Skip to main content
Top
Published in: Current Osteoporosis Reports 5/2022

12-08-2022 | Fracture Healing | Bone and Diabetes (A Schwartz and P Vestergaard, Section Editors)

Diabetes and Impaired Fracture Healing: A Narrative Review of Recent Literature

Authors: Mina Tanios, Bradley Brickman, Emily Cage, Kassem Abbas, Cody Smith, Marina Atallah, Sudipta Baroi, Beata Lecka-Czernik

Published in: Current Osteoporosis Reports | Issue 5/2022

Login to get access

Abstract

Purpose of the Review

Diabetes mellitus is a chronic metabolic disorder commonly encountered in orthopedic patients. Both type 1 and type 2 diabetes mellitus increase fracture risk and impair fracture healing. This review examines complex etiology of impaired fracture healing in diabetes.

Recent Findings

Recent findings point to several mechanisms leading to orthopedic complications in diabetes. Hyperglycemia and chronic inflammation lead to increased formation of advanced glycation end products and generation of reactive oxygen species, which in turn contribute to the disruption in osteoblast and osteoclast balance leading to decreased bone formation and heightening the risk of nonunion or delayed union as well as impaired fracture healing. The mechanisms attributing to this imbalance is secondary to an increase in pro-inflammatory mediators leading to premature resorption of callus cartilage and impaired bone formation due to compromised osteoblast differentiation and their apoptosis. Other mechanisms include disruption in the bone’s microenvironment supporting different stages of healing process including hematoma and callus formation, and their resolution during bone remodeling phase. Complications of diabetes including peripheral neuropathy and peripheral vascular disease also contribute to the impairment of fracture healing. Certain diabetic drugs may have adverse effects on fracture healing.

