C., Sim, E., et al. (2003). Feasibility of using low-volume tissue samples for gene expression profiling of advanced non-small cell lung cancers. Clinical Cancer Research, 9(16 Pt 1), 5980–5987.PubMed Lim, E. H., Aggarwal, A., Agasthian, T., Wong, P. S., Tan, C., Sim, E., et al. (2003). Feasibility of using low-volume tissue samples for gene expression profiling of advanced non-small cell lung cancers. Clinical Cancer Research, 9(16 Pt 1), 5980–5987.PubMed
50.
go back to reference Chattopadhyay, S., Machado-Pinilla, R., Manguan-Garcia, C., Belda-Iniesta, C., Moratilla, C., Cejas, P., et al. (2006). MKP1/CL100 controls tumor growth and sensitivity to cisplatin in non-small-cell lung cancer. Oncogene, 25(23), 3335–3345.PubMedCrossRef Chattopadhyay, S., Machado-Pinilla, R., Manguan-Garcia, C., Belda-Iniesta, C., Moratilla, C., Cejas, P., et al. (2006). MKP1/CL100 controls tumor growth and sensitivity to cisplatin in non-small-cell lung cancer. Oncogene, 25(23), 3335–3345.PubMedCrossRef
51.
go back to reference Small, G. W., Shi, Y. Y., Edmund, N. A., Somasundaram, S., Moore, D. T., & Orlowski, R. Z. (2004). Evidence that mitogen-activated protein kinase phosphatase-1 induction by proteasome inhibitors plays an antiapoptotic role. Molecular Pharmacology, 66(6), 1478–1490.PubMedCrossRef Small, G. W., Shi, Y. Y., Edmund, N. A., Somasundaram, S., Moore, D. T., & Orlowski, R. Z. (2004). Evidence that mitogen-activated protein kinase phosphatase-1 induction by proteasome inhibitors plays an antiapoptotic role. Molecular Pharmacology, 66(6), 1478–1490.PubMedCrossRef
52.
go back to reference Sieben, N. L., Oosting, J., Flanagan, A. M., Prat, J., Roemen, G. M., Kolkman-Uljee, S. M., et al. (2005). Differential gene expression in ovarian tumors reveals Dusp 4 and Serpina 5 as key regulators for benign behavior of serous borderline tumors. Journal of Clinical Oncology, 23(29), 7257–7264.PubMedCrossRef Sieben, N. L., Oosting, J., Flanagan, A. M., Prat, J., Roemen, G. M., Kolkman-Uljee, S. M., et al. (2005). Differential gene expression in ovarian tumors reveals Dusp 4 and Serpina 5 as key regulators for benign behavior of serous borderline tumors. Journal of Clinical Oncology, 23(29), 7257–7264.PubMedCrossRef
53.
go back to reference Yip-Schneider, M. T., Lin, A., & Marshall, M. S. (2001). Pancreatic tumor cells with mutant K-ras suppress ERK activity by MEK-dependent induction of MAP kinase phosphatase-2. Biochemical and Biophysical Research Communications, 280(4), 992–997.PubMedCrossRef Yip-Schneider, M. T., Lin, A., & Marshall, M. S. (2001). Pancreatic tumor cells with mutant K-ras suppress ERK activity by MEK-dependent induction of MAP kinase phosphatase-2. Biochemical and Biophysical Research Communications, 280(4), 992–997.PubMedCrossRef
54.
go back to reference Givant-Horwitz, V., Davidson, B., Goderstad, J. M., Nesland, J. M., Trope, C. G., & Reich, R. (2004). The PAC-1 dual specificity phosphatase predicts poor outcome in serous ovarian carcinoma. Gynecologic Oncology, 93(2), 517–523.PubMedCrossRef Givant-Horwitz, V., Davidson, B., Goderstad, J. M., Nesland, J. M., Trope, C. G., & Reich, R. (2004). The PAC-1 dual specificity phosphatase predicts poor outcome in serous ovarian carcinoma. Gynecologic Oncology, 93(2), 517–523.PubMedCrossRef
55.
go back to reference Kim, S. C., Hahn, J. S., Min, Y. H., Yoo, N. C., Ko, Y. W., & Lee, W. J. (1999). Constitutive activation of extracellular signal-regulated kinase in human acute leukemias: Combined role of activation of MEK, hyperexpression of extracellular signal-regulated kinase, and downregulation of a phosphatase, PAC1. Blood, 93(11), 3893–3899.PubMed Kim, S. C., Hahn, J. S., Min, Y. H., Yoo, N. C., Ko, Y. W., & Lee, W. J. (1999). Constitutive activation of extracellular signal-regulated kinase in human acute leukemias: Combined role of activation of MEK, hyperexpression of extracellular signal-regulated kinase, and downregulation of a phosphatase, PAC1. Blood, 93(11), 3893–3899.PubMed
56.
