Skip to main content
Top
Published in: Angiogenesis 3/2017

Open Access 01-08-2017 | Review Paper

The role of vasculature in bone development, regeneration and proper systemic functioning

Authors: Joanna Filipowska, Krzysztof A. Tomaszewski, Łukasz Niedźwiedzki, Jerzy A. Walocha, Tadeusz Niedźwiedzki

Published in: Angiogenesis | Issue 3/2017

Login to get access

Abstract

Bone is a richly vascularized connective tissue. As the main source of oxygen, nutrients, hormones, neurotransmitters and growth factors delivered to the bone cells, vasculature is indispensable for appropriate bone development, regeneration and remodeling. Bone vasculature also orchestrates the process of hematopoiesis. Blood supply to the skeletal system is provided by the networks of arteries and arterioles, having distinct molecular characteristics and localizations within the bone structures. Blood vessels of the bone develop through the process of angiogenesis, taking place through different, bone-specific mechanisms. Impaired functioning of the bone blood vessels may be associated with the occurrence of some skeletal and systemic diseases, i.e., osteonecrosis, osteoporosis, atherosclerosis or diabetes mellitus. When a disease or trauma-related large bone defects appear, bone grafting or bone tissue engineering-based strategies are required. However, a successful bone regeneration in both approaches largely depends on a proper blood supply. In this paper, we review the most recent data on the functions, molecular characteristics and significance of the bone blood vessels, with a particular emphasis on the role of angiogenesis and blood vessel functioning in bone development and regeneration, as well as the consequences of its impairment in the course of different skeletal and systemic diseases.
Literature
1.
go back to reference Dai J, Rabie BM (2007) VEGF: an essential mediator of both angiogenesis and endochondral ossification. J Dent Res 86(10):937–950CrossRefPubMed Dai J, Rabie BM (2007) VEGF: an essential mediator of both angiogenesis and endochondral ossification. J Dent Res 86(10):937–950CrossRefPubMed
3.
go back to reference Huang B, Wang W, Li Q, Wang Z, Yan B, Zhang Z, Wang L, Huang M, Jia C, Lu J, Liu S, Chen H, Li M, Cai D, Jiang Y, Jin D, Bai X (2016) Osteoblasts secrete Cxcl9 to regulate angiogenesis in bone. Nat Commun 7:13885CrossRefPubMedPubMedCentral Huang B, Wang W, Li Q, Wang Z, Yan B, Zhang Z, Wang L, Huang M, Jia C, Lu J, Liu S, Chen H, Li M, Cai D, Jiang Y, Jin D, Bai X (2016) Osteoblasts secrete Cxcl9 to regulate angiogenesis in bone. Nat Commun 7:13885CrossRefPubMedPubMedCentral
5.
go back to reference Niedźwiedzki T, Filipowska J (2015) Bone remodeling in the context of cellular and systemic regulation: the role of osteocytes and the nervous system. J Mol Endocrinol 55(2):R23–R36CrossRefPubMed Niedźwiedzki T, Filipowska J (2015) Bone remodeling in the context of cellular and systemic regulation: the role of osteocytes and the nervous system. J Mol Endocrinol 55(2):R23–R36CrossRefPubMed
6.
go back to reference Brandi ML, Collin-Osdoby P (2006) Vascular biology and the skeleton. J Bone Miner Res 21(2):183–192CrossRefPubMed Brandi ML, Collin-Osdoby P (2006) Vascular biology and the skeleton. J Bone Miner Res 21(2):183–192CrossRefPubMed
7.
go back to reference Percival CJ (2013) The influence of angiogenesis on craniofacial development and evolution, Ph.D. Thesis, Penn State Percival CJ (2013) The influence of angiogenesis on craniofacial development and evolution, Ph.D. Thesis, Penn State
8.
go back to reference Percival CJ, Richtsmeier JT (2014) Angiogenesis and intramembranous osteogenesis. Dev Dyn 242(8):909–922CrossRef Percival CJ, Richtsmeier JT (2014) Angiogenesis and intramembranous osteogenesis. Dev Dyn 242(8):909–922CrossRef
9.
go back to reference Chan WP, Liu YJ, Huang GS, Lin MF, Huang S, Chang YC, Jiang CC (2011) Relationship of idiopathic osteonecrosis of the femoral head to perfusion changes in the proximal femur by dynamic contrast-enhanced MRI. AJR Am J Roentgenol 196(3):637–643CrossRefPubMed Chan WP, Liu YJ, Huang GS, Lin MF, Huang S, Chang YC, Jiang CC (2011) Relationship of idiopathic osteonecrosis of the femoral head to perfusion changes in the proximal femur by dynamic contrast-enhanced MRI. AJR Am J Roentgenol 196(3):637–643CrossRefPubMed
10.