Summary

The pathophysiology of impaired fracture healing in diabetic patients is complex. This review provides an update of the most recent findings on how key mediators of bone healing are affected in diabetes.
Literature
4.
go back to reference Ding ZC, et al. Do patients with diabetes have an increased risk of impaired fracture healing? A systematic review and meta-analysis. ANZ J Surgery. 2020;90(7-8):1259–64.CrossRef Ding ZC, et al. Do patients with diabetes have an increased risk of impaired fracture healing? A systematic review and meta-analysis. ANZ J Surgery. 2020;90(7-8):1259–64.CrossRef
5.
go back to reference Zura R, Xiong Z, Einhorn T, Watson JT, Ostrum RF, Prayson MJ, Della Rocca GJ, Mehta S, McKinley T, Wang Z, Steen RG. Epidemiology of fracture nonunion in 18 human bones. JAMA Surg. 2016;151(11):e162775.PubMedCrossRef Zura R, Xiong Z, Einhorn T, Watson JT, Ostrum RF, Prayson MJ, Della Rocca GJ, Mehta S, McKinley T, Wang Z, Steen RG. Epidemiology of fracture nonunion in 18 human bones. JAMA Surg. 2016;151(11):e162775.PubMedCrossRef
7.
go back to reference Schwartz AV. Diabetes, bone and glucose-lowering agents: clinical outcomes. Diabetologia. 2017;60(7):1170–9.PubMedCrossRef Schwartz AV. Diabetes, bone and glucose-lowering agents: clinical outcomes. Diabetologia. 2017;60(7):1170–9.PubMedCrossRef
8.
go back to reference Laurent MR, et al. Lower bone turnover and relative bone deficits in men with metabolic syndrome: a matter of insulin sensitivity? The European Male Ageing Study. Osteoporosis International. 2016;27(11):3227–37.PubMedCrossRef Laurent MR, et al. Lower bone turnover and relative bone deficits in men with metabolic syndrome: a matter of insulin sensitivity? The European Male Ageing Study. Osteoporosis International. 2016;27(11):3227–37.PubMedCrossRef
9.
go back to reference Hygum K, Starup-Linde J, Harsløf T, Vestergaard P, Langdahl BL. Mechanisms in endocrinology: diabetes mellitus, a state of low bone turnover–a systematic review and meta-analysis. European journal of endocrinology. 2017;176(3):R137–57.PubMedCrossRef Hygum K, Starup-Linde J, Harsløf T, Vestergaard P, Langdahl BL. Mechanisms in endocrinology: diabetes mellitus, a state of low bone turnover–a systematic review and meta-analysis. European journal of endocrinology. 2017;176(3):R137–57.PubMedCrossRef
10.
go back to reference Dhaliwal R, Ewing SK, Vashishth D, Semba RD, Schwartz AV. Greater carboxy-methyl-lysine is associated with increased fracture risk in type 2 diabetes. Journal of Bone and Mineral Research. 2022;37(2):265–72.PubMedCrossRef Dhaliwal R, Ewing SK, Vashishth D, Semba RD, Schwartz AV. Greater carboxy-methyl-lysine is associated with increased fracture risk in type 2 diabetes. Journal of Bone and Mineral Research. 2022;37(2):265–72.PubMedCrossRef
11.
go back to reference Samakkarnthai P, Sfeir JG, Atkinson EJ, Achenbach SJ, Wennberg PW, Dyck PJ, Tweed AJ, Volkman TL, Amin S, Farr JN, Vella A, Drake MT, Khosla S. Determinants of bone material strength and cortical porosity in patients with type 2 diabetes mellitus. The Journal of Clinical Endocrinology & Metabolism. 2020;105(10):e3718–29.CrossRef Samakkarnthai P, Sfeir JG, Atkinson EJ, Achenbach SJ, Wennberg PW, Dyck PJ, Tweed AJ, Volkman TL, Amin S, Farr JN, Vella A, Drake MT, Khosla S. Determinants of bone material strength and cortical porosity in patients with type 2 diabetes mellitus. The Journal of Clinical Endocrinology & Metabolism. 2020;105(10):e3718–29.CrossRef
12.
go back to reference Henderson S, Ibe I, Cahill S, Chung YH, Lee FY. Bone quality and fracture-healing in type-1 and type-2 diabetes mellitus. JBJS. 2019;101(15):1399–410.CrossRef Henderson S, Ibe I, Cahill S, Chung YH, Lee FY. Bone quality and fracture-healing in type-1 and type-2 diabetes mellitus. JBJS. 2019;101(15):1399–410.CrossRef
13.
go back to reference Claes L, Recknagel S, Ignatius A. Fracture healing under healthy and inflammatory conditions. Nature Reviews Rheumatology. 2012;8(3):133–43.PubMedCrossRef Claes L, Recknagel S, Ignatius A. Fracture healing under healthy and inflammatory conditions. Nature Reviews Rheumatology. 2012;8(3):133–43.PubMedCrossRef
14.
go back to reference Lafage-Proust M-H, Roche B, Langer M, Cleret D, vanden Bossche A, Olivier T, Vico L. Assessment of bone vascularization and its role in bone remodeling. BoneKEy reports. 2015;4:662.PubMedPubMedCentralCrossRef Lafage-Proust M-H, Roche B, Langer M, Cleret D, vanden Bossche A, Olivier T, Vico L. Assessment of bone vascularization and its role in bone remodeling. BoneKEy reports. 2015;4:662.PubMedPubMedCentralCrossRef
16.
go back to reference Doherty L, Wan M, Kalajzic I, Sanjay A. Diabetes impairs periosteal progenitor regenerative potential. Bone. 2021;143:115764.PubMedCrossRef Doherty L, Wan M, Kalajzic I, Sanjay A. Diabetes impairs periosteal progenitor regenerative potential. Bone. 2021;143:115764.PubMedCrossRef
17.
go back to reference Zhang E, Miramini S, Patel M, Richardson M, Ebeling P, Zhang L. Role of TNF-α in early-stage fracture healing under normal and diabetic conditions. Computer Methods and Programs in Biomedicine. 2022;213:106536.PubMedCrossRef Zhang E, Miramini S, Patel M, Richardson M, Ebeling P, Zhang L. Role of TNF-α in early-stage fracture healing under normal and diabetic conditions. Computer Methods and Programs in Biomedicine. 2022;213:106536.PubMedCrossRef
18.
go back to reference Marin C, Luyten FP, van der Schueren B, Kerckhofs G, Vandamme K. The impact of type 2 diabetes on bone fracture healing. Frontiers in Endocrinology. 2018;9:6.PubMedPubMedCentralCrossRef Marin C, Luyten FP, van der Schueren B, Kerckhofs G, Vandamme K. The impact of type 2 diabetes on bone fracture healing. Frontiers in Endocrinology. 2018;9:6.PubMedPubMedCentralCrossRef
19.
go back to reference Alharbi MA, Zhang C, Lu C, Milovanova TN, Yi L, Ryu JD, Jiao H, Dong G, O’Connor JP, Graves DT. FOXO1 deletion reverses the effect of diabetic-induced impaired fracture healing. Diabetes. 2018;67(12):2682–94.PubMedPubMedCentralCrossRef Alharbi MA, Zhang C, Lu C, Milovanova TN, Yi L, Ryu JD, Jiao H, Dong G, O’Connor JP, Graves DT. FOXO1 deletion reverses the effect of diabetic-induced impaired fracture healing. Diabetes. 2018;67(12):2682–94.PubMedPubMedCentralCrossRef
20.
go back to reference Sundararaghavan V, Mazur MM, Evans B, Liu J, Ebraheim NA. Diabetes and bone health: latest evidence and clinical implications. Therapeutic advances in musculoskeletal disease. 2017;9(3):67–74.PubMedPubMedCentralCrossRef Sundararaghavan V, Mazur MM, Evans B, Liu J, Ebraheim NA. Diabetes and bone health: latest evidence and clinical implications. Therapeutic advances in musculoskeletal disease. 2017;9(3):67–74.PubMedPubMedCentralCrossRef
21.
go back to reference Sun N, Ning B, Hansson KM, Bruce AC, Seaman SA, Zhang C, Rikard M, DeRosa CA, Fraser CL, Wågberg M, Fritsche-Danielson R, Wikström J, Chien KR, Lundahl A, Hölttä M, Carlsson LG, Peirce SM, Hu S. Modified VEGF-A mRNA induces sustained multifaceted microvascular response and accelerates diabetic wound healing. Scientific reports. 2018;8(1):1–11.CrossRef Sun N, Ning B, Hansson KM, Bruce AC, Seaman SA, Zhang C, Rikard M, DeRosa CA, Fraser CL, Wågberg M, Fritsche-Danielson R, Wikström J, Chien KR, Lundahl A, Hölttä M, Carlsson LG, Peirce SM, Hu S. Modified VEGF-A mRNA induces sustained multifaceted microvascular response and accelerates diabetic wound healing. Scientific reports. 2018;8(1):1–11.CrossRef
22.
go back to reference Ko KI, Syverson AL, Kralik RM, Choi J, DerGarabedian BP, Chen C, Graves DT. Diabetes-induced NF-κB dysregulation in skeletal stem cells prevents resolution of inflammation. Diabetes. 2019;68(11):2095–106.PubMedPubMedCentralCrossRef Ko KI, Syverson AL, Kralik RM, Choi J, DerGarabedian BP, Chen C, Graves DT. Diabetes-induced NF-κB dysregulation in skeletal stem cells prevents resolution of inflammation. Diabetes. 2019;68(11):2095–106.PubMedPubMedCentralCrossRef