go back to reference Furukawa, T., Yatsuoka, T., Youssef, E. M., Abe, T., Yokoyama, T., Fukushige, S., et al. (1998). Genomic analysis of DUSP6, a dual specificity MAP kinase phosphatase, in pancreatic cancer. Cytogenetics and Cell Genetics, 82(3–4), 156–159.PubMed Furukawa, T., Yatsuoka, T., Youssef, E. M., Abe, T., Yokoyama, T., Fukushige, S., et al. (1998). Genomic analysis of DUSP6, a dual specificity MAP kinase phosphatase, in pancreatic cancer. Cytogenetics and Cell Genetics, 82(3–4), 156–159.PubMed
57.
go back to reference Warmka, J. K., Mauro, L. J., & Wattenberg, E. V. (2004). Mitogen-activated protein kinase phosphatase-3 is a tumor promoter target in initiated cells that express oncogenic Ras. Journal of Biological Chemistry, 279(32), 33085–33092.PubMedCrossRef Warmka, J. K., Mauro, L. J., & Wattenberg, E. V. (2004). Mitogen-activated protein kinase phosphatase-3 is a tumor promoter target in initiated cells that express oncogenic Ras. Journal of Biological Chemistry, 279(32), 33085–33092.PubMedCrossRef
58.
go back to reference Croonquist, P. A., Linden, M. A., Zhao, F., & Van Ness, B. G. (2003). Gene profiling of a myeloma cell line reveals similarities and unique signatures among IL-6 response, N-ras-activating mutations, and coculture with bone marrow stromal cells. Blood, 102(7), 2581–2592.PubMedCrossRef Croonquist, P. A., Linden, M. A., Zhao, F., & Van Ness, B. G. (2003). Gene profiling of a myeloma cell line reveals similarities and unique signatures among IL-6 response, N-ras-activating mutations, and coculture with bone marrow stromal cells. Blood, 102(7), 2581–2592.PubMedCrossRef
59.
go back to reference Bloethner, S., Chen, B., Hemminki, K., Muller-Berghaus, J., Ugurel, S., Schadendorf, D., et al. (2005). Effect of common B-RAF and N-RAS mutations on global gene expression in melanoma cell lines. Carcinogenesis, 26(7), 1224–1232.PubMedCrossRef Bloethner, S., Chen, B., Hemminki, K., Muller-Berghaus, J., Ugurel, S., Schadendorf, D., et al. (2005). Effect of common B-RAF and N-RAS mutations on global gene expression in melanoma cell lines. Carcinogenesis, 26(7), 1224–1232.PubMedCrossRef
60.
go back to reference Marchetti, S., Gimond, C., Roux, D., Gothie, E., Pouyssegur, J., & Pages, G. (2004). Inducible expression of a MAP kinase phosphatase-3-GFP chimera specifically blunts fibroblast growth and ras-dependent tumor formation in nude mice. Journal of Cellular Physiology, 199(3), 441–450.PubMedCrossRef Marchetti, S., Gimond, C., Roux, D., Gothie, E., Pouyssegur, J., & Pages, G. (2004). Inducible expression of a MAP kinase phosphatase-3-GFP chimera specifically blunts fibroblast growth and ras-dependent tumor formation in nude mice. Journal of Cellular Physiology, 199(3), 441–450.PubMedCrossRef
61.
go back to reference Furukawa, T., Sunamura, M., Motoi, F., Matsuno, S., & Horii, A. (2003). Potential tumor suppressive pathway involving DUSP6/MKP-3 in pancreatic cancer. American Journal of Pathology, 162(6), 1807–1815.PubMed Furukawa, T., Sunamura, M., Motoi, F., Matsuno, S., & Horii, A. (2003). Potential tumor suppressive pathway involving DUSP6/MKP-3 in pancreatic cancer. American Journal of Pathology, 162(6), 1807–1815.PubMed
62.
go back to reference Furukawa, T., Fujisaki, R., Yoshida, Y., Kanai, N., Sunamura, M., Abe, T., et al. (2005). Distinct progression pathways involving the dysfunction of DUSP6/MKP-3 in pancreatic intraepithelial neoplasia and intraductal papillary-mucinous neoplasms of the pancreas. Modern Pathology, 18(8), 1034–1042.PubMedCrossRef Furukawa, T., Fujisaki, R., Yoshida, Y., Kanai, N., Sunamura, M., Abe, T., et al. (2005). Distinct progression pathways involving the dysfunction of DUSP6/MKP-3 in pancreatic intraepithelial neoplasia and intraductal papillary-mucinous neoplasms of the pancreas. Modern Pathology, 18(8), 1034–1042.PubMedCrossRef
63.
go back to reference Xu, S., Furukawa, T., Kanai, N., Sunamura, M., & Horii, A. (2005). Abrogation of DUSP6 by hypermethylation in human pancreatic cancer. Journal of Human Genetics, 50(4), 159–167.PubMedCrossRef Xu, S., Furukawa, T., Kanai, N., Sunamura, M., & Horii, A. (2005). Abrogation of DUSP6 by hypermethylation in human pancreatic cancer. Journal of Human Genetics, 50(4), 159–167.PubMedCrossRef
64.