go back to reference Hayashi S, Kim JH, Hwang SE, Shibata S, Fujimiya M, Murakami G, Cho BH (2014) Interface between intramembranous and endochondral ossification in human foetuses. Folia Morphol (Warsz) 73(2):199–205CrossRef Hayashi S, Kim JH, Hwang SE, Shibata S, Fujimiya M, Murakami G, Cho BH (2014) Interface between intramembranous and endochondral ossification in human foetuses. Folia Morphol (Warsz) 73(2):199–205CrossRef
12.
go back to reference Liu Y, Olsen BR (2014) Distinct VEGF functions during bone development and homeostasis. Arch Immunol Ther Exp (Warsz) 62(5):363–368CrossRef Liu Y, Olsen BR (2014) Distinct VEGF functions during bone development and homeostasis. Arch Immunol Ther Exp (Warsz) 62(5):363–368CrossRef
13.
go back to reference Hu K, Olsen BR (2016) Osteoblast-derived VEGF regulates osteoblast differentiation and bone formation during bone repair. J Clin Investig 126(2):509–526CrossRefPubMedPubMedCentral Hu K, Olsen BR (2016) Osteoblast-derived VEGF regulates osteoblast differentiation and bone formation during bone repair. J Clin Investig 126(2):509–526CrossRefPubMedPubMedCentral
14.
go back to reference Maes C, Carmeliet P, Moermans K, Stockmans I, Smets N, Collen D, Carmeliet G (2002) Impaired angiogenesis and endochondral bone formation in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Mech Dev 111(1–2):61–73CrossRefPubMed Maes C, Carmeliet P, Moermans K, Stockmans I, Smets N, Collen D, Carmeliet G (2002) Impaired angiogenesis and endochondral bone formation in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Mech Dev 111(1–2):61–73CrossRefPubMed
15.
go back to reference Azimi-Nezhad M (2014) Vascular endothelial growth factor from embryonic status to cardiovascular pathology. Rep Biochem Mol Biol 2(2):59–69PubMedPubMedCentral Azimi-Nezhad M (2014) Vascular endothelial growth factor from embryonic status to cardiovascular pathology. Rep Biochem Mol Biol 2(2):59–69PubMedPubMedCentral
16.
go back to reference Maes C, Stockmans I, Moermans K, Van Looveren R, Smets N, Carmeliet P, Carmeliet G (2004) Soluble VEGF isoforms are essential for establishing epiphyseal vascularization and regulating chondrocyte development and survival. J Clin Investig 113(2):188–199CrossRefPubMedPubMedCentral Maes C, Stockmans I, Moermans K, Van Looveren R, Smets N, Carmeliet P, Carmeliet G (2004) Soluble VEGF isoforms are essential for establishing epiphyseal vascularization and regulating chondrocyte development and survival. J Clin Investig 113(2):188–199CrossRefPubMedPubMedCentral
17.
go back to reference Maes C, Goossens S, Bartunkova S, Drogat B, Coenegrachts L, Stockmans I, Haigh JJ (2010) Increased skeletal VEGF enhances beta-catenin activity and results in excessively ossified bones. EMBO J 29(2):424–441CrossRefPubMed Maes C, Goossens S, Bartunkova S, Drogat B, Coenegrachts L, Stockmans I, Haigh JJ (2010) Increased skeletal VEGF enhances beta-catenin activity and results in excessively ossified bones. EMBO J 29(2):424–441CrossRefPubMed
18.
go back to reference Ben Shoham A, Rot C, Stern T, Krief S, Akiva A, Dadosh T, Zelzer E (2016) Deposition of collagen type I onto skeletal endothelium reveals a new role for blood vessels in regulating bone morphology. Development 143(21):3933–3943CrossRefPubMedPubMedCentral Ben Shoham A, Rot C, Stern T, Krief S, Akiva A, Dadosh T, Zelzer E (2016) Deposition of collagen type I onto skeletal endothelium reveals a new role for blood vessels in regulating bone morphology. Development 143(21):3933–3943CrossRefPubMedPubMedCentral
19.
go back to reference Skawina A, Litwin JA, Gorczyca J, Miodoński A (1994) Blood vessels in epiphyseal cartilage of human fetal femoral bone: a scanning electron microscopic study of corrosion casts. Anat Embryol (Berl) 189(5):457–462CrossRef Skawina A, Litwin JA, Gorczyca J, Miodoński A (1994) Blood vessels in epiphyseal cartilage of human fetal femoral bone: a scanning electron microscopic study of corrosion casts. Anat Embryol (Berl) 189(5):457–462CrossRef
20.
go back to reference Thompson TJ, Owens PD, Wilson DJ (1989) Intramembranous osteogenesis and angiogenesis in the chick embryo. J Anat 166:55–65PubMedPubMedCentral Thompson TJ, Owens PD, Wilson DJ (1989) Intramembranous osteogenesis and angiogenesis in the chick embryo. J Anat 166:55–65PubMedPubMedCentral
21.
go back to reference Maes C, Kobayashi T, Selig MK, Torrekens S, Sanford I, Mackem S, Kronenberg HM (2010) Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. Dev Cell 19(2):329–344CrossRefPubMedPubMedCentral Maes C, Kobayashi T, Selig MK, Torrekens S, Sanford I, Mackem S, Kronenberg HM (2010) Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. Dev Cell 19(2):329–344CrossRefPubMedPubMedCentral
23.
go back to reference Patan S (2000) Vasculogenesis and angiogenesis as mechanisms of vascular network formation, growth and remodeling. J Neuro Oncol 50(1–2):1–15CrossRef Patan S (2000) Vasculogenesis and angiogenesis as mechanisms of vascular network formation, growth and remodeling. J Neuro Oncol 50(1–2):1–15CrossRef
24.
go back to reference Kanczler JM, Oreffo RO (2008) Osteogenesis and angiogenesis: the potential for engineering bone. Eur Cell Mater 15:100–114CrossRefPubMed Kanczler JM, Oreffo RO (2008) Osteogenesis and angiogenesis: the potential for engineering bone. Eur Cell Mater 15:100–114CrossRefPubMed
25.
go back to reference Portal-Núñez S, Lozano D, Esbrit P (2012) Role of angiogenesis on bone formation. Histol Histopathol 27(5):559–566PubMed Portal-Núñez S, Lozano D, Esbrit P (2012) Role of angiogenesis on bone formation. Histol Histopathol 27(5):559–566PubMed
26.
go back to reference Breier G, Albrecht U, Sterrer S, Risau W (1992) Expression of vascular endothelial growth factor during embryonic angiogenesis and endothelial cell differentiation. Development 114(2):521–532PubMed Breier G, Albrecht U, Sterrer S, Risau W (1992) Expression of vascular endothelial growth factor during embryonic angiogenesis and endothelial cell differentiation. Development 114(2):521–532PubMed
27.
go back to reference Wiszniak S, Mackenzie FE, Anderson P, Kabbara S, Ruhrberg C, Schwarz Q (2015) Neural crest cell-derived VEGF promotes embryonic jaw extension. Proc Natl Acad Sci USA 112(19):6086–6091CrossRefPubMedPubMedCentral Wiszniak S, Mackenzie FE, Anderson P, Kabbara S, Ruhrberg C, Schwarz Q (2015) Neural crest cell-derived VEGF promotes embryonic jaw extension. Proc Natl Acad Sci USA 112(19):6086–6091CrossRefPubMedPubMedCentral
28.
go back to reference Trueta J, Harrison H (1953) The normal vascular anatomy of the femoral head in adult man. J Bone Jt Surg Br 35–B(3):442–461 Trueta J, Harrison H (1953) The normal vascular anatomy of the femoral head in adult man. J Bone Jt Surg Br 35–B(3):442–461
29.
go back to reference Trueta J, Morgan JD (1960) The vascular contribution to osteogenesis. I. Studies by the injection method. J Bone Jt Surg Br 42–B:97–109 Trueta J, Morgan JD (1960) The vascular contribution to osteogenesis. I. Studies by the injection method. J Bone Jt Surg Br 42–B:97–109
31.
go back to reference Skawina A (1982) Nutrient foramina in femoral, tibial and fibular bones in human fetuses. Folia Morphol (Warsz) 41(4):469–481 Skawina A (1982) Nutrient foramina in femoral, tibial and fibular bones in human fetuses. Folia Morphol (Warsz) 41(4):469–481
32.
go back to reference Skawina A (1986) Cortical vascularization of the femoral, tibial and fibular bones during prenatal development. Folia Morphol (Warsz) 45(4):290–295 Skawina A (1986) Cortical vascularization of the femoral, tibial and fibular bones during prenatal development. Folia Morphol (Warsz) 45(4):290–295
33.
go back to reference Skawina A, Litwin JA, Gorczyca J, Miodoński AJ (1997) The architecture of internal blood vessels in human fetal vertebral bodies. J Anat 191:259–267CrossRefPubMedPubMedCentral Skawina A, Litwin JA, Gorczyca J, Miodoński AJ (1997) The architecture of internal blood vessels in human fetal vertebral bodies. J Anat 191:259–267CrossRefPubMedPubMedCentral
34.
go back to reference Georgia R, Albu I, Sicoe M, Georoceanu M (1982) Comparative aspects of the density and diameter of Haversian canals in the diaphyseal compact bone of man and dog. Morphol Embryol (Bucur) 28(1):11–14 Georgia R, Albu I, Sicoe M, Georoceanu M (1982) Comparative aspects of the density and diameter of Haversian canals in the diaphyseal compact bone of man and dog. Morphol Embryol (Bucur) 28(1):11–14
35.
go back to reference Brookes M, Elkin AC, Harrison RG, Heald C (1961) A new concept of capillary circulation in bone cortex: some clinical applications. Lancet 277(7186):1078–1081CrossRef Brookes M, Elkin AC, Harrison RG, Heald C (1961) A new concept of capillary circulation in bone cortex: some clinical applications. Lancet 277(7186):1078–1081CrossRef
36.
go back to reference Shin KJ, Kim JN, Lee SH, Paik DJ, Song WC, Koh KS, Gil YC (2016) Arterial supply and anastomotic pattern of the infraspinous fossa focusing on the surgical significance. J Plast Reconstr Aesthet Surg 69(4):512–518CrossRefPubMed Shin KJ, Kim JN, Lee SH, Paik DJ, Song WC, Koh KS, Gil YC (2016) Arterial supply and anastomotic pattern of the infraspinous fossa focusing on the surgical significance. J Plast Reconstr Aesthet Surg 69(4):512–518CrossRefPubMed
37.
go back to reference Trias A, Fery A (1979) Cortical circulation of long bones. J Bone Jt Surg Am 61(7):1052–1059CrossRef Trias A, Fery A (1979) Cortical circulation of long bones. J Bone Jt Surg Am 61(7):1052–1059CrossRef
38.
go back to reference Aharinejad S, Marks SC Jr, Böck P, MacKay CA, Larson EK, Tahamtani A, Mason-Savas A, Firbas W (1995) Microvascular pattern in the metaphysis during bone growth. Anat Rec 242(1):111–122CrossRefPubMed Aharinejad S, Marks SC Jr, Böck P, MacKay CA, Larson EK, Tahamtani A, Mason-Savas A, Firbas W (1995) Microvascular pattern in the metaphysis during bone growth. Anat Rec 242(1):111–122CrossRefPubMed
39.
go back to reference Kobayashi S, Mwaka ES, Baba H, Takeno K, Miyazaki T, Matsuo H, Meir A (2010) Microvascular system of the lumbar dorsal root ganglia in rats. Part I: a 3D analysis with scanning electron microscopy of vascular corrosion casts. J Neurosurg Spine 12(2):197–202CrossRefPubMed Kobayashi S, Mwaka ES, Baba H, Takeno K, Miyazaki T, Matsuo H, Meir A (2010) Microvascular system of the lumbar dorsal root ganglia in rats. Part I: a 3D analysis with scanning electron microscopy of vascular corrosion casts. J Neurosurg Spine 12(2):197–202CrossRefPubMed
40.
go back to reference Yang M, Yang L (2012) A simple method to detect human intraosseous vascular structures: using the calcaneus as an example. Surg Radiol Anat 34(9):839–846CrossRefPubMed Yang M, Yang L (2012) A simple method to detect human intraosseous vascular structures: using the calcaneus as an example. Surg Radiol Anat 34(9):839–846CrossRefPubMed
41.
go back to reference Shenk R (1998) Biology of fracture repair. In: Brown BD, Jupiter JB, Levine AM et al (eds) Skeletal trauma: fractures, dislocations, ligamentous bone injuries, 2nd edn. W. B. Saunders, Philadelphia Shenk R (1998) Biology of fracture repair. In: Brown BD, Jupiter JB, Levine AM et al (eds) Skeletal trauma: fractures, dislocations, ligamentous bone injuries, 2nd edn. W. B. Saunders, Philadelphia
42.
go back to reference Pazzaglia UE, Congiu T, Raspanti M, Ranchetti F, Quacci D (2009) Anatomy of the intracortical canal system: scanning electron microscopy study in rabbit femur. Clin Orthop Relat Res 467(9):2446–2456CrossRefPubMedPubMedCentral Pazzaglia UE, Congiu T, Raspanti M, Ranchetti F, Quacci D (2009) Anatomy of the intracortical canal system: scanning electron microscopy study in rabbit femur. Clin Orthop Relat Res 467(9):2446–2456CrossRefPubMedPubMedCentral
43.
go back to reference Brookes M, Revell WJ (eds) (1998) Blood supply of flat bones. In: Blood supply of bone. Springer, London Brookes M, Revell WJ (eds) (1998) Blood supply of flat bones. In: Blood supply of bone. Springer, London
44.
go back to reference Flanagan D (2003) Important arterial supply of the mandible, control of an arterial hemorrhage, and report of a hemorrhagic incident. J Oral Implantol 29(4):165–173CrossRefPubMed Flanagan D (2003) Important arterial supply of the mandible, control of an arterial hemorrhage, and report of a hemorrhagic incident. J Oral Implantol 29(4):165–173CrossRefPubMed
45.
go back to reference Pannarale L, Morini S, D’Ubaldo E, Gaudio E, Marinozzi G (1997) SEM corrosion-casts study of the microcirculation of the flat bones in the rat. Anat Rec 247(4):462–471CrossRefPubMed Pannarale L, Morini S, D’Ubaldo E, Gaudio E, Marinozzi G (1997) SEM corrosion-casts study of the microcirculation of the flat bones in the rat. Anat Rec 247(4):462–471CrossRefPubMed
46.
47.
go back to reference Acar M, Kocherlakota KS, Murphy MM, Peyer JG, Oguro H, Inra CN, Jaiyeola C, Zhao Z, Luby-Phelps K, Morrison SJ (2015) Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal. Nature 526(7571):126–130CrossRefPubMedPubMedCentral Acar M, Kocherlakota KS, Murphy MM, Peyer JG, Oguro H, Inra CN, Jaiyeola C, Zhao Z, Luby-Phelps K, Morrison SJ (2015) Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal. Nature 526(7571):126–130CrossRefPubMedPubMedCentral
48.
go back to reference Kunisaki Y, Bruns I, Scheiermann C, Ahmed J, Pinho S, Zhang D, Mizoguchi T, Wei Q, Lucas D, Ito K, Mar JC, Bergman A, Frenette P (2013) Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 502(7473):637–643CrossRefPubMedPubMedCentral Kunisaki Y, Bruns I, Scheiermann C, Ahmed J, Pinho S, Zhang D, Mizoguchi T, Wei Q, Lucas D, Ito K, Mar JC, Bergman A, Frenette P (2013) Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 502(7473):637–643CrossRefPubMedPubMedCentral
49.
go back to reference Kusumbe AP, Ramasamy SK, Itkin T, Mäe MA, Langen UH, Betsholtz C, Lapidot T, Adams RH (2016) Age-dependent modulation of vascular niches for haematopoietic stem cells. Nature 532(7599):380–384CrossRefPubMedPubMedCentral Kusumbe AP, Ramasamy SK, Itkin T, Mäe MA, Langen UH, Betsholtz C, Lapidot T, Adams RH (2016) Age-dependent modulation of vascular niches for haematopoietic stem cells. Nature 532(7599):380–384CrossRefPubMedPubMedCentral
50.
go back to reference Itkin T, Gur-Cohen S, Spencer JA, Schajnovitz A, Ramasamy SK, Kusumbe AP, Ledergor G, Jung Y, Milo I, Poulos MG, Kalinkovich A, Ludin A, Kollet O, Shakhar G, Butler JM, Rafii S, Adams RH, Scadden DT, Lin CP, Lapidot T (2016) Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature 532(7599):323–328CrossRefPubMed Itkin T, Gur-Cohen S, Spencer JA, Schajnovitz A, Ramasamy SK, Kusumbe AP, Ledergor G, Jung Y, Milo I, Poulos MG, Kalinkovich A, Ludin A, Kollet O, Shakhar G, Butler JM, Rafii S, Adams RH, Scadden DT, Lin CP, Lapidot T (2016) Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature 532(7599):323–328CrossRefPubMed
51.
52.
54.
go back to reference Eman RM, Meijer HA, Oner FC, Dhert WJ, Alblas J (2016) Establishment of an early vascular network promotes the formation of ectopic bone. Tissue Eng Part A 22(3–4):253–262CrossRefPubMed Eman RM, Meijer HA, Oner FC, Dhert WJ, Alblas J (2016) Establishment of an early vascular network promotes the formation of ectopic bone. Tissue Eng Part A 22(3–4):253–262CrossRefPubMed
56.
go back to reference Schipani E, Maes C, Carmeliet G, Semenza GL (2009) Perspective regulation of osteogenesis-angiogenesis coupling by HIFs and VEGF. J Bone Miner Res 2424(8):1347–1353CrossRef Schipani E, Maes C, Carmeliet G, Semenza GL (2009) Perspective regulation of osteogenesis-angiogenesis coupling by HIFs and VEGF. J Bone Miner Res 2424(8):1347–1353CrossRef
57.
go back to reference Cui M, Kanemoto S, Cui X, Kaneko M, Asada R, Matsuhisa K, Imaizumi K (2015) OASIS modulates hypoxia pathway activity to regulate bone angiogenesis. Sci Rep 5:16455CrossRefPubMedPubMedCentral Cui M, Kanemoto S, Cui X, Kaneko M, Asada R, Matsuhisa K, Imaizumi K (2015) OASIS modulates hypoxia pathway activity to regulate bone angiogenesis. Sci Rep 5:16455CrossRefPubMedPubMedCentral
59.
go back to reference Pouya F, Kerachian M (2015) Avascular necrosis of the femoral head: are any genes involved? Arch Bone Jt Surg 3(3):149–155PubMedPubMedCentral Pouya F, Kerachian M (2015) Avascular necrosis of the femoral head: are any genes involved? Arch Bone Jt Surg 3(3):149–155PubMedPubMedCentral
60.
go back to reference Feng Y, Yang SH, Xiao BJ, Xu WH, Ye SN, Xia T, Liao YF (2010) Decreased in the number and function of circulation endothelial progenitor cells in patients with avascular necrosis of the femoral head. Bone 46(1):32–40CrossRefPubMed Feng Y, Yang SH, Xiao BJ, Xu WH, Ye SN, Xia T, Liao YF (2010) Decreased in the number and function of circulation endothelial progenitor cells in patients with avascular necrosis of the femoral head. Bone 46(1):32–40CrossRefPubMed
61.
go back to reference Asahara T, Murohara T, Sullivan A, Silver M, Van R, Asahara T, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275(5302):964–967CrossRefPubMed Asahara T, Murohara T, Sullivan A, Silver M, Van R, Asahara T, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275(5302):964–967CrossRefPubMed
62.
go back to reference Lee DY, Cho TJ, Kim JA, Lee HR, Yoo WJ, Chung CY, Choi IH (2008) Mobilization of endothelial progenitor cells in fracture healing and distraction osteogenesis. Bone 42(5):932–941CrossRefPubMed Lee DY, Cho TJ, Kim JA, Lee HR, Yoo WJ, Chung CY, Choi IH (2008) Mobilization of endothelial progenitor cells in fracture healing and distraction osteogenesis. Bone 42(5):932–941CrossRefPubMed
63.
go back to reference Matsumoto T, Mifune Y, Kawamoto A, Kuroda R, Shoji T, Iwasaki H, Asahara T (2008) Fracture induced mobilization and incorporation of bone marrow-derived endothelial progenitor cells for bone healing. J Cell Physiol 215(1):234–242CrossRefPubMed Matsumoto T, Mifune Y, Kawamoto A, Kuroda R, Shoji T, Iwasaki H, Asahara T (2008) Fracture induced mobilization and incorporation of bone marrow-derived endothelial progenitor cells for bone healing. J Cell Physiol 215(1):234–242CrossRefPubMed
64.
go back to reference Zhao Q, Shen X, Zhang W, Zhu G, Qi J, Deng L (2012) Mice with increased angiogenesis and osteogenesis due to conditional activation of HIF pathway in osteoblasts are protected from ovariectomy induced bone loss. Bone 50(3):763–770CrossRefPubMed Zhao Q, Shen X, Zhang W, Zhu G, Qi J, Deng L (2012) Mice with increased angiogenesis and osteogenesis due to conditional activation of HIF pathway in osteoblasts are protected from ovariectomy induced bone loss. Bone 50(3):763–770CrossRefPubMed
65.
go back to reference Liu X, Tu Y, Zhang L, Qi J, Ma T, Deng L (2014) Prolyl hydroxylase inhibitors protect from the bone loss in ovariectomy rats by increasing bone vascularity. Cell Biochem Biophys 69(1):141–149CrossRefPubMed Liu X, Tu Y, Zhang L, Qi J, Ma T, Deng L (2014) Prolyl hydroxylase inhibitors protect from the bone loss in ovariectomy rats by increasing bone vascularity. Cell Biochem Biophys 69(1):141–149CrossRefPubMed
66.
go back to reference Peng J, Hui K, Hao C, Peng Z, Gao QX, Jin Q, Fu DL (2016) Low bone turnover and reduced angiogenesis in streptozotocin-induced osteoporotic mice. Connect Tissue Res 57(4):277–289CrossRefPubMed Peng J, Hui K, Hao C, Peng Z, Gao QX, Jin Q, Fu DL (2016) Low bone turnover and reduced angiogenesis in streptozotocin-induced osteoporotic mice. Connect Tissue Res 57(4):277–289CrossRefPubMed
67.
go back to reference Stabley JN, Prisby RD, Behnke BJ, Delp MD (2015) Type 2 diabetes alters bone and marrow blood flow and vascular control mechanisms in the ZDF rat. J Endocrinol 225(1):47–58CrossRefPubMedPubMedCentral Stabley JN, Prisby RD, Behnke BJ, Delp MD (2015) Type 2 diabetes alters bone and marrow blood flow and vascular control mechanisms in the ZDF rat. J Endocrinol 225(1):47–58CrossRefPubMedPubMedCentral
68.
go back to reference Oikawa A, Siragusa M, Quaini F, Katare RG, Caporali A, Buul JD, Van Madeddu P (2013) Diabetes mellitus induces bone marrow microangiopathy. Arterioscler Thromb Vasc Biol 30(3):498–508CrossRef Oikawa A, Siragusa M, Quaini F, Katare RG, Caporali A, Buul JD, Van Madeddu P (2013) Diabetes mellitus induces bone marrow microangiopathy. Arterioscler Thromb Vasc Biol 30(3):498–508CrossRef
69.
go back to reference Peng J, Qu H, Peng J, Luo TY, Lv FJ, Chen L, Cheng QF (2016) Abnormal spontaneous brain activity in type 2 diabetes with and without microangiopathy revealed by regional homogeneity. Eur J Radiol 85(3):607–615CrossRefPubMed Peng J, Qu H, Peng J, Luo TY, Lv FJ, Chen L, Cheng QF (2016) Abnormal spontaneous brain activity in type 2 diabetes with and without microangiopathy revealed by regional homogeneity. Eur J Radiol 85(3):607–615CrossRefPubMed
70.
go back to reference Portal-Núñez S, Ardura JA, Lozano D, Bolívar OH, López-Herradón A, Gutiérrez-Rojas I, Proctor A, van der Eerden B, Schreuders-Koedam M, van Leeuwen J, Alcaraz MJ, Mulero F, de la Fuente M, Esbrit P (2016) Adverse effects of diabetes mellitus on the skeleton of aging mice. J Gerontol A Biol Sci Med Sci 71(3):290–299CrossRefPubMed Portal-Núñez S, Ardura JA, Lozano D, Bolívar OH, López-Herradón A, Gutiérrez-Rojas I, Proctor A, van der Eerden B, Schreuders-Koedam M, van Leeuwen J, Alcaraz MJ, Mulero F, de la Fuente M, Esbrit P (2016) Adverse effects of diabetes mellitus on the skeleton of aging mice. J Gerontol A Biol Sci Med Sci 71(3):290–299CrossRefPubMed
71.
go back to reference Bandeira E, Neves AP, Costa C, Bandeira F (2012) Association between vascular calcification and osteoporosis in men with type 2 diabetes. J Clin Densitom 15(1):55–60CrossRefPubMed Bandeira E, Neves AP, Costa C, Bandeira F (2012) Association between vascular calcification and osteoporosis in men with type 2 diabetes. J Clin Densitom 15(1):55–60CrossRefPubMed
72.
go back to reference Yamagishi S, Nakamura N (2015) Advanced glycation end products: a molecular target for vascular complications in diabetes. Mol Med 21(suppl 1):S32–S34CrossRefPubMedPubMedCentral Yamagishi S, Nakamura N (2015) Advanced glycation end products: a molecular target for vascular complications in diabetes. Mol Med 21(suppl 1):S32–S34CrossRefPubMedPubMedCentral
73.
go back to reference Prasad M, Reriani M, Khosla S, Gössl M, Lennon R, Gulati R, Lerman A (2014) Coronary microvascular endothelial dysfunction is an independent predictor of development of osteoporosis in postmenopausal women. Vasc Health Risk Manag 10:533–538PubMedPubMedCentral Prasad M, Reriani M, Khosla S, Gössl M, Lennon R, Gulati R, Lerman A (2014) Coronary microvascular endothelial dysfunction is an independent predictor of development of osteoporosis in postmenopausal women. Vasc Health Risk Manag 10:533–538PubMedPubMedCentral
74.
go back to reference Liu Y, Almeida M, Weinstein RS, O’Brien CA, Manolagas SC, Jilka RL (2016) Skeletal inflammation and attenuation of Wnt signaling, Wnt ligand expression and bone formation in atherosclerotic ApoE null mice. Am J Physiol Endocrinol Metab 310(9):E762–E773CrossRefPubMed Liu Y, Almeida M, Weinstein RS, O’Brien CA, Manolagas SC, Jilka RL (2016) Skeletal inflammation and attenuation of Wnt signaling, Wnt ligand expression and bone formation in atherosclerotic ApoE null mice. Am J Physiol Endocrinol Metab 310(9):E762–E773CrossRefPubMed
75.
go back to reference Li Y, Zhang CG, Wang XH, Liu DH (2016) Progression of atherosclerosis in ApoE-knockout mice fed on a high-fat diet. Eur Rev Med Pharmacol Sci 20(18):3863–3867PubMed Li Y, Zhang CG, Wang XH, Liu DH (2016) Progression of atherosclerosis in ApoE-knockout mice fed on a high-fat diet. Eur Rev Med Pharmacol Sci 20(18):3863–3867PubMed
76.
go back to reference Pederson WC, Person DW (2007) Long bone reconstruction with vascularized bone grafts. Orthop Clin North Am 38(1):23–35CrossRefPubMed Pederson WC, Person DW (2007) Long bone reconstruction with vascularized bone grafts. Orthop Clin North Am 38(1):23–35CrossRefPubMed
77.
go back to reference Zhao D, Liu B, Wang B, Yang L, Xie H, Huang S, Wei X (2015) Autologous bone marrow mesenchymal stem cells associated with tantalum rod implantation and vascularized iliac grafting for the treatment of end-stage osteonecrosis of the femoral head. BioMed Res Int. doi:10.1155/2015/240506 Zhao D, Liu B, Wang B, Yang L, Xie H, Huang S, Wei X (2015) Autologous bone marrow mesenchymal stem cells associated with tantalum rod implantation and vascularized iliac grafting for the treatment of end-stage osteonecrosis of the femoral head. BioMed Res Int. doi:10.​1155/​2015/​240506
78.
go back to reference Oryan A, Alidadi S, Moshiri A, Maffulli N (2014) Bone regenerative medicine: classic options, novel strategies, and future directions. J Orthop Surg Res 9(1):18CrossRefPubMedPubMedCentral Oryan A, Alidadi S, Moshiri A, Maffulli N (2014) Bone regenerative medicine: classic options, novel strategies, and future directions. J Orthop Surg Res 9(1):18CrossRefPubMedPubMedCentral
79.
go back to reference Sathy BN, Mony U, Menon D, Baskaran VK, Mikos AG, Nair S (2015) Bone tissue engineering with multilayered scaffolds-Part I: an approach for vascularizing engineered constructs in vivo. Tissue Eng Part A 21(19–20):2480–2494CrossRefPubMedPubMedCentral Sathy BN, Mony U, Menon D, Baskaran VK, Mikos AG, Nair S (2015) Bone tissue engineering with multilayered scaffolds-Part I: an approach for vascularizing engineered constructs in vivo. Tissue Eng Part A 21(19–20):2480–2494CrossRefPubMedPubMedCentral
80.
go back to reference Wei J, Herrler T, Dai C, Liu K, Han D, Li Q (2016) Guided self-generation of vascularized neo-bone for autologous reconstruction of large mandibular defects. J Craniofac Surg 27(4):958–962CrossRefPubMed Wei J, Herrler T, Dai C, Liu K, Han D, Li Q (2016) Guided self-generation of vascularized neo-bone for autologous reconstruction of large mandibular defects. J Craniofac Surg 27(4):958–962CrossRefPubMed
81.
82.
go back to reference Weigand A, Beier JP, Hess A, Gerber T, Arkudas A, Horch RE, Boos AM (2015) Acceleration of vascularized bone tissue-engineered constructs in a large animal model combining intrinsic and extrinsic vascularization. Tissue Eng Part A 21(9–10):1680–1694CrossRefPubMed Weigand A, Beier JP, Hess A, Gerber T, Arkudas A, Horch RE, Boos AM (2015) Acceleration of vascularized bone tissue-engineered constructs in a large animal model combining intrinsic and extrinsic vascularization. Tissue Eng Part A 21(9–10):1680–1694CrossRefPubMed
83.
go back to reference Zhang C, Ma J, Li M, Li XH, Dang XQ, Wang KZ (2015) Repair effect of coexpression of the hVEGF and hBMP genes via an adeno-associated virus vector in a rabbit model of early steroid-induced avascular necrosis of the femoral head. Transl Res 166(3):269–280CrossRefPubMed Zhang C, Ma J, Li M, Li XH, Dang XQ, Wang KZ (2015) Repair effect of coexpression of the hVEGF and hBMP genes via an adeno-associated virus vector in a rabbit model of early steroid-induced avascular necrosis of the femoral head. Transl Res 166(3):269–280CrossRefPubMed
84.
go back to reference Cao K, Huang W, An H, Jiang D, Shu Y, Han Z (2009) Deproteinized bone with VEGF gene transfer to facilitate the repair of early avascular necrosis of femoral head of rabbit. Chin J Traumatol 12(5):269–274PubMed Cao K, Huang W, An H, Jiang D, Shu Y, Han Z (2009) Deproteinized bone with VEGF gene transfer to facilitate the repair of early avascular necrosis of femoral head of rabbit. Chin J Traumatol 12(5):269–274PubMed
Metadata
Title
The role of vasculature in bone development, regeneration and proper systemic functioning
Authors
Joanna Filipowska
Krzysztof A. Tomaszewski
Łukasz Niedźwiedzki
Jerzy A. Walocha
Tadeusz Niedźwiedzki
Publication date
01-08-2017
Publisher
Springer Netherlands
Published in
Angiogenesis / Issue 3/2017
Print ISSN: 0969-6970
Electronic ISSN: 1573-7209
DOI
https://doi.org/10.1007/s10456-017-9541-1

Other articles of this Issue 3/2017

Angiogenesis 3/2017 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.