23.
go back to reference Kalyanaraman H, Schwaerzer G, Ramdani G, Castillo F, Scott BT, Dillmann W, Sah RL, Casteel DE, Pilz RB. Protein kinase G activation reverses oxidative stress and restores osteoblast function and bone formation in male mice with type 1 diabetes. Diabetes. 2018;67(4):607–23.PubMedPubMedCentralCrossRef Kalyanaraman H, Schwaerzer G, Ramdani G, Castillo F, Scott BT, Dillmann W, Sah RL, Casteel DE, Pilz RB. Protein kinase G activation reverses oxidative stress and restores osteoblast function and bone formation in male mice with type 1 diabetes. Diabetes. 2018;67(4):607–23.PubMedPubMedCentralCrossRef
24.
go back to reference Schall N, Garcia JJ, Kalyanaraman H, China SP, Lee JJ, Sah RL, Pfeifer A, Pilz RB. Protein kinase G1 regulates bone regeneration and rescues diabetic fracture healing. JCI Insight. 2020;5(9):e135355. Schall N, Garcia JJ, Kalyanaraman H, China SP, Lee JJ, Sah RL, Pfeifer A, Pilz RB. Protein kinase G1 regulates bone regeneration and rescues diabetic fracture healing. JCI Insight. 2020;5(9):e135355.
25.
go back to reference Xu MT, Sun S, Zhang L, Xu F, Du SL, Zhang XD, Wang DW. Diabetes mellitus affects the biomechanical function of the callus and the expression of TGF-beta1 and BMP2 in an early stage of fracture healing. Braz J Med Biol Res. 2016;49(1):e4736. Xu MT, Sun S, Zhang L, Xu F, Du SL, Zhang XD, Wang DW. Diabetes mellitus affects the biomechanical function of the callus and the expression of TGF-beta1 and BMP2 in an early stage of fracture healing. Braz J Med Biol Res. 2016;49(1):e4736.
26.
go back to reference Jiang H, Wang Y, Meng J, Chen S, Wang J, Qiu Y, Zhao J, Guo T. Effects of transplanting bone marrow stromal cells transfected with CXCL13 on fracture healing of diabetic rats. Cellular Physiology and Biochemistry. 2018;49(1):123–33.PubMedCrossRef Jiang H, Wang Y, Meng J, Chen S, Wang J, Qiu Y, Zhao J, Guo T. Effects of transplanting bone marrow stromal cells transfected with CXCL13 on fracture healing of diabetic rats. Cellular Physiology and Biochemistry. 2018;49(1):123–33.PubMedCrossRef
27.
go back to reference Hoff P, Gaber T, Strehl C, Schmidt-Bleek K, Lang A, Huscher D, Burmester GR, Schmidmaier G, Perka C, Duda GN, Buttgereit F. Immunological characterization of the early human fracture hematoma. Immunologic research. 2016;64(5):1195–206.PubMedCrossRef Hoff P, Gaber T, Strehl C, Schmidt-Bleek K, Lang A, Huscher D, Burmester GR, Schmidmaier G, Perka C, Duda GN, Buttgereit F. Immunological characterization of the early human fracture hematoma. Immunologic research. 2016;64(5):1195–206.PubMedCrossRef
28.
go back to reference Liuni FM, Rugiero C, Feola M, Rao C, Pistillo P, Terracciano C, Giganti MG, Tarantino U. Impaired healing of fragility fractures in type 2 diabetes: clinical and radiographic assessments and serum cytokine levels. Aging Clinical and Experimental Research. 2015;27(1):37–44.CrossRef Liuni FM, Rugiero C, Feola M, Rao C, Pistillo P, Terracciano C, Giganti MG, Tarantino U. Impaired healing of fragility fractures in type 2 diabetes: clinical and radiographic assessments and serum cytokine levels. Aging Clinical and Experimental Research. 2015;27(1):37–44.CrossRef
29.
go back to reference Guo Q, Wang W, Abboud R, Guo Z. Impairment of maturation of BMP-6 (35 kDa) correlates with delayed fracture healing in experimental diabetes. Journal of Orthopaedic Surgery and Research. 2020;15(1):1–11.CrossRef Guo Q, Wang W, Abboud R, Guo Z. Impairment of maturation of BMP-6 (35 kDa) correlates with delayed fracture healing in experimental diabetes. Journal of Orthopaedic Surgery and Research. 2020;15(1):1–11.CrossRef
30.