go back to reference Leach, S. D. (2004). Mouse models of pancreatic cancer: the fur is finally flying!. Cancer Cell, 5(1), 7–11.PubMedCrossRef Leach, S. D. (2004). Mouse models of pancreatic cancer: the fur is finally flying!. Cancer Cell, 5(1), 7–11.PubMedCrossRef
65.
go back to reference Levy-Nissenbaum, O., Sagi-Assif, O., Raanani, P., Avigdor, A., Ben-Bassat, I., & Witz, I. P. (2003). cDNA microarray analysis reveals an overexpression of the dual-specificity MAPK phosphatase PYST2 in acute leukemia. Methods in Enzymology, 366, 103–113.PubMedCrossRef Levy-Nissenbaum, O., Sagi-Assif, O., Raanani, P., Avigdor, A., Ben-Bassat, I., & Witz, I. P. (2003). cDNA microarray analysis reveals an overexpression of the dual-specificity MAPK phosphatase PYST2 in acute leukemia. Methods in Enzymology, 366, 103–113.PubMedCrossRef
66.
go back to reference Levy-Nissenbaum, O., Sagi-Assif, O., Raanani, P., Avigdor, A., Ben-Bassat, I., & Witz, I. P. (2003). Overexpression of the dual-specificity MAPK phosphatase PYST2 in acute leukemia. Cancer Letters, 199(2), 185–192.PubMedCrossRef Levy-Nissenbaum, O., Sagi-Assif, O., Raanani, P., Avigdor, A., Ben-Bassat, I., & Witz, I. P. (2003). Overexpression of the dual-specificity MAPK phosphatase PYST2 in acute leukemia. Cancer Letters, 199(2), 185–192.PubMedCrossRef
67.
go back to reference Levy-Nissenbaum, O., Sagi-Assif, O., Kapon, D., Hantisteanu, S., Burg, T., Raanani, P., et al. (2003). Dual-specificity phosphatase Pyst2-L is constitutively highly expressed in myeloid leukemia and other malignant cells. Oncogene, 22(48), 7649–7660.PubMedCrossRef Levy-Nissenbaum, O., Sagi-Assif, O., Kapon, D., Hantisteanu, S., Burg, T., Raanani, P., et al. (2003). Dual-specificity phosphatase Pyst2-L is constitutively highly expressed in myeloid leukemia and other malignant cells. Oncogene, 22(48), 7649–7660.PubMedCrossRef
68.
go back to reference Muda, M., Boschert, U., Smith, A., Antonsson, B., Gillieron, C., Chabert, C., et al. (1997). Molecular cloning and functional characterization of a novel mitogen-activated protein kinase phosphatase, MKP-4. Journal of Biological Chemistry, 272(8), 5141–5151.PubMedCrossRef Muda, M., Boschert, U., Smith, A., Antonsson, B., Gillieron, C., Chabert, C., et al. (1997). Molecular cloning and functional characterization of a novel mitogen-activated protein kinase phosphatase, MKP-4. Journal of Biological Chemistry, 272(8), 5141–5151.PubMedCrossRef
69.
go back to reference Dickinson, R. J., Williams, D. J., Slack, D. N., Williamson, J., Seternes, O. M., & Keyse, S. M. (2002). Characterization of a murine gene encoding a developmentally regulated cytoplasmic dual-specificity mitogen-activated protein kinase phosphatase. Biochemical Journal, 364(Pt 1), 145–155.PubMed Dickinson, R. J., Williams, D. J., Slack, D. N., Williamson, J., Seternes, O. M., & Keyse, S. M. (2002). Characterization of a murine gene encoding a developmentally regulated cytoplasmic dual-specificity mitogen-activated protein kinase phosphatase. Biochemical Journal, 364(Pt 1), 145–155.PubMed
70.
go back to reference Liu, Y., Lagowski, J., Sundholm, A., Sundberg, A., & Kulesz-Martin, M. (2007). Microtubule disruption and tumor suppression by mitogen-activated protein kinase phosphatase 4. Cancer Research, 67(22), 10711–10719.PubMedCrossRef Liu, Y., Lagowski, J., Sundholm, A., Sundberg, A., & Kulesz-Martin, M. (2007). Microtubule disruption and tumor suppression by mitogen-activated protein kinase phosphatase 4. Cancer Research, 67(22), 10711–10719.PubMedCrossRef
Metadata
Title
Dual-specificity MAP kinase phosphatases (MKPs) and cancer
Author
Stephen M. Keyse
Publication date
01-06-2008
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 2/2008
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-008-9123-1

Other articles of this Issue 2/2008

Cancer and Metastasis Reviews 2/2008 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine