Skip to main content
Top
Published in: Cardiovascular Diabetology 1/2023

Open Access 15-11-2023 | Diabetes-associated Diseases | Review

Diabetic microvascular disease in non-classical beds: the hidden impact beyond the retina, the kidney, and the peripheral nerves

Authors: Dídac Mauricio, Mònica Gratacòs, Josep Franch-Nadal

Published in: Cardiovascular Diabetology | Issue 1/2023

Login to get access

Abstract

Diabetes microangiopathy, a hallmark complication of diabetes, is characterised by structural and functional abnormalities within the intricate network of microvessels beyond well-known and documented target organs, i.e., the retina, kidney, and peripheral nerves. Indeed, an intact microvascular bed is crucial for preserving each organ’s specific functions and achieving physiological balance to meet their respective metabolic demands. Therefore, diabetes-related microvascular dysfunction leads to widespread multiorgan consequences in still-overlooked non-traditional target organs such as the brain, the lung, the bone tissue, the skin, the arterial wall, the heart, or the musculoskeletal system. All these organs are vulnerable to the physiopathological mechanisms that cause microvascular damage in diabetes (i.e., hyperglycaemia-induced oxidative stress, inflammation, and endothelial dysfunction) and collectively contribute to abnormalities in the microvessels’ structure and function, compromising blood flow and tissue perfusion. However, the microcirculatory networks differ between organs due to variations in haemodynamic, vascular architecture, and affected cells, resulting in a spectrum of clinical presentations. The aim of this review is to focus on the multifaceted nature of microvascular impairment in diabetes through available evidence of specific consequences in often overlooked organs. A better understanding of diabetes microangiopathy in non-target organs provides a broader perspective on the systemic nature of the disease, underscoring the importance of recognising the comprehensive range of complications beyond the classic target sites.
Literature
1.
go back to reference Lenasi H. Introductory Chapter: Microcirculation in Health and Disease. In: Microcirculation Revisited Edited by Helena L. Rijeka: IntechOpen; 2016: Ch. 1. Lenasi H. Introductory Chapter: Microcirculation in Health and Disease. In: Microcirculation Revisited Edited by Helena L. Rijeka: IntechOpen; 2016: Ch. 1.
2.
go back to reference Guven G, Hilty MP, Ince C, Microcirculation. Physiology, pathophysiology, and clinical application. Blood Purif. 2020;49(1–2):143–50.PubMedCrossRef Guven G, Hilty MP, Ince C, Microcirculation. Physiology, pathophysiology, and clinical application. Blood Purif. 2020;49(1–2):143–50.PubMedCrossRef
3.
go back to reference Fleischer S, Tavakol DN, Vunjak-Novakovic G. From arteries to capillaries: approaches to engineering human vasculature. Adv Funct Mater. 2020;30(37). Fleischer S, Tavakol DN, Vunjak-Novakovic G. From arteries to capillaries: approaches to engineering human vasculature. Adv Funct Mater. 2020;30(37).
4.
go back to reference Johnson PC. Overview of microcirculation. In: Handbook of Physiology: Microcirculation Edited by Ronald F. Tuma WND, Klaus Ley 2nd edn. San Diego, CA: Academic Press; 2008. Johnson PC. Overview of microcirculation. In: Handbook of Physiology: Microcirculation Edited by Ronald F. Tuma WND, Klaus Ley 2nd edn. San Diego, CA: Academic Press; 2008.
5.
go back to reference Davies MJ, Aroda VR, Collins BS, Gabbay RA, Green J, Maruthur NM, et al. Management of hyperglycemia in type 2 Diabetes, 2022. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2022;45(11):2753–86.PubMedPubMedCentralCrossRef Davies MJ, Aroda VR, Collins BS, Gabbay RA, Green J, Maruthur NM, et al. Management of hyperglycemia in type 2 Diabetes, 2022. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2022;45(11):2753–86.PubMedPubMedCentralCrossRef
6.
go back to reference Horton WB, Barrett EJ. Microvascular Dysfunction in Diabetes Mellitus and Cardiometabolic Disease. Endocr Rev. 2021;42(1):29–55.PubMedCrossRef Horton WB, Barrett EJ. Microvascular Dysfunction in Diabetes Mellitus and Cardiometabolic Disease. Endocr Rev. 2021;42(1):29–55.PubMedCrossRef
7.
go back to reference Barrett EJ, Liu Z, Khamaisi M, King GL, Klein R, Klein BEK, et al. Diabetic microvascular Disease: an endocrine Society Scientific statement. J Clin Endocrinol Metab. 2017;102(12):4343–410.PubMedPubMedCentralCrossRef Barrett EJ, Liu Z, Khamaisi M, King GL, Klein R, Klein BEK, et al. Diabetic microvascular Disease: an endocrine Society Scientific statement. J Clin Endocrinol Metab. 2017;102(12):4343–410.PubMedPubMedCentralCrossRef
9.
go back to reference Brownlee M. Biochemistry and molecular cell biology of diabetic Complications. Nature. 2001;414(6865):813–20.PubMedCrossRef Brownlee M. Biochemistry and molecular cell biology of diabetic Complications. Nature. 2001;414(6865):813–20.PubMedCrossRef
10.
go back to reference Brownlee M. The pathobiology of diabetic Complications: a unifying mechanism. Diabetes. 2005;54(6):1615–25.PubMedCrossRef Brownlee M. The pathobiology of diabetic Complications: a unifying mechanism. Diabetes. 2005;54(6):1615–25.PubMedCrossRef
11.
go back to reference Schalkwijk CG, Stehouwer CDA. Methylglyoxal, a highly reactive dicarbonyl compound, in Diabetes, its vascular Complications, and other Age-Related Diseases. Physiol Rev. 2020;100(1):407–61.PubMedCrossRef Schalkwijk CG, Stehouwer CDA. Methylglyoxal, a highly reactive dicarbonyl compound, in Diabetes, its vascular Complications, and other Age-Related Diseases. Physiol Rev. 2020;100(1):407–61.PubMedCrossRef
12.
go back to reference Stratmann B. Dicarbonyl stress in Diabetic Vascular Disease. Int J Mol Sci 2022;23(11). Stratmann B. Dicarbonyl stress in Diabetic Vascular Disease. Int J Mol Sci 2022;23(11).
13.
go back to reference Takeda Y, Matoba K, Sekiguchi K, Nagai Y, Yokota T, Utsunomiya K et al. Endothelial dysfunction in Diabetes. In: Biomedicines vol. 8; 2020. Takeda Y, Matoba K, Sekiguchi K, Nagai Y, Yokota T, Utsunomiya K et al. Endothelial dysfunction in Diabetes. In: Biomedicines vol. 8; 2020.
14.
go back to reference Tsilibary EC. Microvascular basement membranes in Diabetes Mellitus. J Pathol. 2003;200(4):537–46.PubMedCrossRef Tsilibary EC. Microvascular basement membranes in Diabetes Mellitus. J Pathol. 2003;200(4):537–46.PubMedCrossRef
15.
go back to reference Khalilgharibi N, Mao Y. To form and function: on the role of basement membrane mechanics in tissue development, homeostasis and Disease. Open Biol. 2021;11(2):200360.PubMedPubMedCentralCrossRef Khalilgharibi N, Mao Y. To form and function: on the role of basement membrane mechanics in tissue development, homeostasis and Disease. Open Biol. 2021;11(2):200360.PubMedPubMedCentralCrossRef
16.
go back to reference Tsalamandris S, Antonopoulos AS, Oikonomou E, Papamikroulis G-A, Vogiatzi G, Papaioannou S et al. The Role of Inflammation in Diabetes: Current Concepts and Future Perspectives. European Cardiology Review 2019;14(1):50–9. 2019. Tsalamandris S, Antonopoulos AS, Oikonomou E, Papamikroulis G-A, Vogiatzi G, Papaioannou S et al. The Role of Inflammation in Diabetes: Current Concepts and Future Perspectives. European Cardiology Review 2019;14(1):50–9. 2019.
17.
go back to reference Fadini GP, Albiero M, Bonora BM, Avogaro A. Angiogenic abnormalities in Diabetes Mellitus: mechanistic and clinical aspects. J Clin Endocrinol Metabolism. 2019;104(11):5431–44.CrossRef Fadini GP, Albiero M, Bonora BM, Avogaro A. Angiogenic abnormalities in Diabetes Mellitus: mechanistic and clinical aspects. J Clin Endocrinol Metabolism. 2019;104(11):5431–44.CrossRef
18.
go back to reference Li X, Weber NC, Cohn DM, Hollmann MW, DeVries JH, Hermanides J et al. Effects of Hyperglycemia and Diabetes Mellitus on Coagulation and Hemostasis. J Clin Med. 2021;10(11). Li X, Weber NC, Cohn DM, Hollmann MW, DeVries JH, Hermanides J et al. Effects of Hyperglycemia and Diabetes Mellitus on Coagulation and Hemostasis. J Clin Med. 2021;10(11).
19.
go back to reference Sena CM, Pereira AM, Seiça R. Endothelial dysfunction — a major mediator of diabetic vascular Disease. Biochimica et Biophysica Acta (BBA) - molecular basis of Disease. 2013;1832(12):2216–31. Sena CM, Pereira AM, Seiça R. Endothelial dysfunction — a major mediator of diabetic vascular Disease. Biochimica et Biophysica Acta (BBA) - molecular basis of Disease. 2013;1832(12):2216–31.
20.
go back to reference Stehouwer CDA. Microvascular dysfunction and hyperglycemia: a vicious cycle with widespread consequences. Diabetes. 2018;67(9):1729–41.PubMedCrossRef Stehouwer CDA. Microvascular dysfunction and hyperglycemia: a vicious cycle with widespread consequences. Diabetes. 2018;67(9):1729–41.PubMedCrossRef
21.
go back to reference Chadt A, Al-Hasani H. Glucose transporters in adipose tissue, liver, and skeletal muscle in metabolic health and Disease. Pflügers Archiv - European Journal of Physiology. 2020;472(9):1273–98.PubMedPubMedCentralCrossRef Chadt A, Al-Hasani H. Glucose transporters in adipose tissue, liver, and skeletal muscle in metabolic health and Disease. Pflügers Archiv - European Journal of Physiology. 2020;472(9):1273–98.PubMedPubMedCentralCrossRef
22.
go back to reference Bakker W, Eringa EC, Sipkema P, van Hinsbergh VWM. Endothelial dysfunction and Diabetes: roles of hyperglycemia, impaired insulin signaling and obesity. Cell Tissue Res. 2009;335(1):165–89.PubMedCrossRef Bakker W, Eringa EC, Sipkema P, van Hinsbergh VWM. Endothelial dysfunction and Diabetes: roles of hyperglycemia, impaired insulin signaling and obesity. Cell Tissue Res. 2009;335(1):165–89.PubMedCrossRef
25.
go back to reference Mather A, Pollock C. Glucose handling by the kidney. Kidney Int Suppl. 2011;(120):S1–6. Mather A, Pollock C. Glucose handling by the kidney. Kidney Int Suppl. 2011;(120):S1–6.
26.
go back to reference Li Y, Liu Y, Liu S, Gao M, Wang W, Chen K, et al. Diabetic vascular Diseases: molecular mechanisms and therapeutic strategies. Signal Transduct Target Therapy. 2023;8(1):152.CrossRef Li Y, Liu Y, Liu S, Gao M, Wang W, Chen K, et al. Diabetic vascular Diseases: molecular mechanisms and therapeutic strategies. Signal Transduct Target Therapy. 2023;8(1):152.CrossRef
28.
go back to reference Kadry H, Noorani B, Cucullo L. A blood–brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids and Barriers of the CNS. 2020;17(1):69.PubMedPubMedCentralCrossRef Kadry H, Noorani B, Cucullo L. A blood–brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids and Barriers of the CNS. 2020;17(1):69.PubMedPubMedCentralCrossRef
29.
go back to reference Erdener ŞE, Dalkara T. Small vessels are a big Problem in Neurodegeneration and Neuroprotection. Front Neurol. 2019;10. Erdener ŞE, Dalkara T. Small vessels are a big Problem in Neurodegeneration and Neuroprotection. Front Neurol. 2019;10.
30.
go back to reference Vannucci SJ, Maher F, Simpson IA. Glucose transporter proteins in brain: delivery of glucose to neurons and glia. Glia. 1997;21(1):2–21.PubMedCrossRef Vannucci SJ, Maher F, Simpson IA. Glucose transporter proteins in brain: delivery of glucose to neurons and glia. Glia. 1997;21(1):2–21.PubMedCrossRef
31.
32.
go back to reference Garcia-Serrano AM, Duarte JMN. Brain metabolism alterations in type 2 Diabetes: what did we learn from Diet-Induced Diabetes models? Front Neurosci. 2020;14. Garcia-Serrano AM, Duarte JMN. Brain metabolism alterations in type 2 Diabetes: what did we learn from Diet-Induced Diabetes models? Front Neurosci. 2020;14.
33.
go back to reference Starr JM, Wardlaw J, Ferguson K, MacLullich A, Deary IJ, Marshall I. Increased blood-brain barrier permeability in type II Diabetes demonstrated by gadolinium magnetic resonance imaging. J Neurol Neurosurg Psychiatry. 2003;74(1):70–6.PubMedPubMedCentralCrossRef Starr JM, Wardlaw J, Ferguson K, MacLullich A, Deary IJ, Marshall I. Increased blood-brain barrier permeability in type II Diabetes demonstrated by gadolinium magnetic resonance imaging. J Neurol Neurosurg Psychiatry. 2003;74(1):70–6.PubMedPubMedCentralCrossRef
34.
go back to reference Hawkins BT, Lundeen TF, Norwood KM, Brooks HL, Egleton RD. Increased blood-brain barrier permeability and altered tight junctions in experimental Diabetes in the rat: contribution of hyperglycaemia and matrix metalloproteinases. Diabetologia. 2007;50(1):202–11.PubMedCrossRef Hawkins BT, Lundeen TF, Norwood KM, Brooks HL, Egleton RD. Increased blood-brain barrier permeability and altered tight junctions in experimental Diabetes in the rat: contribution of hyperglycaemia and matrix metalloproteinases. Diabetologia. 2007;50(1):202–11.PubMedCrossRef
35.
go back to reference Díaz-Castro B, Robel S, Mishra A. Astrocyte endfeet in brain function and Pathology: open questions. Annu Rev Neurosci. 2023;46:101–21.PubMedCrossRef Díaz-Castro B, Robel S, Mishra A. Astrocyte endfeet in brain function and Pathology: open questions. Annu Rev Neurosci. 2023;46:101–21.PubMedCrossRef
36.
go back to reference Min LJ, Mogi M, Shudou M, Jing F, Tsukuda K, Ohshima K, et al. Peroxisome proliferator-activated receptor-γ activation with angiotensin II type 1 receptor blockade is pivotal for the prevention of blood-brain barrier impairment and cognitive decline in type 2 diabetic mice. Hypertension. 2012;59(5):1079–88.PubMedCrossRef Min LJ, Mogi M, Shudou M, Jing F, Tsukuda K, Ohshima K, et al. Peroxisome proliferator-activated receptor-γ activation with angiotensin II type 1 receptor blockade is pivotal for the prevention of blood-brain barrier impairment and cognitive decline in type 2 diabetic mice. Hypertension. 2012;59(5):1079–88.PubMedCrossRef
37.
38.
go back to reference Warmke N, Griffin KJ, Cubbon RM. Pericytes in diabetes-associated vascular Disease. J Diabetes Complications. 2016;30(8):1643–50.PubMedCrossRef Warmke N, Griffin KJ, Cubbon RM. Pericytes in diabetes-associated vascular Disease. J Diabetes Complications. 2016;30(8):1643–50.PubMedCrossRef
40.
go back to reference Patrick P, Price TO, Diogo AL, Sheibani N, Banks WA, Shah GN. Topiramate protects pericytes from glucotoxicity: role for mitochondrial CA VA in Cerebromicrovascular Disease in Diabetes. J Endocrinol Diabetes. 2015;2(2). Patrick P, Price TO, Diogo AL, Sheibani N, Banks WA, Shah GN. Topiramate protects pericytes from glucotoxicity: role for mitochondrial CA VA in Cerebromicrovascular Disease in Diabetes. J Endocrinol Diabetes. 2015;2(2).
41.
go back to reference Ferland-McCollough D, Slater S, Richard J, Reni C, Mangialardi G. Pericytes, an overlooked player in vascular pathobiology. Pharmacol Ther. 2017;171:30–42.PubMedPubMedCentralCrossRef Ferland-McCollough D, Slater S, Richard J, Reni C, Mangialardi G. Pericytes, an overlooked player in vascular pathobiology. Pharmacol Ther. 2017;171:30–42.PubMedPubMedCentralCrossRef
42.
go back to reference Wardlaw JM, Smith C, Dichgans M. Mechanisms of sporadic cerebral small vessel Disease: insights from neuroimaging. Lancet Neurol. 2013;12(5):483–97.PubMedCrossRef Wardlaw JM, Smith C, Dichgans M. Mechanisms of sporadic cerebral small vessel Disease: insights from neuroimaging. Lancet Neurol. 2013;12(5):483–97.PubMedCrossRef
43.
go back to reference Gorelick PB, Scuteri A, Black SE, Decarli C, Greenberg SM, Iadecola C, et al. Vascular contributions to cognitive impairment and Dementia: a statement for healthcare professionals from the American heart association/american Stroke association. Stroke. 2011;42(9):2672–713.PubMedPubMedCentralCrossRef Gorelick PB, Scuteri A, Black SE, Decarli C, Greenberg SM, Iadecola C, et al. Vascular contributions to cognitive impairment and Dementia: a statement for healthcare professionals from the American heart association/american Stroke association. Stroke. 2011;42(9):2672–713.PubMedPubMedCentralCrossRef
44.
go back to reference Wardlaw JM, Smith EE, Biessels GJ, Cordonnier C, Fazekas F, Frayne R, et al. Neuroimaging standards for research into small vessel Disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 2013;12(8):822–38.PubMedPubMedCentralCrossRef Wardlaw JM, Smith EE, Biessels GJ, Cordonnier C, Fazekas F, Frayne R, et al. Neuroimaging standards for research into small vessel Disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 2013;12(8):822–38.PubMedPubMedCentralCrossRef
45.
go back to reference Duering M, Biessels GJ, Brodtmann A, Chen C, Cordonnier C, de Leeuw F-E, et al. Neuroimaging standards for research into small vessel Disease–advances since 2013. Lancet Neurol. 2023;22(7):602–18.PubMedCrossRef Duering M, Biessels GJ, Brodtmann A, Chen C, Cordonnier C, de Leeuw F-E, et al. Neuroimaging standards for research into small vessel Disease–advances since 2013. Lancet Neurol. 2023;22(7):602–18.PubMedCrossRef
46.
go back to reference Wang Z, Chen Q, Chen J, Yang N, Zheng K. Risk factors of cerebral small vessel Disease: a systematic review and meta-analysis. Med (Baltim). 2021;100(51):e28229.CrossRef Wang Z, Chen Q, Chen J, Yang N, Zheng K. Risk factors of cerebral small vessel Disease: a systematic review and meta-analysis. Med (Baltim). 2021;100(51):e28229.CrossRef
47.
go back to reference Eriksson MI, Summanen P, Gordin D, Forsblom C, Shams S, Liebkind R et al. Cerebral small-vessel Disease is associated with the severity of diabetic retinopathy in type 1 Diabetes. BMJ Open Diabetes Res Care. 2021;9(1). Eriksson MI, Summanen P, Gordin D, Forsblom C, Shams S, Liebkind R et al. Cerebral small-vessel Disease is associated with the severity of diabetic retinopathy in type 1 Diabetes. BMJ Open Diabetes Res Care. 2021;9(1).
48.
go back to reference Sanahuja J, Alonso N, Diez J, Ortega E, Rubinat E, Traveset A, et al. Increased burden of cerebral small vessel Disease in patients with type 2 Diabetes and retinopathy. Diabetes Care. 2016;39(9):1614–20.PubMedCrossRef Sanahuja J, Alonso N, Diez J, Ortega E, Rubinat E, Traveset A, et al. Increased burden of cerebral small vessel Disease in patients with type 2 Diabetes and retinopathy. Diabetes Care. 2016;39(9):1614–20.PubMedCrossRef
49.
go back to reference Emanuel AL, van Duinkerken E, Wattjes MP, Klein M, Barkhof F, Snoek FJ, et al. The presence of cerebral white matter lesions and lower skin microvascular perfusion predicts lower cognitive performance in type 1 Diabetes patients with retinopathy but not in healthy controls-A longitudinal study. Microcirculation. 2019;26(3):e12530.PubMedPubMedCentralCrossRef Emanuel AL, van Duinkerken E, Wattjes MP, Klein M, Barkhof F, Snoek FJ, et al. The presence of cerebral white matter lesions and lower skin microvascular perfusion predicts lower cognitive performance in type 1 Diabetes patients with retinopathy but not in healthy controls-A longitudinal study. Microcirculation. 2019;26(3):e12530.PubMedPubMedCentralCrossRef
50.
go back to reference Wang DQ, Wang L, Wei MM, Xia XS, Tian XL, Cui XH, et al. Relationship between type 2 Diabetes and White Matter Hyperintensity: a systematic review. Front Endocrinol (Lausanne). 2020;11:595962.PubMedCrossRef Wang DQ, Wang L, Wei MM, Xia XS, Tian XL, Cui XH, et al. Relationship between type 2 Diabetes and White Matter Hyperintensity: a systematic review. Front Endocrinol (Lausanne). 2020;11:595962.PubMedCrossRef
51.
go back to reference Brundel M, Kappelle LJ, Biessels GJ. Brain imaging in type 2 Diabetes. Eur Neuropsychopharmacol. 2014;24(12):1967–81.PubMedCrossRef Brundel M, Kappelle LJ, Biessels GJ. Brain imaging in type 2 Diabetes. Eur Neuropsychopharmacol. 2014;24(12):1967–81.PubMedCrossRef
52.
go back to reference Zhang L, Li X, Wolfe CDA, O’Connell MDL, Wang Y. Diabetes as an Independent risk factor for Stroke recurrence in ischemic Stroke patients: an updated Meta-analysis. Neuroepidemiology. 2021;55(6):427–35.PubMedCrossRef Zhang L, Li X, Wolfe CDA, O’Connell MDL, Wang Y. Diabetes as an Independent risk factor for Stroke recurrence in ischemic Stroke patients: an updated Meta-analysis. Neuroepidemiology. 2021;55(6):427–35.PubMedCrossRef
53.
go back to reference Moulton CD, Costafreda SG, Horton P, Ismail K, Fu CH. Meta-analyses of structural regional cerebral effects in type 1 and type 2 Diabetes. Brain Imaging Behav. 2015;9(4):651–62.PubMedCrossRef Moulton CD, Costafreda SG, Horton P, Ismail K, Fu CH. Meta-analyses of structural regional cerebral effects in type 1 and type 2 Diabetes. Brain Imaging Behav. 2015;9(4):651–62.PubMedCrossRef
54.
go back to reference van Duinkerken E, Ijzerman RG. Cerebral Microvascular Disease in Diabetes – Clinical and Research. In: Microvascular Disease in Diabetes 2020: 221 – 46. van Duinkerken E, Ijzerman RG. Cerebral Microvascular Disease in Diabetes – Clinical and Research. In: Microvascular Disease in Diabetes 2020: 221 – 46.
55.
go back to reference van Sloten TT, Sedaghat S, Carnethon MR, Launer LJ, Stehouwer CDA. Cerebral microvascular Complications of type 2 Diabetes: stroke, cognitive dysfunction, and depression. The Lancet Diabetes & Endocrinology. 2020;8(4):325–36.CrossRef van Sloten TT, Sedaghat S, Carnethon MR, Launer LJ, Stehouwer CDA. Cerebral microvascular Complications of type 2 Diabetes: stroke, cognitive dysfunction, and depression. The Lancet Diabetes & Endocrinology. 2020;8(4):325–36.CrossRef
56.
go back to reference Woerdeman J, van Duinkerken E, Wattjes MP, Barkhof F, Snoek FJ, Moll AC, et al. Proliferative retinopathy in type 1 Diabetes is associated with cerebral microbleeds, which is part of generalized microangiopathy. Diabetes Care. 2014;37(4):1165–8.PubMedCrossRef Woerdeman J, van Duinkerken E, Wattjes MP, Barkhof F, Snoek FJ, Moll AC, et al. Proliferative retinopathy in type 1 Diabetes is associated with cerebral microbleeds, which is part of generalized microangiopathy. Diabetes Care. 2014;37(4):1165–8.PubMedCrossRef
57.
go back to reference Zhou JB, Tang XY, Han YP, Luo FQ, Cardoso MA, Qi L. Prediabetes and structural brain abnormalities: evidence from observational studies. Diabetes Metab Res Rev. 2020;36(4):e3261.PubMedCrossRef Zhou JB, Tang XY, Han YP, Luo FQ, Cardoso MA, Qi L. Prediabetes and structural brain abnormalities: evidence from observational studies. Diabetes Metab Res Rev. 2020;36(4):e3261.PubMedCrossRef
58.
go back to reference Xue M, Xu W, Ou Y-N, Cao X-P, Tan M-S, Tan L, et al. Diabetes Mellitus and risks of cognitive impairment and Dementia: a systematic review and meta-analysis of 144 prospective studies. Ageing Res Rev. 2019;55:100944.PubMedCrossRef Xue M, Xu W, Ou Y-N, Cao X-P, Tan M-S, Tan L, et al. Diabetes Mellitus and risks of cognitive impairment and Dementia: a systematic review and meta-analysis of 144 prospective studies. Ageing Res Rev. 2019;55:100944.PubMedCrossRef
59.
go back to reference Omana H, Madou E, Montero-Odasso M, Payne M, Viana R, Hunter S. The Effect of Dual-Task Testing on Balance and Gait performance in adults with type 1 or type 2 Diabetes Mellitus: a systematic review. Curr Diabetes Rev. 2021;17(5):e011020186496.PubMedCrossRef Omana H, Madou E, Montero-Odasso M, Payne M, Viana R, Hunter S. The Effect of Dual-Task Testing on Balance and Gait performance in adults with type 1 or type 2 Diabetes Mellitus: a systematic review. Curr Diabetes Rev. 2021;17(5):e011020186496.PubMedCrossRef
60.
go back to reference Gao Y, Li D, Lin J, Thomas AM, Miao J, Chen D et al. Cerebral small vessel Disease: pathological mechanisms and potential therapeutic targets. Front Aging Neurosci. 2022;14. Gao Y, Li D, Lin J, Thomas AM, Miao J, Chen D et al. Cerebral small vessel Disease: pathological mechanisms and potential therapeutic targets. Front Aging Neurosci. 2022;14.
61.
go back to reference Ali S, Stone MA, Peters JL, Davies MJ, Khunti K. The prevalence of co-morbid depression in adults with type 2 Diabetes: a systematic review and meta-analysis. Diabet Med. 2006;23(11):1165–73.PubMedCrossRef Ali S, Stone MA, Peters JL, Davies MJ, Khunti K. The prevalence of co-morbid depression in adults with type 2 Diabetes: a systematic review and meta-analysis. Diabet Med. 2006;23(11):1165–73.PubMedCrossRef
62.
go back to reference Nouwen A, Adriaanse MC, van Dam K, Iversen MM, Viechtbauer W, Peyrot M, et al. Longitudinal associations between depression and Diabetes Complications: a systematic review and meta-analysis. Diabet Med. 2019;36(12):1562–72.PubMedCrossRef Nouwen A, Adriaanse MC, van Dam K, Iversen MM, Viechtbauer W, Peyrot M, et al. Longitudinal associations between depression and Diabetes Complications: a systematic review and meta-analysis. Diabet Med. 2019;36(12):1562–72.PubMedCrossRef
63.
go back to reference Rensma SP, van Sloten TT, Ding J, Sigurdsson S, Stehouwer CDA, Gudnason V, et al. Type 2 Diabetes, change in depressive symptoms over Time, and Cerebral Small Vessel Disease: Longitudinal Data of the AGES-Reykjavik Study. Diabetes Care. 2020;43(8):1781–7.PubMedPubMedCentralCrossRef Rensma SP, van Sloten TT, Ding J, Sigurdsson S, Stehouwer CDA, Gudnason V, et al. Type 2 Diabetes, change in depressive symptoms over Time, and Cerebral Small Vessel Disease: Longitudinal Data of the AGES-Reykjavik Study. Diabetes Care. 2020;43(8):1781–7.PubMedPubMedCentralCrossRef
64.
go back to reference Aune D, Schlesinger S, Mahamat-Saleh Y, Zheng B, Udeh-Momoh CT, Middleton LT. Diabetes Mellitus, prediabetes and the risk of Parkinson’s Disease: a systematic review and meta-analysis of 15 cohort studies with 29.9 million participants and 86,345 cases. Eur J Epidemiol. 2023;38(6):591–604.PubMedPubMedCentralCrossRef Aune D, Schlesinger S, Mahamat-Saleh Y, Zheng B, Udeh-Momoh CT, Middleton LT. Diabetes Mellitus, prediabetes and the risk of Parkinson’s Disease: a systematic review and meta-analysis of 15 cohort studies with 29.9 million participants and 86,345 cases. Eur J Epidemiol. 2023;38(6):591–604.PubMedPubMedCentralCrossRef
65.
go back to reference Zhong Q, Wang S. Association between diabetes mellitus, prediabetes and risk, disease progression of Parkinson’s disease: A systematic review and meta-analysis. Front Aging Neurosci. 2023;15. Zhong Q, Wang S. Association between diabetes mellitus, prediabetes and risk, disease progression of Parkinson’s disease: A systematic review and meta-analysis. Front Aging Neurosci. 2023;15.
66.
go back to reference Cereda E, Barichella M, Pedrolli C, Klersy C, Cassani E, Caccialanza R, et al. Diabetes and risk of Parkinson’s Disease: a systematic review and meta-analysis. Diabetes Care. 2011;34(12):2614–23.PubMedPubMedCentralCrossRef Cereda E, Barichella M, Pedrolli C, Klersy C, Cassani E, Caccialanza R, et al. Diabetes and risk of Parkinson’s Disease: a systematic review and meta-analysis. Diabetes Care. 2011;34(12):2614–23.PubMedPubMedCentralCrossRef
67.
go back to reference Mauricio D, Vlacho B, de la Barrot J, Mundet-Tudurí X, Real J, Kulisevsky J, et al. Associations between Diabetic Retinopathy and Parkinson’s Disease: results from the Catalonian Primary Care Cohort Study. Front Med (Lausanne). 2021;8:800973.PubMedCrossRef Mauricio D, Vlacho B, de la Barrot J, Mundet-Tudurí X, Real J, Kulisevsky J, et al. Associations between Diabetic Retinopathy and Parkinson’s Disease: results from the Catalonian Primary Care Cohort Study. Front Med (Lausanne). 2021;8:800973.PubMedCrossRef
71.
go back to reference Zhang L, Jiang F, Xie Y, Mo Y, Zhang X, Liu C. Diabetic endothelial microangiopathy and pulmonary dysfunction. Front Endocrinol (Lausanne). 2023;14:1073878.PubMedCrossRef Zhang L, Jiang F, Xie Y, Mo Y, Zhang X, Liu C. Diabetic endothelial microangiopathy and pulmonary dysfunction. Front Endocrinol (Lausanne). 2023;14:1073878.PubMedCrossRef
72.
go back to reference Shi Y, Vanhoutte PM. Macro- and microvascular endothelial dysfunction in Diabetes. J Diabetes. 2017;9(5):434–49.PubMedCrossRef Shi Y, Vanhoutte PM. Macro- and microvascular endothelial dysfunction in Diabetes. J Diabetes. 2017;9(5):434–49.PubMedCrossRef
74.
go back to reference Kodolova IM, Lysenko LV, Saltykov BB. [Changes in the lungs in Diabetes Mellitus]. Arkh Patol. 1982;44(7):35–40.PubMed Kodolova IM, Lysenko LV, Saltykov BB. [Changes in the lungs in Diabetes Mellitus]. Arkh Patol. 1982;44(7):35–40.PubMed
75.
go back to reference Weynand B, Jonckheere A, Frans A, Rahier J. Diabetes Mellitus induces a thickening of the pulmonary basal lamina. Respiration. 1999;66(1):14–9.PubMedCrossRef Weynand B, Jonckheere A, Frans A, Rahier J. Diabetes Mellitus induces a thickening of the pulmonary basal lamina. Respiration. 1999;66(1):14–9.PubMedCrossRef
76.
go back to reference Vracko R, Thorning D, Huang TW. Basal lamina of alveolar epithelium and capillaries: quantitative changes with aging and in Diabetes Mellitus. Am Rev Respir Dis. 1979;120(5):973–83.PubMed Vracko R, Thorning D, Huang TW. Basal lamina of alveolar epithelium and capillaries: quantitative changes with aging and in Diabetes Mellitus. Am Rev Respir Dis. 1979;120(5):973–83.PubMed
77.
go back to reference Fariña J, Furió V, Fernandez-Aceñero MJ, Muzas MA. Nodular fibrosis of the lung in Diabetes Mellitus. Virchows Arch. 1995;427(1):61–3.PubMedCrossRef Fariña J, Furió V, Fernandez-Aceñero MJ, Muzas MA. Nodular fibrosis of the lung in Diabetes Mellitus. Virchows Arch. 1995;427(1):61–3.PubMedCrossRef
78.
go back to reference Kida K, Utsuyama M, Takizawa T, Thurlbeck WM. Changes in lung morphologic features and elasticity caused by streptozotocin-induced Diabetes Mellitus in growing rats. Am Rev Respir Dis. 1983;128(1):125–31.PubMedCrossRef Kida K, Utsuyama M, Takizawa T, Thurlbeck WM. Changes in lung morphologic features and elasticity caused by streptozotocin-induced Diabetes Mellitus in growing rats. Am Rev Respir Dis. 1983;128(1):125–31.PubMedCrossRef
79.
go back to reference Ofulue AF, Kida K, Thurlbeck WM. Experimental Diabetes and the lung. I. changes in growth, morphometry, and biochemistry. Am Rev Respir Dis. 1988;137(1):162–6.PubMedCrossRef Ofulue AF, Kida K, Thurlbeck WM. Experimental Diabetes and the lung. I. changes in growth, morphometry, and biochemistry. Am Rev Respir Dis. 1988;137(1):162–6.PubMedCrossRef
80.
go back to reference Ofulue AF, Thurlbeck WM. Experimental Diabetes and the lung. II. In vivo connective tissue metabolism. Am Rev Respir Dis. 1988;138(2):284–9.PubMedCrossRef Ofulue AF, Thurlbeck WM. Experimental Diabetes and the lung. II. In vivo connective tissue metabolism. Am Rev Respir Dis. 1988;138(2):284–9.PubMedCrossRef
81.
go back to reference Eren G, Cukurova Z, Hergunsel O, Demir G, Kucur M, Uslu E, et al. Protective effect of the nuclear factor kappa B inhibitor pyrrolidine dithiocarbamate in lung injury in rats with streptozotocin-induced Diabetes. Respiration. 2010;79(5):402–10.PubMedCrossRef Eren G, Cukurova Z, Hergunsel O, Demir G, Kucur M, Uslu E, et al. Protective effect of the nuclear factor kappa B inhibitor pyrrolidine dithiocarbamate in lung injury in rats with streptozotocin-induced Diabetes. Respiration. 2010;79(5):402–10.PubMedCrossRef
82.
go back to reference Popov D, Hasu M, Costache G, Stern D, Simionescu M. Capillary and aortic endothelia interact in situ with nonenzymatically glycated albumin and develop specific alterations in early experimental Diabetes. Acta Diabetol. 1997;34(4):285–93.PubMedCrossRef Popov D, Hasu M, Costache G, Stern D, Simionescu M. Capillary and aortic endothelia interact in situ with nonenzymatically glycated albumin and develop specific alterations in early experimental Diabetes. Acta Diabetol. 1997;34(4):285–93.PubMedCrossRef
83.
go back to reference Watanabe K, Senju S, Toyoshima H, Yoshida M. Thickness of the basement membrane of bronchial epithelial cells in lung Diseases as determined by transbronchial biopsy. Respir Med. 1997;91(7):406–10.PubMedCrossRef Watanabe K, Senju S, Toyoshima H, Yoshida M. Thickness of the basement membrane of bronchial epithelial cells in lung Diseases as determined by transbronchial biopsy. Respir Med. 1997;91(7):406–10.PubMedCrossRef
84.
go back to reference Klein OL, Krishnan JA, Glick S, Smith LJ. Systematic review of the association between lung function and type 2 Diabetes Mellitus. Diabet Med. 2010;27(9):977–87.PubMedCrossRef Klein OL, Krishnan JA, Glick S, Smith LJ. Systematic review of the association between lung function and type 2 Diabetes Mellitus. Diabet Med. 2010;27(9):977–87.PubMedCrossRef
85.
go back to reference van den Borst B, Gosker HR, Zeegers MP, Schols AM. Pulmonary function in Diabetes: a metaanalysis. Chest. 2010;138(2):393–406.PubMedCrossRef van den Borst B, Gosker HR, Zeegers MP, Schols AM. Pulmonary function in Diabetes: a metaanalysis. Chest. 2010;138(2):393–406.PubMedCrossRef
86.
go back to reference Saini M, Kulandaivelan S, Bansal VK, Saini V, Sharma S, Kaur J, et al. Pulmonary Pathology among patients with type 2 Diabetes Mellitus: an updated systematic review and Meta-analysis. Curr Diabetes Rev. 2020;16(7):759–69.PubMedCrossRef Saini M, Kulandaivelan S, Bansal VK, Saini V, Sharma S, Kaur J, et al. Pulmonary Pathology among patients with type 2 Diabetes Mellitus: an updated systematic review and Meta-analysis. Curr Diabetes Rev. 2020;16(7):759–69.PubMedCrossRef
87.
go back to reference Díez-Manglano J, Asìn Samper U. Type-1 Diabetes and pulmonary function tests. A meta-analysis. Respir Med. 2022;203:106991.PubMedCrossRef Díez-Manglano J, Asìn Samper U. Type-1 Diabetes and pulmonary function tests. A meta-analysis. Respir Med. 2022;203:106991.PubMedCrossRef
89.
go back to reference Kaparianos A, Argyropoulou E, Sampsonas F, Karkoulias K, Tsiamita M, Spiropoulos K. Pulmonary Complications in Diabetes Mellitus. Chron Respir Dis. 2008;5(2):101–8.PubMedCrossRef Kaparianos A, Argyropoulou E, Sampsonas F, Karkoulias K, Tsiamita M, Spiropoulos K. Pulmonary Complications in Diabetes Mellitus. Chron Respir Dis. 2008;5(2):101–8.PubMedCrossRef
90.
go back to reference Li W, Ning Y, Ma Y, Lin X, Man S, Wang B, et al. Association of lung function and blood glucose level: a 10-year study in China. BMC Pulm Med. 2022;22(1):444.PubMedPubMedCentralCrossRef Li W, Ning Y, Ma Y, Lin X, Man S, Wang B, et al. Association of lung function and blood glucose level: a 10-year study in China. BMC Pulm Med. 2022;22(1):444.PubMedPubMedCentralCrossRef
91.
go back to reference Rajput S, Parashar R, Sharma JP, Raghuwanshi P, Pakhare AP, Joshi R, et al. Assessment of Pulmonary functions and dysfunctions in type II Diabetes Mellitus: a comparative cross-sectional study. Cureus. 2023;15(2):e35081.PubMedPubMedCentral Rajput S, Parashar R, Sharma JP, Raghuwanshi P, Pakhare AP, Joshi R, et al. Assessment of Pulmonary functions and dysfunctions in type II Diabetes Mellitus: a comparative cross-sectional study. Cureus. 2023;15(2):e35081.PubMedPubMedCentral
92.
go back to reference Maan HB, Meo SA, Al Rouq F, Meo IMU, Gacuan ME, Alkhalifah JM. Effect of Glycated Hemoglobin (HbA1c) and duration of Disease on Lung functions in type 2 Diabetic patients. Int J Environ Res Public Health. 2021;18(13). Maan HB, Meo SA, Al Rouq F, Meo IMU, Gacuan ME, Alkhalifah JM. Effect of Glycated Hemoglobin (HbA1c) and duration of Disease on Lung functions in type 2 Diabetic patients. Int J Environ Res Public Health. 2021;18(13).
93.
go back to reference Visca D, Pignatti P, Spanevello A, Lucini E, La Rocca E. Relationship between Diabetes and Respiratory Diseases—clinical and therapeutic aspects. Pharmacol Res. 2018;137:230–5.PubMedCrossRef Visca D, Pignatti P, Spanevello A, Lucini E, La Rocca E. Relationship between Diabetes and Respiratory Diseases—clinical and therapeutic aspects. Pharmacol Res. 2018;137:230–5.PubMedCrossRef
94.
go back to reference Ehrlich SF, Quesenberry CP Jr., Van Den Eeden SK, Shan J, Ferrara A. Patients diagnosed with Diabetes are at increased risk for Asthma, Chronic Obstructive Pulmonary Disease, pulmonary fibrosis, and Pneumonia but not Lung cancer. Diabetes Care. 2010;33(1):55–60.PubMedCrossRef Ehrlich SF, Quesenberry CP Jr., Van Den Eeden SK, Shan J, Ferrara A. Patients diagnosed with Diabetes are at increased risk for Asthma, Chronic Obstructive Pulmonary Disease, pulmonary fibrosis, and Pneumonia but not Lung cancer. Diabetes Care. 2010;33(1):55–60.PubMedCrossRef
95.
go back to reference Foe-Essomba JR, Kenmoe S, Tchatchouang S, Ebogo-Belobo JT, Mbaga DS, Kengne-Ndé C, et al. Diabetes Mellitus and Tuberculosis, a systematic review and meta-analysis with sensitivity analysis for studies comparable for confounders. PLoS ONE. 2021;16(12):e0261246.PubMedPubMedCentralCrossRef Foe-Essomba JR, Kenmoe S, Tchatchouang S, Ebogo-Belobo JT, Mbaga DS, Kengne-Ndé C, et al. Diabetes Mellitus and Tuberculosis, a systematic review and meta-analysis with sensitivity analysis for studies comparable for confounders. PLoS ONE. 2021;16(12):e0261246.PubMedPubMedCentralCrossRef
96.
go back to reference Antonio-Arques V, Caylà JA, Real J, Moreno-Martinez A, Orcau À, Mauricio D et al. Glycemic control and the risk of Tuberculosis in patients with Diabetes: a cohort study in a Mediterranean city. Front Public Health. 2022;10. Antonio-Arques V, Caylà JA, Real J, Moreno-Martinez A, Orcau À, Mauricio D et al. Glycemic control and the risk of Tuberculosis in patients with Diabetes: a cohort study in a Mediterranean city. Front Public Health. 2022;10.
97.
go back to reference Antonio-Arques V, Franch-Nadal J, Moreno-Martinez A, Real J, Orcau À, Mauricio D et al. Subjects with Diabetes Mellitus are at increased risk for developing Tuberculosis: a Cohort Study in an Inner-City District of Barcelona (Spain). Front Public Health. 2022;10. Antonio-Arques V, Franch-Nadal J, Moreno-Martinez A, Real J, Orcau À, Mauricio D et al. Subjects with Diabetes Mellitus are at increased risk for developing Tuberculosis: a Cohort Study in an Inner-City District of Barcelona (Spain). Front Public Health. 2022;10.
98.
go back to reference Filipowska J, Tomaszewski KA, Niedźwiedzki Ł, Walocha JA, Niedźwiedzki T. The role of vasculature in bone development, regeneration and proper systemic functioning. Angiogenesis. 2017;20(3):291–302.PubMedPubMedCentralCrossRef Filipowska J, Tomaszewski KA, Niedźwiedzki Ł, Walocha JA, Niedźwiedzki T. The role of vasculature in bone development, regeneration and proper systemic functioning. Angiogenesis. 2017;20(3):291–302.PubMedPubMedCentralCrossRef
99.
101.
go back to reference Prisby RD. The clinical relevance of the bone vascular system: age-related implications. Clin Rev Bone Miner Metab. 2019;17(1):48–62.CrossRef Prisby RD. The clinical relevance of the bone vascular system: age-related implications. Clin Rev Bone Miner Metab. 2019;17(1):48–62.CrossRef
102.
go back to reference Kumari C, Yagoub G, Ashfaque M, Jawed S, Hamid P. Consequences of Diabetes Mellitus in Bone Health. Traditional Rev Cureus. 2021;13(3):e13820. Kumari C, Yagoub G, Ashfaque M, Jawed S, Hamid P. Consequences of Diabetes Mellitus in Bone Health. Traditional Rev Cureus. 2021;13(3):e13820.
103.
go back to reference Sundararaghavan V, Mazur MM, Evans B, Liu J, Ebraheim NA. Diabetes and bone health: latest evidence and clinical implications. Ther Adv Musculoskelet Dis. 2017;9(3):67–74.PubMedPubMedCentralCrossRef Sundararaghavan V, Mazur MM, Evans B, Liu J, Ebraheim NA. Diabetes and bone health: latest evidence and clinical implications. Ther Adv Musculoskelet Dis. 2017;9(3):67–74.PubMedPubMedCentralCrossRef
104.
go back to reference Romero-Díaz C, Duarte-Montero D, Gutiérrez-Romero SA, Mendivil CO. Diabetes and bone fragility. Diabetes Ther. 2021;12(1):71–86.PubMedCrossRef Romero-Díaz C, Duarte-Montero D, Gutiérrez-Romero SA, Mendivil CO. Diabetes and bone fragility. Diabetes Ther. 2021;12(1):71–86.PubMedCrossRef
105.
go back to reference Shanbhogue VV, Hansen S, Frost M, Brixen K, Hermann AP. Bone Disease in Diabetes: another manifestation of microvascular Disease? Lancet Diabetes Endocrinol. 2017;5(10):827–38.PubMedCrossRef Shanbhogue VV, Hansen S, Frost M, Brixen K, Hermann AP. Bone Disease in Diabetes: another manifestation of microvascular Disease? Lancet Diabetes Endocrinol. 2017;5(10):827–38.PubMedCrossRef
106.
go back to reference Cavati G, Pirrotta F, Merlotti D, Ceccarelli E, Calabrese M, Gennari L et al. Role of Advanced Glycation End-products and oxidative stress in type-2-diabetes-induced bone fragility and implications on fracture risk stratification. Antioxid (Basel). 2023;12(4). Cavati G, Pirrotta F, Merlotti D, Ceccarelli E, Calabrese M, Gennari L et al. Role of Advanced Glycation End-products and oxidative stress in type-2-diabetes-induced bone fragility and implications on fracture risk stratification. Antioxid (Basel). 2023;12(4).
107.
go back to reference Fajardo RJ. Is Diabetic skeletal fragility Associated with Microvascular Complications in Bone? Curr Osteoporos Rep. 2017;15(1):1–8.PubMedCrossRef Fajardo RJ. Is Diabetic skeletal fragility Associated with Microvascular Complications in Bone? Curr Osteoporos Rep. 2017;15(1):1–8.PubMedCrossRef
108.
go back to reference Oikawa A, Siragusa M, Quaini F, Mangialardi G, Katare RG, Caporali A, et al. Diabetes Mellitus induces bone marrow microangiopathy. Arterioscler Thromb Vasc Biol. 2010;30(3):498–508.PubMedCrossRef Oikawa A, Siragusa M, Quaini F, Mangialardi G, Katare RG, Caporali A, et al. Diabetes Mellitus induces bone marrow microangiopathy. Arterioscler Thromb Vasc Biol. 2010;30(3):498–508.PubMedCrossRef
109.
go back to reference Mangialardi G, Ferland-McCollough D, Maselli D, Santopaolo M, Cordaro A, Spinetti G, et al. Bone marrow pericyte dysfunction in individuals with type 2 Diabetes. Diabetologia. 2019;62(7):1275–90.PubMedPubMedCentralCrossRef Mangialardi G, Ferland-McCollough D, Maselli D, Santopaolo M, Cordaro A, Spinetti G, et al. Bone marrow pericyte dysfunction in individuals with type 2 Diabetes. Diabetologia. 2019;62(7):1275–90.PubMedPubMedCentralCrossRef
110.
go back to reference Spinetti G, Cordella D, Fortunato O, Sangalli E, Losa S, Gotti A, et al. Global remodeling of the vascular stem cell niche in bone marrow of diabetic patients: implication of the microRNA-155/FOXO3a signaling pathway. Circ Res. 2013;112(3):510–22.PubMedCrossRef Spinetti G, Cordella D, Fortunato O, Sangalli E, Losa S, Gotti A, et al. Global remodeling of the vascular stem cell niche in bone marrow of diabetic patients: implication of the microRNA-155/FOXO3a signaling pathway. Circ Res. 2013;112(3):510–22.PubMedCrossRef
111.
go back to reference Orlandi A, Chavakis E, Seeger F, Tjwa M, Zeiher AM, Dimmeler S. Long-term Diabetes impairs repopulation of hematopoietic progenitor cells and dysregulates the cytokine expression in the bone marrow microenvironment in mice. Basic Res Cardiol. 2010;105(6):703–12.PubMedCrossRef Orlandi A, Chavakis E, Seeger F, Tjwa M, Zeiher AM, Dimmeler S. Long-term Diabetes impairs repopulation of hematopoietic progenitor cells and dysregulates the cytokine expression in the bone marrow microenvironment in mice. Basic Res Cardiol. 2010;105(6):703–12.PubMedCrossRef
112.
go back to reference Shen Y, Zhang Y, Zhou Z, Wang J, Han D, Sun J, et al. Dysfunction of macrophages leads to diabetic bone regeneration deficiency. Front Immunol. 2022;13:990457.PubMedPubMedCentralCrossRef Shen Y, Zhang Y, Zhou Z, Wang J, Han D, Sun J, et al. Dysfunction of macrophages leads to diabetic bone regeneration deficiency. Front Immunol. 2022;13:990457.PubMedPubMedCentralCrossRef
113.
go back to reference Zhao J, Liang G, Luo M, Yang W, Xu N, Luo M, et al. Influence of type 2 Diabetes microangiopathy on bone mineral density and bone metabolism: a meta-analysis. Heliyon. 2022;8(10):e11001.PubMedPubMedCentralCrossRef Zhao J, Liang G, Luo M, Yang W, Xu N, Luo M, et al. Influence of type 2 Diabetes microangiopathy on bone mineral density and bone metabolism: a meta-analysis. Heliyon. 2022;8(10):e11001.PubMedPubMedCentralCrossRef
114.
go back to reference Varela A, Jolette J. Bone toolbox: biomarkers, Imaging Tools, Biomechanics, and Histomorphometry. Toxicol Pathol. 2018;46(5):511–29.PubMedCrossRef Varela A, Jolette J. Bone toolbox: biomarkers, Imaging Tools, Biomechanics, and Histomorphometry. Toxicol Pathol. 2018;46(5):511–29.PubMedCrossRef
115.
go back to reference Murray CE, Coleman CM. Impact of Diabetes Mellitus on Bone Health. Int J Mol Sci. 2019;20(19). Murray CE, Coleman CM. Impact of Diabetes Mellitus on Bone Health. Int J Mol Sci. 2019;20(19).
116.
go back to reference Tanios M, Brickman B, Cage E, Abbas K, Smith C, Atallah M, et al. Diabetes and impaired fracture Healing: a narrative review of recent literature. Curr Osteoporos Rep. 2022;20(5):229–39.PubMedCrossRef Tanios M, Brickman B, Cage E, Abbas K, Smith C, Atallah M, et al. Diabetes and impaired fracture Healing: a narrative review of recent literature. Curr Osteoporos Rep. 2022;20(5):229–39.PubMedCrossRef
117.
go back to reference Janghorbani M, Van Dam RM, Willett WC, Hu FB. Systematic review of type 1 and type 2 Diabetes Mellitus and Risk of Fracture. Am J Epidemiol. 2007;166(5):495–505.PubMedCrossRef Janghorbani M, Van Dam RM, Willett WC, Hu FB. Systematic review of type 1 and type 2 Diabetes Mellitus and Risk of Fracture. Am J Epidemiol. 2007;166(5):495–505.PubMedCrossRef
118.
go back to reference Shah VN, Shah CS, Snell-Bergeon JK. Type 1 Diabetes and risk of fracture: meta-analysis and review of the literature. Diabet Med. 2015;32(9):1134–42.PubMedPubMedCentralCrossRef Shah VN, Shah CS, Snell-Bergeon JK. Type 1 Diabetes and risk of fracture: meta-analysis and review of the literature. Diabet Med. 2015;32(9):1134–42.PubMedPubMedCentralCrossRef
119.
go back to reference Fan Y, Wei F, Lang Y, Liu Y. Diabetes Mellitus and risk of hip fractures: a meta-analysis. Osteoporos Int. 2016;27(1):219–28.PubMedCrossRef Fan Y, Wei F, Lang Y, Liu Y. Diabetes Mellitus and risk of hip fractures: a meta-analysis. Osteoporos Int. 2016;27(1):219–28.PubMedCrossRef
120.
go back to reference Hao W, Ying B, Qian X, Jian-Ling D. Diabetes Mellitus and the risk of fractures at specific sites: a meta-analysis. BMJ Open. 2019;9(1):e024067.CrossRef Hao W, Ying B, Qian X, Jian-Ling D. Diabetes Mellitus and the risk of fractures at specific sites: a meta-analysis. BMJ Open. 2019;9(1):e024067.CrossRef
121.
go back to reference Dou J, Wang J, Zhang Q. Differences in the roles of types 1 and 2 Diabetes in the susceptibility to the risk of fracture: a systematic review and meta-analysis. Diabetol Metab Syndr. 2021;13(1):84.PubMedPubMedCentralCrossRef Dou J, Wang J, Zhang Q. Differences in the roles of types 1 and 2 Diabetes in the susceptibility to the risk of fracture: a systematic review and meta-analysis. Diabetol Metab Syndr. 2021;13(1):84.PubMedPubMedCentralCrossRef
122.
go back to reference Vilaca T, Schini M, Harnan S, Sutton A, Poku E, Allen IE, et al. The risk of hip and non-vertebral fractures in type 1 and type 2 Diabetes: a systematic review and meta-analysis update. Bone. 2020;137:115457.PubMedCrossRef Vilaca T, Schini M, Harnan S, Sutton A, Poku E, Allen IE, et al. The risk of hip and non-vertebral fractures in type 1 and type 2 Diabetes: a systematic review and meta-analysis update. Bone. 2020;137:115457.PubMedCrossRef
123.
go back to reference Räkel A, Sheehy O, Rahme E, LeLorier J. Osteoporosis among patients with type 1 and type 2 Diabetes. Diabetes Metab. 2008;34(3):193–205.PubMedCrossRef Räkel A, Sheehy O, Rahme E, LeLorier J. Osteoporosis among patients with type 1 and type 2 Diabetes. Diabetes Metab. 2008;34(3):193–205.PubMedCrossRef
124.
go back to reference Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes—a meta-analysis. Osteoporos Int. 2007;18(4):427–44.PubMedCrossRef Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes—a meta-analysis. Osteoporos Int. 2007;18(4):427–44.PubMedCrossRef
125.
go back to reference Hidayat K, Fang QL, Shi BM, Qin LQ. Influence of glycemic control and hypoglycemia on the risk of fracture in patients with Diabetes Mellitus: a systematic review and meta-analysis of observational studies. Osteoporos Int. 2021;32(9):1693–704.PubMedCrossRef Hidayat K, Fang QL, Shi BM, Qin LQ. Influence of glycemic control and hypoglycemia on the risk of fracture in patients with Diabetes Mellitus: a systematic review and meta-analysis of observational studies. Osteoporos Int. 2021;32(9):1693–704.PubMedCrossRef
126.
go back to reference Losada-Grande E, Hawley S, Soldevila B, Martinez-Laguna D, Nogues X, Diez-Perez A, et al. Insulin use and excess fracture risk in patients with type 2 Diabetes: a propensity-matched cohort analysis. Sci Rep. 2017;7(1):3781.PubMedPubMedCentralCrossRef Losada-Grande E, Hawley S, Soldevila B, Martinez-Laguna D, Nogues X, Diez-Perez A, et al. Insulin use and excess fracture risk in patients with type 2 Diabetes: a propensity-matched cohort analysis. Sci Rep. 2017;7(1):3781.PubMedPubMedCentralCrossRef
127.
go back to reference Ding ZC, Zeng WN, Rong X, Liang ZM, Zhou ZK. Do patients with Diabetes have an increased risk of impaired fracture healing? A systematic review and meta-analysis. ANZ J Surg. 2020;90(7–8):1259–64.PubMedCrossRef Ding ZC, Zeng WN, Rong X, Liang ZM, Zhou ZK. Do patients with Diabetes have an increased risk of impaired fracture healing? A systematic review and meta-analysis. ANZ J Surg. 2020;90(7–8):1259–64.PubMedCrossRef
128.
go back to reference Gortler H, Rusyn J, Godbout C, Chahal J, Schemitsch EH, Nauth A. Diabetes and Healing outcomes in Lower Extremity fractures: a systematic review. Injury. 2018;49(2):177–83.PubMedCrossRef Gortler H, Rusyn J, Godbout C, Chahal J, Schemitsch EH, Nauth A. Diabetes and Healing outcomes in Lower Extremity fractures: a systematic review. Injury. 2018;49(2):177–83.PubMedCrossRef
129.
go back to reference Braverman IM. The Cutaneous Microcirculation. Journal of Investigative Dermatology Symposium Proceedings. 2000;5(1):3–9. Braverman IM. The Cutaneous Microcirculation. Journal of Investigative Dermatology Symposium Proceedings. 2000;5(1):3–9.
130.
go back to reference Cracowski J-L, Roustit M. Human skin microcirculation. In: Compr Physiol 2020: 1105–54. Cracowski J-L, Roustit M. Human skin microcirculation. In: Compr Physiol 2020: 1105–54.
131.
go back to reference David P, Singh S, Ankar R. A comprehensive overview of skin Complications in Diabetes and their Prevention. Cureus. 2023;15(5):e38961.PubMedPubMedCentral David P, Singh S, Ankar R. A comprehensive overview of skin Complications in Diabetes and their Prevention. Cureus. 2023;15(5):e38961.PubMedPubMedCentral
132.
go back to reference Legiawati L. The role of oxidative stress, inflammation, and Advanced Glycation End product in skin manifestations of Diabetes Mellitus. Curr Diabetes Rev. 2022;18(3):e200921196637.PubMedCrossRef Legiawati L. The role of oxidative stress, inflammation, and Advanced Glycation End product in skin manifestations of Diabetes Mellitus. Curr Diabetes Rev. 2022;18(3):e200921196637.PubMedCrossRef
133.
go back to reference de Macedo GMC, Nunes S, Barreto T. Skin disorders in Diabetes Mellitus: an epidemiology and physiopathology review. Diabetol Metab Syndr. 2016;8(1):63.PubMedPubMedCentralCrossRef de Macedo GMC, Nunes S, Barreto T. Skin disorders in Diabetes Mellitus: an epidemiology and physiopathology review. Diabetol Metab Syndr. 2016;8(1):63.PubMedPubMedCentralCrossRef
134.
go back to reference Mooradian AD. Diabetes-related perturbations in the integrity of physiologic barriers. J Diabetes Complications. 2023;37(8):108552.PubMedCrossRef Mooradian AD. Diabetes-related perturbations in the integrity of physiologic barriers. J Diabetes Complications. 2023;37(8):108552.PubMedCrossRef
135.
go back to reference Ngo BT, Hayes KD, DiMiao DJ, Srinivasan SK, Huerter CJ, Rendell MS. Manifestations of cutaneous diabetic microangiopathy. Am J Clin Dermatol. 2005;6(4):225–37.PubMedCrossRef Ngo BT, Hayes KD, DiMiao DJ, Srinivasan SK, Huerter CJ, Rendell MS. Manifestations of cutaneous diabetic microangiopathy. Am J Clin Dermatol. 2005;6(4):225–37.PubMedCrossRef
136.
go back to reference Serné EH, Stehouwer CD, ter Maaten JC, ter, Wee PM, Rauwerda JA, Donker AJ et al. Microvascular function relates to insulin sensitivity and blood pressure in normal subjects. Circulation. 1999;99(7):896–902. Serné EH, Stehouwer CD, ter Maaten JC, ter, Wee PM, Rauwerda JA, Donker AJ et al. Microvascular function relates to insulin sensitivity and blood pressure in normal subjects. Circulation. 1999;99(7):896–902.
137.
go back to reference Serné EH, Ijzerman RG, Gans ROB, Nijveldt R, de Vries G, Evertz R, et al. Direct evidence for insulin-Induced Capillary recruitment in skin of healthy subjects during physiological hyperinsulinemia. Diabetes. 2002;51(5):1515–22.PubMedCrossRef Serné EH, Ijzerman RG, Gans ROB, Nijveldt R, de Vries G, Evertz R, et al. Direct evidence for insulin-Induced Capillary recruitment in skin of healthy subjects during physiological hyperinsulinemia. Diabetes. 2002;51(5):1515–22.PubMedCrossRef
138.
go back to reference Tibiriçá E, Rodrigues E, Cobas RA, Gomes MB. Endothelial function in patients with type 1 Diabetes evaluated by skin capillary recruitment. Microvasc Res. 2007;73(2):107–12.PubMedCrossRef Tibiriçá E, Rodrigues E, Cobas RA, Gomes MB. Endothelial function in patients with type 1 Diabetes evaluated by skin capillary recruitment. Microvasc Res. 2007;73(2):107–12.PubMedCrossRef
139.
go back to reference Tooke JE. Microvascular function in human Diabetes. A physiological perspective. Diabetes. 1995;44(7):721–6.PubMedCrossRef Tooke JE. Microvascular function in human Diabetes. A physiological perspective. Diabetes. 1995;44(7):721–6.PubMedCrossRef
140.
go back to reference Tooke JE, Morris SJ, Shore AC. Microvascular functional abnormalities in Diabetes: the role of the endothelium. Diabetes Res Clin Pract. 1996;31:127–S32.CrossRef Tooke JE, Morris SJ, Shore AC. Microvascular functional abnormalities in Diabetes: the role of the endothelium. Diabetes Res Clin Pract. 1996;31:127–S32.CrossRef
141.
go back to reference Hsu P-C, Liao P-Y, Chang H-H, Chiang JY, Huang Y-C, Lo L-C. Nailfold capillary abnormalities are associated with type 2 Diabetes progression and correlated with peripheral neuropathy. Med (Baltim). 2016;95(52):e5714.CrossRef Hsu P-C, Liao P-Y, Chang H-H, Chiang JY, Huang Y-C, Lo L-C. Nailfold capillary abnormalities are associated with type 2 Diabetes progression and correlated with peripheral neuropathy. Med (Baltim). 2016;95(52):e5714.CrossRef
142.
go back to reference Lisco G, Cicco G, Cignarelli A, Garruti G, Laviola L, Giorgino F. Computerized video-capillaroscopy alteration related to Diabetes Mellitus and its Complications. Adv Exp Med Biol. 2018;1072:363–8.PubMedCrossRef Lisco G, Cicco G, Cignarelli A, Garruti G, Laviola L, Giorgino F. Computerized video-capillaroscopy alteration related to Diabetes Mellitus and its Complications. Adv Exp Med Biol. 2018;1072:363–8.PubMedCrossRef
143.
go back to reference Maldonado G, Guerrero R, Paredes C, Ríos C. Nailfold capillaroscopy in Diabetes Mellitus. Microvasc Res. 2017;112:41–6.PubMedCrossRef Maldonado G, Guerrero R, Paredes C, Ríos C. Nailfold capillaroscopy in Diabetes Mellitus. Microvasc Res. 2017;112:41–6.PubMedCrossRef
144.
go back to reference Rajaei A, Dehghan P, Farahani Z. Nailfold Capillaroscopy findings in Diabetic patients (a pilot cross-sectional study). Open J Pathol. 2015;5:65–72.CrossRef Rajaei A, Dehghan P, Farahani Z. Nailfold Capillaroscopy findings in Diabetic patients (a pilot cross-sectional study). Open J Pathol. 2015;5:65–72.CrossRef
145.
go back to reference Sörensen BM, Houben AJ, Berendschot TT, Schouten JS, Kroon AA, van der Kallen CJ, et al. Prediabetes and type 2 Diabetes are Associated with generalized microvascular dysfunction: the Maastricht Study. Circulation. 2016;134(18):1339–52.PubMedCrossRef Sörensen BM, Houben AJ, Berendschot TT, Schouten JS, Kroon AA, van der Kallen CJ, et al. Prediabetes and type 2 Diabetes are Associated with generalized microvascular dysfunction: the Maastricht Study. Circulation. 2016;134(18):1339–52.PubMedCrossRef
146.
go back to reference de Matheus AS, Clemente EL, de Lourdes Guimarães Rodrigues M, Torres Valença DC, Gomes MB. Assessment of microvascular endothelial function in type 1 Diabetes using laser speckle contrast imaging. J Diabetes Complications. 2017;31(4):753–7.CrossRef de Matheus AS, Clemente EL, de Lourdes Guimarães Rodrigues M, Torres Valença DC, Gomes MB. Assessment of microvascular endothelial function in type 1 Diabetes using laser speckle contrast imaging. J Diabetes Complications. 2017;31(4):753–7.CrossRef
147.
go back to reference Fuchs D, Dupon PP, Schaap LA, Draijer R. The association between Diabetes and dermal microvascular dysfunction non-invasively assessed by laser doppler with local thermal hyperemia: a systematic review with meta-analysis. Cardiovasc Diabetol. 2017;16(1):11.PubMedPubMedCentralCrossRef Fuchs D, Dupon PP, Schaap LA, Draijer R. The association between Diabetes and dermal microvascular dysfunction non-invasively assessed by laser doppler with local thermal hyperemia: a systematic review with meta-analysis. Cardiovasc Diabetol. 2017;16(1):11.PubMedPubMedCentralCrossRef
148.
go back to reference George AMC. Diabetic Dermopathy. Br J Diabetes Vasc Dis. 2014;14(3):95–7.CrossRef George AMC. Diabetic Dermopathy. Br J Diabetes Vasc Dis. 2014;14(3):95–7.CrossRef
150.
go back to reference Labib A, Rosen J, Yosipovitch G. Skin Manifestations of Diabetes Mellitus. In: Endotext Edited by Feingold KR, Anawalt B, Blackman MR, Boyce A, Chrousos G, Corpas E, de Herder WW, Dhatariya K, Dungan K, Hofland J South Dartmouth (MA); 2000. Labib A, Rosen J, Yosipovitch G. Skin Manifestations of Diabetes Mellitus. In: Endotext Edited by Feingold KR, Anawalt B, Blackman MR, Boyce A, Chrousos G, Corpas E, de Herder WW, Dhatariya K, Dungan K, Hofland J South Dartmouth (MA); 2000.
151.
go back to reference Haustein UF. Scleroderma-like lesions in insulin-dependent Diabetes Mellitus. J Eur Acad Dermatol Venereol. 1999;13(1):50–3.PubMed Haustein UF. Scleroderma-like lesions in insulin-dependent Diabetes Mellitus. J Eur Acad Dermatol Venereol. 1999;13(1):50–3.PubMed
152.
go back to reference Ferreli C, Gasparini G, Parodi A, Cozzani E, Rongioletti F, Atzori L. Cutaneous manifestations of Scleroderma and Scleroderma-Like disorders: a Comprehensive Review. Clin Rev Allergy Immunol. 2017;53(3):306–36.PubMedCrossRef Ferreli C, Gasparini G, Parodi A, Cozzani E, Rongioletti F, Atzori L. Cutaneous manifestations of Scleroderma and Scleroderma-Like disorders: a Comprehensive Review. Clin Rev Allergy Immunol. 2017;53(3):306–36.PubMedCrossRef
153.
go back to reference Reid SD, Ladizinski B, Lee K, Baibergenova A, Alavi A. Update on necrobiosis lipoidica: a review of etiology, diagnosis, and treatment options. J Am Acad Dermatol. 2013;69(5):783–91.PubMedCrossRef Reid SD, Ladizinski B, Lee K, Baibergenova A, Alavi A. Update on necrobiosis lipoidica: a review of etiology, diagnosis, and treatment options. J Am Acad Dermatol. 2013;69(5):783–91.PubMedCrossRef
154.
go back to reference Lipsky BA, Baker PD, Ahroni JH. Diabetic bullae: 12 cases of a purportedly rare cutaneous disorder. Int J Dermatol. 2000;39(3):196–200.PubMedCrossRef Lipsky BA, Baker PD, Ahroni JH. Diabetic bullae: 12 cases of a purportedly rare cutaneous disorder. Int J Dermatol. 2000;39(3):196–200.PubMedCrossRef
155.
go back to reference Owusu J, Barrett E. Early microvascular dysfunction: is the Vasa Vasorum a missing link in insulin resistance and Atherosclerosis. Int J Mol Sci 2021;22(14). Owusu J, Barrett E. Early microvascular dysfunction: is the Vasa Vasorum a missing link in insulin resistance and Atherosclerosis. Int J Mol Sci 2021;22(14).
156.
go back to reference Mulligan-Kehoe MJ. The vasa vasorum in diseased and nondiseased arteries. Am J Physiol Heart Circ Physiol. 2010;298(2):H295–305.PubMedCrossRef Mulligan-Kehoe MJ. The vasa vasorum in diseased and nondiseased arteries. Am J Physiol Heart Circ Physiol. 2010;298(2):H295–305.PubMedCrossRef
159.
go back to reference Angervall L, Dahl I, Säve-Söderbergh J. The aortic vasa vasorum in juvenile Diabetes. Pathol Microbiol (Basel). 1966;29(4):431–7.PubMed Angervall L, Dahl I, Säve-Söderbergh J. The aortic vasa vasorum in juvenile Diabetes. Pathol Microbiol (Basel). 1966;29(4):431–7.PubMed
160.
go back to reference Rubinat E, Ortega E, Traveset A, Arcidiacono MV, Alonso N, Betriu A, et al. Microangiopathy of common carotid vasa vasorum in type 1 Diabetes Mellitus. Atherosclerosis. 2015;241(2):334–8.PubMedCrossRef Rubinat E, Ortega E, Traveset A, Arcidiacono MV, Alonso N, Betriu A, et al. Microangiopathy of common carotid vasa vasorum in type 1 Diabetes Mellitus. Atherosclerosis. 2015;241(2):334–8.PubMedCrossRef
161.
go back to reference Sampson UK, Harrell FE Jr., Fazio S, Nwosu S, Mercaldo N, Mensah GA, et al. Carotid adventitial vasa vasorum and intima-media thickness in a primary prevention population. Echocardiography. 2015;32(2):264–70.PubMedCrossRef Sampson UK, Harrell FE Jr., Fazio S, Nwosu S, Mercaldo N, Mensah GA, et al. Carotid adventitial vasa vasorum and intima-media thickness in a primary prevention population. Echocardiography. 2015;32(2):264–70.PubMedCrossRef
162.
go back to reference Arcidiacono MV, Traveset A, Rubinat E, Ortega E, Betriu A, Hernandez M, et al. Microangiopathy of large artery wall: a neglected complication of Diabetes Mellitus. Atherosclerosis. 2013;228(1):142–7.PubMedCrossRef Arcidiacono MV, Traveset A, Rubinat E, Ortega E, Betriu A, Hernandez M, et al. Microangiopathy of large artery wall: a neglected complication of Diabetes Mellitus. Atherosclerosis. 2013;228(1):142–7.PubMedCrossRef
163.
go back to reference Gerstein HC, Nair V, Chaube R, Stoute H, Werstuck G. Dysglycemia and the density of the coronary Vasa Vasorum. Diabetes Care. 2019;42(5):980–2.PubMedCrossRef Gerstein HC, Nair V, Chaube R, Stoute H, Werstuck G. Dysglycemia and the density of the coronary Vasa Vasorum. Diabetes Care. 2019;42(5):980–2.PubMedCrossRef
164.
go back to reference Purushothaman KR, Purushothaman M, Muntner P, Lento PA, O’Connor WN, Sharma SK, et al. Inflammation, neovascularization and intra-plaque Hemorrhage are associated with increased reparative collagen content: implication for plaque progression in diabetic Atherosclerosis. Vasc Med. 2011;16(2):103–8.PubMedCrossRef Purushothaman KR, Purushothaman M, Muntner P, Lento PA, O’Connor WN, Sharma SK, et al. Inflammation, neovascularization and intra-plaque Hemorrhage are associated with increased reparative collagen content: implication for plaque progression in diabetic Atherosclerosis. Vasc Med. 2011;16(2):103–8.PubMedCrossRef
165.
go back to reference Raffort J, Lareyre F, Clément M, Hassen-Khodja R, Chinetti G, Mallat Z. Diabetes and aortic Aneurysm: current state of the art. Cardiovasc Res. 2018;114(13):1702–13.PubMedPubMedCentralCrossRef Raffort J, Lareyre F, Clément M, Hassen-Khodja R, Chinetti G, Mallat Z. Diabetes and aortic Aneurysm: current state of the art. Cardiovasc Res. 2018;114(13):1702–13.PubMedPubMedCentralCrossRef
166.
go back to reference Picatoste B, Cerro-Pardo I, Blanco-Colio LM, Martín-Ventura JL. Protection of Diabetes in aortic abdominal Aneurysm: are antidiabetics the real effectors? Front Cardiovasc Med. 2023;10:1112430.PubMedPubMedCentralCrossRef Picatoste B, Cerro-Pardo I, Blanco-Colio LM, Martín-Ventura JL. Protection of Diabetes in aortic abdominal Aneurysm: are antidiabetics the real effectors? Front Cardiovasc Med. 2023;10:1112430.PubMedPubMedCentralCrossRef
167.
go back to reference Fuso L, Pitocco D, Antonelli-Incalzi R. Diabetic lung, an underrated complication from restrictive functional pattern to pulmonary Hypertension. Diabetes Metab Res Rev. 2019;35(6):e3159.PubMedCrossRef Fuso L, Pitocco D, Antonelli-Incalzi R. Diabetic lung, an underrated complication from restrictive functional pattern to pulmonary Hypertension. Diabetes Metab Res Rev. 2019;35(6):e3159.PubMedCrossRef
168.
go back to reference Del Buono MG, Montone RA, Camilli M, Carbone S, Narula J, Lavie CJ, et al. Coronary microvascular dysfunction across the Spectrum of Cardiovascular Diseases: JACC State-of-the-art review. J Am Coll Cardiol. 2021;78(13):1352–71.PubMedPubMedCentralCrossRef Del Buono MG, Montone RA, Camilli M, Carbone S, Narula J, Lavie CJ, et al. Coronary microvascular dysfunction across the Spectrum of Cardiovascular Diseases: JACC State-of-the-art review. J Am Coll Cardiol. 2021;78(13):1352–71.PubMedPubMedCentralCrossRef
169.
go back to reference Fonseca DA, Antunes PE, Cotrim M-D. The Morphology, Physiology and Pathophysiology of Coronary Microcirculation. In: Microcirculation Revisited Edited by Helena L. Rijeka: IntechOpen; 2016: Ch. 2. Fonseca DA, Antunes PE, Cotrim M-D. The Morphology, Physiology and Pathophysiology of Coronary Microcirculation. In: Microcirculation Revisited Edited by Helena L. Rijeka: IntechOpen; 2016: Ch. 2.
170.
go back to reference Kibel A, Selthofer-Relatic K, Drenjancevic I, Bacun T, Bosnjak I, Kibel D, et al. Coronary microvascular dysfunction in Diabetes Mellitus. J Int Med Res. 2017;45(6):1901–29.PubMedPubMedCentralCrossRef Kibel A, Selthofer-Relatic K, Drenjancevic I, Bacun T, Bosnjak I, Kibel D, et al. Coronary microvascular dysfunction in Diabetes Mellitus. J Int Med Res. 2017;45(6):1901–29.PubMedPubMedCentralCrossRef
171.
go back to reference Zhang Z, Li X, He J, Wang S, Wang J, Liu J et al. Molecular mechanisms of endothelial dysfunction in coronary microcirculation dysfunction. J Thromb Thrombolysis. 2023. Zhang Z, Li X, He J, Wang S, Wang J, Liu J et al. Molecular mechanisms of endothelial dysfunction in coronary microcirculation dysfunction. J Thromb Thrombolysis. 2023.
172.
go back to reference Sorop O, van de Wouw J, Merkus D, Duncker DJ. Coronary Microvascular Dysfunction in Cardiovascular Disease: Lessons from Large Animal Models. In: Microcirculation: From Bench to Bedside Edited by Dorobantu M, Badimon L. Cham: Springer International Publishing; 2020: 21–43. Sorop O, van de Wouw J, Merkus D, Duncker DJ. Coronary Microvascular Dysfunction in Cardiovascular Disease: Lessons from Large Animal Models. In: Microcirculation: From Bench to Bedside Edited by Dorobantu M, Badimon L. Cham: Springer International Publishing; 2020: 21–43.
173.
go back to reference Vancheri F, Longo G, Vancheri S, Henein M. Coronary microvascular dysfunction. J Clin Med. 2020;9(9). Vancheri F, Longo G, Vancheri S, Henein M. Coronary microvascular dysfunction. J Clin Med. 2020;9(9).
174.
go back to reference Fu B, Wei X, Lin Y, Chen J, Yu D. Pathophysiologic basis and diagnostic approaches for Ischemia with non-obstructive coronary arteries: a Literature Review. Front Cardiovasc Med. 2022;9:731059.PubMedPubMedCentralCrossRef Fu B, Wei X, Lin Y, Chen J, Yu D. Pathophysiologic basis and diagnostic approaches for Ischemia with non-obstructive coronary arteries: a Literature Review. Front Cardiovasc Med. 2022;9:731059.PubMedPubMedCentralCrossRef
175.
go back to reference Beare JE, Curtis-Whitchurch L, LeBlanc AJ, Hoying JB. Microvasculature in Health and Disease. In: Encyclopedia of Cardiovascular Research and Medicine Edited by Vasan RS, Sawyer DB. Oxford: Elsevier; 2018: 349 – 64. Beare JE, Curtis-Whitchurch L, LeBlanc AJ, Hoying JB. Microvasculature in Health and Disease. In: Encyclopedia of Cardiovascular Research and Medicine Edited by Vasan RS, Sawyer DB. Oxford: Elsevier; 2018: 349 – 64.
176.
go back to reference Bagi Z, Koller A, Kaley G. Superoxide-NO interaction decreases flow- and agonist-induced dilations of coronary arterioles in type 2 Diabetes Mellitus. Am J Physiol Heart Circ Physiol. 2003;285(4):H1404–10.PubMedCrossRef Bagi Z, Koller A, Kaley G. Superoxide-NO interaction decreases flow- and agonist-induced dilations of coronary arterioles in type 2 Diabetes Mellitus. Am J Physiol Heart Circ Physiol. 2003;285(4):H1404–10.PubMedCrossRef
177.
go back to reference Ledet T. Diabetic cardiopathy. Quantitative histological studies of the heart from young juvenile diabetics. Acta Pathol Microbiol Scand A. 1976;84(5):421–8.PubMed Ledet T. Diabetic cardiopathy. Quantitative histological studies of the heart from young juvenile diabetics. Acta Pathol Microbiol Scand A. 1976;84(5):421–8.PubMed
178.
go back to reference Ledet T. Histological and histochemical changes in the coronary arteries of old diabetic patients. Diabetologia. 1968;4(5):268–72.PubMedCrossRef Ledet T. Histological and histochemical changes in the coronary arteries of old diabetic patients. Diabetologia. 1968;4(5):268–72.PubMedCrossRef
179.
go back to reference Crall FV Jr., Roberts WC. The extramural and intramural coronary arteries in juvenile Diabetes Mellitus: analysis of nine necropsy patients aged 19 to 38 years with onset of Diabetes before age 15 years. Am J Med. 1978;64(2):221–30.PubMedCrossRef Crall FV Jr., Roberts WC. The extramural and intramural coronary arteries in juvenile Diabetes Mellitus: analysis of nine necropsy patients aged 19 to 38 years with onset of Diabetes before age 15 years. Am J Med. 1978;64(2):221–30.PubMedCrossRef
180.
go back to reference Strauer BE, Motz W, Vogt M, Schwartzkopff B. Impaired coronary flow reserve in NIDDM: a possible role for diabetic cardiopathy in humans. Diabetes. 1997;46(Suppl 2):119–24.CrossRef Strauer BE, Motz W, Vogt M, Schwartzkopff B. Impaired coronary flow reserve in NIDDM: a possible role for diabetic cardiopathy in humans. Diabetes. 1997;46(Suppl 2):119–24.CrossRef
181.
go back to reference Strauer BE, Motz W, Vogt M, Schwartzkopff B. Evidence for reduced coronary flow reserve in patients with insulin-dependent Diabetes. A possible cause for diabetic Heart Disease in man. Exp Clin Endocrinol Diabetes. 1997;105(1):15–20.PubMedCrossRef Strauer BE, Motz W, Vogt M, Schwartzkopff B. Evidence for reduced coronary flow reserve in patients with insulin-dependent Diabetes. A possible cause for diabetic Heart Disease in man. Exp Clin Endocrinol Diabetes. 1997;105(1):15–20.PubMedCrossRef
182.
go back to reference Gallinoro E, Paolisso P, Candreva A, Bermpeis K, Fabbricatore D, Esposito G, et al. Microvascular dysfunction in patients with type II Diabetes Mellitus: Invasive Assessment of Absolute Coronary Blood Flow and Microvascular Resistance Reserve. Front Cardiovasc Med. 2021;8:765071.PubMedPubMedCentralCrossRef Gallinoro E, Paolisso P, Candreva A, Bermpeis K, Fabbricatore D, Esposito G, et al. Microvascular dysfunction in patients with type II Diabetes Mellitus: Invasive Assessment of Absolute Coronary Blood Flow and Microvascular Resistance Reserve. Front Cardiovasc Med. 2021;8:765071.PubMedPubMedCentralCrossRef
183.
go back to reference Miura H, Wachtel RE, Loberiza FR Jr., Saito T, Miura M, Nicolosi AC, et al. Diabetes Mellitus impairs vasodilation to hypoxia in human coronary arterioles: reduced activity of ATP-sensitive potassium channels. Circ Res. 2003;92(2):151–8.PubMedCrossRef Miura H, Wachtel RE, Loberiza FR Jr., Saito T, Miura M, Nicolosi AC, et al. Diabetes Mellitus impairs vasodilation to hypoxia in human coronary arterioles: reduced activity of ATP-sensitive potassium channels. Circ Res. 2003;92(2):151–8.PubMedCrossRef
184.
go back to reference Levelt E, Piechnik SK, Liu A, Wijesurendra RS, Mahmod M, Ariga R, et al. Adenosine stress CMR T1-mapping detects early microvascular dysfunction in patients with type 2 Diabetes Mellitus without obstructive coronary artery Disease. J Cardiovasc Magn Reson. 2017;19(1):81.PubMedPubMedCentralCrossRef Levelt E, Piechnik SK, Liu A, Wijesurendra RS, Mahmod M, Ariga R, et al. Adenosine stress CMR T1-mapping detects early microvascular dysfunction in patients with type 2 Diabetes Mellitus without obstructive coronary artery Disease. J Cardiovasc Magn Reson. 2017;19(1):81.PubMedPubMedCentralCrossRef
185.
go back to reference Nitenberg A, Valensi P, Sachs R, Dali M, Aptecar E, Attali J-R. Impairment of Coronary Vascular Reserve and ACh-Induced Coronary Vasodilation in Diabetic patients with Angiographically normal coronary arteries and normal left ventricular systolic function. Diabetes. 1993;42(7):1017–25.PubMedCrossRef Nitenberg A, Valensi P, Sachs R, Dali M, Aptecar E, Attali J-R. Impairment of Coronary Vascular Reserve and ACh-Induced Coronary Vasodilation in Diabetic patients with Angiographically normal coronary arteries and normal left ventricular systolic function. Diabetes. 1993;42(7):1017–25.PubMedCrossRef
186.
go back to reference Nahser PJ, Brown RE, Oskarsson H, Winniford MD, Rossen JD. Maximal coronary Flow Reserve and metabolic coronary vasodilation in patients with Diabetes Mellitus. Circulation. 1995;91(3):635–40.PubMedCrossRef Nahser PJ, Brown RE, Oskarsson H, Winniford MD, Rossen JD. Maximal coronary Flow Reserve and metabolic coronary vasodilation in patients with Diabetes Mellitus. Circulation. 1995;91(3):635–40.PubMedCrossRef
187.
go back to reference Ong P, Camici PG, Beltrame JF, Crea F, Shimokawa H, Sechtem U, et al. International standardization of diagnostic criteria for microvascular angina. Int J Cardiol. 2018;250:16–20.PubMedCrossRef Ong P, Camici PG, Beltrame JF, Crea F, Shimokawa H, Sechtem U, et al. International standardization of diagnostic criteria for microvascular angina. Int J Cardiol. 2018;250:16–20.PubMedCrossRef
188.
190.
go back to reference Mileva N, Nagumo S, Mizukami T, Sonck J, Berry C, Gallinoro E, et al. Prevalence of coronary microvascular Disease and coronary vasospasm in patients with nonobstructive coronary artery Disease: systematic review and Meta-analysis. J Am Heart Assoc. 2022;11(7):e023207.PubMedPubMedCentralCrossRef Mileva N, Nagumo S, Mizukami T, Sonck J, Berry C, Gallinoro E, et al. Prevalence of coronary microvascular Disease and coronary vasospasm in patients with nonobstructive coronary artery Disease: systematic review and Meta-analysis. J Am Heart Assoc. 2022;11(7):e023207.PubMedPubMedCentralCrossRef
191.
go back to reference Nishi T, Saito Y, Kitahara H, Nishi T, Fujimoto Y, Kobayashi Y. Coronary Flow Reserve and Glycemic Variability in patients with coronary artery Disease. Intern Med. 2021;60(8):1151–8.PubMedCrossRef Nishi T, Saito Y, Kitahara H, Nishi T, Fujimoto Y, Kobayashi Y. Coronary Flow Reserve and Glycemic Variability in patients with coronary artery Disease. Intern Med. 2021;60(8):1151–8.PubMedCrossRef
192.
go back to reference Sara JD, Taher R, Kolluri N, Vella A, Lerman LO, Lerman A. Coronary microvascular dysfunction is associated with poor glycemic control amongst female diabetics with chest pain and non-obstructive coronary artery Disease. Cardiovasc Diabetol. 2019;18(1):22.PubMedPubMedCentralCrossRef Sara JD, Taher R, Kolluri N, Vella A, Lerman LO, Lerman A. Coronary microvascular dysfunction is associated with poor glycemic control amongst female diabetics with chest pain and non-obstructive coronary artery Disease. Cardiovasc Diabetol. 2019;18(1):22.PubMedPubMedCentralCrossRef
193.
go back to reference Yokoyama I, Momomura S-i, Ohtake T, Yonekura K, Nishikawa J, Sasaki Y, et al. Reduced myocardial Flow Reserve in non–insulin-dependent Diabetes Mellitus. J Am Coll Cardiol. 1997;30(6):1472–7.PubMedCrossRef Yokoyama I, Momomura S-i, Ohtake T, Yonekura K, Nishikawa J, Sasaki Y, et al. Reduced myocardial Flow Reserve in non–insulin-dependent Diabetes Mellitus. J Am Coll Cardiol. 1997;30(6):1472–7.PubMedCrossRef
194.
195.
go back to reference Trimarco B, Barbato E, Izzo R, Morisco C. Microvascular Disease and the Pathogenesis of Heart Failure in Diabetes: a tiny piece of the tricky puzzle. Diabetes Care. 2022;45(12):2817–9.PubMedCrossRef Trimarco B, Barbato E, Izzo R, Morisco C. Microvascular Disease and the Pathogenesis of Heart Failure in Diabetes: a tiny piece of the tricky puzzle. Diabetes Care. 2022;45(12):2817–9.PubMedCrossRef
197.
go back to reference Patil VC, Patil HV, Shah KB, Vasani JD, Shetty P. Diastolic dysfunction in asymptomatic type 2 Diabetes Mellitus with normal systolic function. J Cardiovasc Dis Res. 2011;2(4):213–22.PubMedPubMedCentralCrossRef Patil VC, Patil HV, Shah KB, Vasani JD, Shetty P. Diastolic dysfunction in asymptomatic type 2 Diabetes Mellitus with normal systolic function. J Cardiovasc Dis Res. 2011;2(4):213–22.PubMedPubMedCentralCrossRef
198.
199.
go back to reference Zhao X, Liu S, Wang X, Chen Y, Pang P, Yang Q, et al. Diabetic cardiomyopathy: clinical phenotype and practice. Front Endocrinol (Lausanne). 2022;13:1032268.PubMedCrossRef Zhao X, Liu S, Wang X, Chen Y, Pang P, Yang Q, et al. Diabetic cardiomyopathy: clinical phenotype and practice. Front Endocrinol (Lausanne). 2022;13:1032268.PubMedCrossRef
201.
go back to reference Prandi FR, Evangelista I, Sergi D, Palazzuoli A, Romeo F. Mechanisms of cardiac dysfunction in diabetic cardiomyopathy: molecular abnormalities and phenotypical variants. Heart Fail Rev. 2023;28(3):597–606.PubMedCrossRef Prandi FR, Evangelista I, Sergi D, Palazzuoli A, Romeo F. Mechanisms of cardiac dysfunction in diabetic cardiomyopathy: molecular abnormalities and phenotypical variants. Heart Fail Rev. 2023;28(3):597–606.PubMedCrossRef
202.
go back to reference Sandesara PB, O’Neal WT, Kelli HM, Samman-Tahhan A, Hammadah M, Quyyumi AA, et al. The Prognostic significance of Diabetes and microvascular Complications in patients with Heart Failure with preserved ejection fraction. Diabetes Care. 2018;41(1):150–5.PubMedCrossRef Sandesara PB, O’Neal WT, Kelli HM, Samman-Tahhan A, Hammadah M, Quyyumi AA, et al. The Prognostic significance of Diabetes and microvascular Complications in patients with Heart Failure with preserved ejection fraction. Diabetes Care. 2018;41(1):150–5.PubMedCrossRef
203.
go back to reference Tromp J, Lim SL, Tay WT, Teng TK, Chandramouli C, Ouwerkerk W, et al. Microvascular Disease in patients with Diabetes with Heart Failure and reduced ejection Versus Preserved Ejection Fraction. Diabetes Care. 2019;42(9):1792–9.PubMedCrossRef Tromp J, Lim SL, Tay WT, Teng TK, Chandramouli C, Ouwerkerk W, et al. Microvascular Disease in patients with Diabetes with Heart Failure and reduced ejection Versus Preserved Ejection Fraction. Diabetes Care. 2019;42(9):1792–9.PubMedCrossRef
204.
go back to reference Li FR, Hukportie DN, Yang J, Yang HH, Chen GC, Wu XB. Microvascular burden and Incident Heart Failure among Middle-aged and older adults with type 1 or type 2 Diabetes. Diabetes Care. 2022;45(12):2999–3006.PubMedCrossRef Li FR, Hukportie DN, Yang J, Yang HH, Chen GC, Wu XB. Microvascular burden and Incident Heart Failure among Middle-aged and older adults with type 1 or type 2 Diabetes. Diabetes Care. 2022;45(12):2999–3006.PubMedCrossRef
205.
go back to reference Hinkel R, Howe A, Renner S, Ng J, Lee S, Klett K, et al. Diabetes Mellitus-Induced Microvascular destabilization in the myocardium. J Am Coll Cardiol. 2017;69(2):131–43.PubMedCrossRef Hinkel R, Howe A, Renner S, Ng J, Lee S, Klett K, et al. Diabetes Mellitus-Induced Microvascular destabilization in the myocardium. J Am Coll Cardiol. 2017;69(2):131–43.PubMedCrossRef
206.
go back to reference Seferović PM, Paulus WJ. Clinical diabetic cardiomyopathy: a two-faced Disease with restrictive and dilated phenotypes. Eur Heart J. 2015;36(27):1718–27.PubMedCrossRef Seferović PM, Paulus WJ. Clinical diabetic cardiomyopathy: a two-faced Disease with restrictive and dilated phenotypes. Eur Heart J. 2015;36(27):1718–27.PubMedCrossRef
207.
go back to reference Paulus WJ, Tschöpe C. A novel paradigm for Heart Failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol. 2013;62(4):263–71.PubMedCrossRef Paulus WJ, Tschöpe C. A novel paradigm for Heart Failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol. 2013;62(4):263–71.PubMedCrossRef
208.
go back to reference Paulus WJ, Dal Canto E. Distinct myocardial targets for Diabetes therapy in Heart Failure with preserved or reduced ejection fraction. JACC Heart Fail. 2018;6(1):1–7.PubMedCrossRef Paulus WJ, Dal Canto E. Distinct myocardial targets for Diabetes therapy in Heart Failure with preserved or reduced ejection fraction. JACC Heart Fail. 2018;6(1):1–7.PubMedCrossRef
209.
go back to reference Haywood L, Walsh DA. Vasculature of the normal and arthritic synovial joint. Histol Histopathol. 2001;16(1):277–84.PubMed Haywood L, Walsh DA. Vasculature of the normal and arthritic synovial joint. Histol Histopathol. 2001;16(1):277–84.PubMed
210.
go back to reference Latroche C, Gitiaux C, Chrétien F, Desguerre I, Mounier R, Chazaud B. Skeletal muscle microvasculature: a highly dynamic lifeline. Physiology. 2015;30(6):417–27.PubMedCrossRef Latroche C, Gitiaux C, Chrétien F, Desguerre I, Mounier R, Chazaud B. Skeletal muscle microvasculature: a highly dynamic lifeline. Physiology. 2015;30(6):417–27.PubMedCrossRef
211.
go back to reference Cathryn MK. The Skeletal Muscle Microvasculature and Its Effects on Metabolism. In: Microcirculation Revisited Edited by Helena L. Rijeka: IntechOpen; 2016: Ch. 3. Cathryn MK. The Skeletal Muscle Microvasculature and Its Effects on Metabolism. In: Microcirculation Revisited Edited by Helena L. Rijeka: IntechOpen; 2016: Ch. 3.
212.
go back to reference Abramson DI, Miller DS. Circulation to Joints and Associated Structures. In: Vascular Problems in Musculoskeletal Disorders of the Limbs Edited by Abramson DI, Miller DS. New York, NY: Springer New York; 1981: 41 – 7. Abramson DI, Miller DS. Circulation to Joints and Associated Structures. In: Vascular Problems in Musculoskeletal Disorders of the Limbs Edited by Abramson DI, Miller DS. New York, NY: Springer New York; 1981: 41 – 7.
213.
go back to reference Gupta V, Ezhilarasan Santhi SS, Ravi S, Ramanan EA. Rheumatological and Musculoskeletal Complications in Diabetes Patients. Journal of Endocrinology and Metabolism; Vol 12, No 4–5, Oct 2022. 2022. Gupta V, Ezhilarasan Santhi SS, Ravi S, Ramanan EA. Rheumatological and Musculoskeletal Complications in Diabetes Patients. Journal of Endocrinology and Metabolism; Vol 12, No 4–5, Oct 2022. 2022.
214.
go back to reference Ghosal S, Ghosal A. Diabetes and musculoskeletal disorders-a review. J Diabetes Metabolic Disorders Control. 2020;7(2):63–71.CrossRef Ghosal S, Ghosal A. Diabetes and musculoskeletal disorders-a review. J Diabetes Metabolic Disorders Control. 2020;7(2):63–71.CrossRef
215.
go back to reference Csonka V, Varjú C, Lendvay M. Diabetes mellitus-related musculoskeletal disorders: unveiling the cluster of Diseases. Prim Care Diabetes. 2023. Csonka V, Varjú C, Lendvay M. Diabetes mellitus-related musculoskeletal disorders: unveiling the cluster of Diseases. Prim Care Diabetes. 2023.
218.
go back to reference Gerrits EG, Landman GW, Nijenhuis-Rosien L, Bilo HJ. Limited joint mobility syndrome in Diabetes Mellitus: a minireview. World J Diabetes. 2015;6(9):1108–12.PubMedPubMedCentralCrossRef Gerrits EG, Landman GW, Nijenhuis-Rosien L, Bilo HJ. Limited joint mobility syndrome in Diabetes Mellitus: a minireview. World J Diabetes. 2015;6(9):1108–12.PubMedPubMedCentralCrossRef
219.
go back to reference Hill NE, Roscoe D, Stacey MJ, Chew S. Cheiroarthropathy and tendinopathy in Diabetes. Diabet Med. 2019;36(8):939–47.PubMedCrossRef Hill NE, Roscoe D, Stacey MJ, Chew S. Cheiroarthropathy and tendinopathy in Diabetes. Diabet Med. 2019;36(8):939–47.PubMedCrossRef
220.
go back to reference Pandey A, Usman K, Reddy H, Gutch M, Jain N, Qidwai S. Prevalence of hand disorders in type 2 Diabetes Mellitus and its correlation with microvascular Complications. Ann Med Health Sci Res. 2013;3(3):349–54.PubMedPubMedCentralCrossRef Pandey A, Usman K, Reddy H, Gutch M, Jain N, Qidwai S. Prevalence of hand disorders in type 2 Diabetes Mellitus and its correlation with microvascular Complications. Ann Med Health Sci Res. 2013;3(3):349–54.PubMedPubMedCentralCrossRef
221.
go back to reference Paul A, Gnanamoorthy K. The Association of Diabetic Cheiroarthropathy with Microvascular Complications of type 2 Diabetes Mellitus: a cross-sectional study. Cureus. 2023;15(3):e36701.PubMedPubMedCentral Paul A, Gnanamoorthy K. The Association of Diabetic Cheiroarthropathy with Microvascular Complications of type 2 Diabetes Mellitus: a cross-sectional study. Cureus. 2023;15(3):e36701.PubMedPubMedCentral
222.
go back to reference Arkkila PET, Gautier J-F. Musculoskeletal disorders in Diabetes Mellitus: an update. Best Pract Res Clin Rheumatol. 2003;17(6):945–70.PubMedCrossRef Arkkila PET, Gautier J-F. Musculoskeletal disorders in Diabetes Mellitus: an update. Best Pract Res Clin Rheumatol. 2003;17(6):945–70.PubMedCrossRef
223.
go back to reference Vera M, Shumkov G, Guell R. Histological and histochemical skin changes in insulin-dependent diabetic patients with and without limited joint mobility. Acta Diabetologia Latina. 1987;24(2):101–8.CrossRef Vera M, Shumkov G, Guell R. Histological and histochemical skin changes in insulin-dependent diabetic patients with and without limited joint mobility. Acta Diabetologia Latina. 1987;24(2):101–8.CrossRef
224.
go back to reference Mitchell WS, Winocour PH, Gush RJ, Taylor LJ, Baker RD, Anderson DC, et al. Skin blood flow and limited joint mobility in insulin-dependent Diabetes Mellitus. Br J Rheumatol. 1989;28(3):195–200.PubMedCrossRef Mitchell WS, Winocour PH, Gush RJ, Taylor LJ, Baker RD, Anderson DC, et al. Skin blood flow and limited joint mobility in insulin-dependent Diabetes Mellitus. Br J Rheumatol. 1989;28(3):195–200.PubMedCrossRef
225.
226.
go back to reference Dardari D. An overview of Charcot’s neuroarthropathy. J Clin Translational Endocrinol. 2020;22:100239.CrossRef Dardari D. An overview of Charcot’s neuroarthropathy. J Clin Translational Endocrinol. 2020;22:100239.CrossRef
227.
go back to reference Yates TH, Cooperman SR, Shofler D, Agrawal DK. Current concepts underlying the pathophysiology of acute Charcot neuroarthropathy in the diabetic foot and ankle. Expert Rev Clin Immunol. 2020;16(8):839–45.PubMedCrossRef Yates TH, Cooperman SR, Shofler D, Agrawal DK. Current concepts underlying the pathophysiology of acute Charcot neuroarthropathy in the diabetic foot and ankle. Expert Rev Clin Immunol. 2020;16(8):839–45.PubMedCrossRef
228.
go back to reference Kaynak G, Birsel O, Güven MF, Oğüt T. An overview of the Charcot foot pathophysiology. Diabet Foot Ankle. 2013;4. Kaynak G, Birsel O, Güven MF, Oğüt T. An overview of the Charcot foot pathophysiology. Diabet Foot Ankle. 2013;4.
229.
go back to reference Lanting SM, Chan TL, Casey SL, Peterson BJ, Chuter VH. Cutaneous microvascular reactivity in Charcot neuroarthropathy: a systematic review and meta-analysis. J Foot Ankle Res. 2022;15(1):17.PubMedPubMedCentralCrossRef Lanting SM, Chan TL, Casey SL, Peterson BJ, Chuter VH. Cutaneous microvascular reactivity in Charcot neuroarthropathy: a systematic review and meta-analysis. J Foot Ankle Res. 2022;15(1):17.PubMedPubMedCentralCrossRef
230.
go back to reference Trujillo-Santos AJ. Diabetic muscle infarction: an underdiagnosed complication of long-standing Diabetes. Diabetes Care. 2003;26(1):211–5.PubMedCrossRef Trujillo-Santos AJ. Diabetic muscle infarction: an underdiagnosed complication of long-standing Diabetes. Diabetes Care. 2003;26(1):211–5.PubMedCrossRef
232.
go back to reference Habib GS, Nashashibi M, Saliba W, Haj S. Diabetic muscular infarction: emphasis on pathogenesis. Clin Rheumatol. 2003;22(6):450–1.PubMedCrossRef Habib GS, Nashashibi M, Saliba W, Haj S. Diabetic muscular infarction: emphasis on pathogenesis. Clin Rheumatol. 2003;22(6):450–1.PubMedCrossRef
233.
234.
go back to reference Ganokroj P, Boonchaya-Anant P. Diabetic muscle infarction: rare complication with a distinct clinical manifestation. BMJ Case Rep. 2019;12(4). Ganokroj P, Boonchaya-Anant P. Diabetic muscle infarction: rare complication with a distinct clinical manifestation. BMJ Case Rep. 2019;12(4).
235.
go back to reference Baum O, Bernd J, Becker S, Odriozola A, Zuber B, Tschanz SA, et al. Structural microangiopathies in skeletal muscle related to systemic vascular pathologies in humans. Front Physiol. 2020;11:28.PubMedPubMedCentralCrossRef Baum O, Bernd J, Becker S, Odriozola A, Zuber B, Tschanz SA, et al. Structural microangiopathies in skeletal muscle related to systemic vascular pathologies in humans. Front Physiol. 2020;11:28.PubMedPubMedCentralCrossRef
236.
go back to reference van Netten JJ, Bus SA, Apelqvist J, Lipsky BA, Hinchliffe RJ, Game F, et al. Definitions and criteria for diabetic foot Disease. Diabetes Metab Res Rev. 2020;36(Suppl 1):e3268.PubMedCrossRef van Netten JJ, Bus SA, Apelqvist J, Lipsky BA, Hinchliffe RJ, Game F, et al. Definitions and criteria for diabetic foot Disease. Diabetes Metab Res Rev. 2020;36(Suppl 1):e3268.PubMedCrossRef
237.
238.
go back to reference Coppelli A, Abbruzzese L, Goretti C, Iacopi E, Riitano N, Piaggesi A. Does Microangiopathy contribute to the pathogenesis of the Diabetic Foot Syndrome? The Diabetic Foot Syndrome. Volume 26. S.Karger AG; 2017. p. 0. Coppelli A, Abbruzzese L, Goretti C, Iacopi E, Riitano N, Piaggesi A. Does Microangiopathy contribute to the pathogenesis of the Diabetic Foot Syndrome? The Diabetic Foot Syndrome. Volume 26. S.Karger AG; 2017. p. 0.
239.
go back to reference Lepäntalo M, Apelqvist J, Setacci C, Ricco JB, de Donato G, Becker F, et al. Chapter V: Diabetic foot. Eur J Vasc Endovasc Surg. 2011;42(Suppl 2):60–74.CrossRef Lepäntalo M, Apelqvist J, Setacci C, Ricco JB, de Donato G, Becker F, et al. Chapter V: Diabetic foot. Eur J Vasc Endovasc Surg. 2011;42(Suppl 2):60–74.CrossRef
240.
go back to reference Balasubramanian GV, Chockalingam N, Naemi R. The role of cutaneous microcirculatory responses in tissue Injury, inflammation and repair at the foot in Diabetes. Front Bioeng Biotechnol. 2021;9. Balasubramanian GV, Chockalingam N, Naemi R. The role of cutaneous microcirculatory responses in tissue Injury, inflammation and repair at the foot in Diabetes. Front Bioeng Biotechnol. 2021;9.
241.
go back to reference Fiordaliso F, Clerici G, Maggioni S, Caminiti M, Bisighini C, Novelli D, et al. Prospective study on microangiopathy in type 2 diabetic foot Ulcer. Diabetologia. 2016;59(7):1542–8.PubMedCrossRef Fiordaliso F, Clerici G, Maggioni S, Caminiti M, Bisighini C, Novelli D, et al. Prospective study on microangiopathy in type 2 diabetic foot Ulcer. Diabetologia. 2016;59(7):1542–8.PubMedCrossRef
242.
go back to reference Raja JM, Maturana MA, Kayali S, Khouzam A, Efeovbokhan N. Diabetic foot Ulcer: a comprehensive review of pathophysiology and management modalities. World J Clin Cases. 2023;11(8):1684–93.PubMedPubMedCentralCrossRef Raja JM, Maturana MA, Kayali S, Khouzam A, Efeovbokhan N. Diabetic foot Ulcer: a comprehensive review of pathophysiology and management modalities. World J Clin Cases. 2023;11(8):1684–93.PubMedPubMedCentralCrossRef
243.
go back to reference Tilton RG, Faller AM, Burkhardt JK, Hoffmann PL, Kilo C, Williamson JR. Pericyte degeneration and acellular capillaries are increased in the feet of human diabetic patients. Diabetologia. 1985;28(12):895–900.PubMedCrossRef Tilton RG, Faller AM, Burkhardt JK, Hoffmann PL, Kilo C, Williamson JR. Pericyte degeneration and acellular capillaries are increased in the feet of human diabetic patients. Diabetologia. 1985;28(12):895–900.PubMedCrossRef
244.
go back to reference Yusof MI, Al-Astani AD, Jaafar H, Rashid FA. Morphometric analysis of skin microvasculature in the diabetic foot. Singap Med J. 2008;49(2):100–4. Yusof MI, Al-Astani AD, Jaafar H, Rashid FA. Morphometric analysis of skin microvasculature in the diabetic foot. Singap Med J. 2008;49(2):100–4.
245.
go back to reference Rayman G, Malik RA, Sharma AK, Day JL. Microvascular response to tissue injury and capillary ultrastructure in the foot skin of type I diabetic patients. Clin Sci. 1995;89(5):467–74.CrossRef Rayman G, Malik RA, Sharma AK, Day JL. Microvascular response to tissue injury and capillary ultrastructure in the foot skin of type I diabetic patients. Clin Sci. 1995;89(5):467–74.CrossRef
246.
go back to reference Raskin P, Pietri AO, Unger R, Shannon WA. Jr. The effect of diabetic control on the width of skeletal-muscle capillary basement membrane in patients with type I Diabetes Mellitus. N Engl J Med. 1983;309(25):1546–50.PubMedCrossRef Raskin P, Pietri AO, Unger R, Shannon WA. Jr. The effect of diabetic control on the width of skeletal-muscle capillary basement membrane in patients with type I Diabetes Mellitus. N Engl J Med. 1983;309(25):1546–50.PubMedCrossRef
247.
go back to reference Rosenstock J, Challis P, Strowig S, Raskin P. Improved Diabetes control reduces skeletal muscle capillary basement membrane width in insulin-dependent Diabetes Mellitus. Diabetes Res Clin Pract. 1988;4(3):167–75.PubMedCrossRef Rosenstock J, Challis P, Strowig S, Raskin P. Improved Diabetes control reduces skeletal muscle capillary basement membrane width in insulin-dependent Diabetes Mellitus. Diabetes Res Clin Pract. 1988;4(3):167–75.PubMedCrossRef
248.
go back to reference Coccarelli A, Nelson MD. Modeling reactive hyperemia to Better Understand and assess microvascular function: a review of techniques. Ann Biomed Eng. 2023;51(3):479–92.PubMedPubMedCentralCrossRef Coccarelli A, Nelson MD. Modeling reactive hyperemia to Better Understand and assess microvascular function: a review of techniques. Ann Biomed Eng. 2023;51(3):479–92.PubMedPubMedCentralCrossRef
249.
go back to reference Chao CY, Cheing GL. Microvascular dysfunction in diabetic foot Disease and ulceration. Diabetes Metab Res Rev. 2009;25(7):604–14.PubMedCrossRef Chao CY, Cheing GL. Microvascular dysfunction in diabetic foot Disease and ulceration. Diabetes Metab Res Rev. 2009;25(7):604–14.PubMedCrossRef
250.
go back to reference Sharma S, Schaper N, Rayman G, Microangiopathy. Is it relevant to wound healing in diabetic foot Disease? Diabetes Metab Res Rev. 2020;36(Suppl 1):e3244.PubMedCrossRef Sharma S, Schaper N, Rayman G, Microangiopathy. Is it relevant to wound healing in diabetic foot Disease? Diabetes Metab Res Rev. 2020;36(Suppl 1):e3244.PubMedCrossRef
251.
252.
go back to reference Schramm JC, Dinh T, Veves A. Microvascular changes in the diabetic foot. Int J Low Extrem Wounds. 2006;5(3):149–59.PubMedCrossRef Schramm JC, Dinh T, Veves A. Microvascular changes in the diabetic foot. Int J Low Extrem Wounds. 2006;5(3):149–59.PubMedCrossRef
Metadata
Title
Diabetic microvascular disease in non-classical beds: the hidden impact beyond the retina, the kidney, and the peripheral nerves
Authors
Dídac Mauricio
Mònica Gratacòs
Josep Franch-Nadal
Publication date
15-11-2023

Other articles of this Issue 1/2023

Cardiovascular Diabetology 1/2023 Go to the issue