go back to reference Takahara S, Lee SY, Iwakura T, Oe K, Fukui T, Okumachi E, Arakura M, Sakai Y, Matsumoto T, Matsushita T, Kuroda R, Niikura T. Altered microRNA profile during fracture healing in rats with diabetes. Journal of Orthopaedic Surgery and Research. 2020;15(1):1–9.CrossRef Takahara S, Lee SY, Iwakura T, Oe K, Fukui T, Okumachi E, Arakura M, Sakai Y, Matsumoto T, Matsushita T, Kuroda R, Niikura T. Altered microRNA profile during fracture healing in rats with diabetes. Journal of Orthopaedic Surgery and Research. 2020;15(1):1–9.CrossRef
31.
go back to reference Wang Z, Tang J, Li Y, Wang Y, Guo Y, Tu Q, Chen J, Wang C. AdipoRon promotes diabetic fracture repair through endochondral ossification-based bone repair by enhancing survival and differentiation of chondrocytes. Experimental cell research. 2020;387(2):111757.PubMedCrossRef Wang Z, Tang J, Li Y, Wang Y, Guo Y, Tu Q, Chen J, Wang C. AdipoRon promotes diabetic fracture repair through endochondral ossification-based bone repair by enhancing survival and differentiation of chondrocytes. Experimental cell research. 2020;387(2):111757.PubMedCrossRef
32.
go back to reference Choy MHV, Wong RMY, Chow SKH, Li MC, Chim YN, Li TK, Ho WT, Cheng JCY, Cheung WH. How much do we know about the role of osteocytes in different phases of fracture healing? A systematic review. Journal of orthopaedic translation. 2020;21:111–21.PubMedCrossRef Choy MHV, Wong RMY, Chow SKH, Li MC, Chim YN, Li TK, Ho WT, Cheng JCY, Cheung WH. How much do we know about the role of osteocytes in different phases of fracture healing? A systematic review. Journal of orthopaedic translation. 2020;21:111–21.PubMedCrossRef
33.
go back to reference Shimizu T, Fujita N, Tsuji-Tamura K, Kitagawa Y, Fujisawa T, Tamura M, Sato M. Osteocytes as main responders to low-intensity pulsed ultrasound treatment during fracture healing. Scientific reports. 2021;11(1):1–15.CrossRef Shimizu T, Fujita N, Tsuji-Tamura K, Kitagawa Y, Fujisawa T, Tamura M, Sato M. Osteocytes as main responders to low-intensity pulsed ultrasound treatment during fracture healing. Scientific reports. 2021;11(1):1–15.CrossRef
34.
go back to reference García-Martín A, Rozas-Moreno P, Reyes-García R, Morales-Santana S, García-Fontana B, García-Salcedo JA, Muñoz-Torres M. Circulating levels of sclerostin are increased in patients with type 2 diabetes mellitus. The journal of clinical endocrinology & metabolism. 2012;97(1):234–41.CrossRef García-Martín A, Rozas-Moreno P, Reyes-García R, Morales-Santana S, García-Fontana B, García-Salcedo JA, Muñoz-Torres M. Circulating levels of sclerostin are increased in patients with type 2 diabetes mellitus. The journal of clinical endocrinology & metabolism. 2012;97(1):234–41.CrossRef
35.
go back to reference Florio M, Gunasekaran K, Stolina M, Li X, Liu L, Tipton B, Salimi-Moosavi H, Asuncion FJ, Li C, Sun B, Tan HL, Zhang L, Han CY, Case R, Duguay AN, Grisanti M, Stevens J, Pretorius JK, Pacheco E, et al. A bispecific antibody targeting sclerostin and DKK-1 promotes bone mass accrual and fracture repair. Nature communications. 2016;7(1):1–14.CrossRef Florio M, Gunasekaran K, Stolina M, Li X, Liu L, Tipton B, Salimi-Moosavi H, Asuncion FJ, Li C, Sun B, Tan HL, Zhang L, Han CY, Case R, Duguay AN, Grisanti M, Stevens J, Pretorius JK, Pacheco E, et al. A bispecific antibody targeting sclerostin and DKK-1 promotes bone mass accrual and fracture repair. Nature communications. 2016;7(1):1–14.CrossRef
36.
go back to reference Alzahrani MM, Rauch F, Hamdy RC. Does sclerostin depletion stimulate fracture healing in a mouse model? Clin Orthop Res. 2016;474(5):1294–302.CrossRef Alzahrani MM, Rauch F, Hamdy RC. Does sclerostin depletion stimulate fracture healing in a mouse model? Clin Orthop Res. 2016;474(5):1294–302.CrossRef
37.
go back to reference Kruck B, Zimmermann EA, Damerow S, Figge C, Julien C, Wulsten D, Thiele T, Martin M, Hamdy R, Reumann MK, Duda GN, Checa S, Willie BM. Sclerostin neutralizing antibody treatment enhances bone formation but does not rescue mechanically induced delayed healing. Journal of Bone and Mineral Research. 2018;33(9):1686–97.PubMedCrossRef Kruck B, Zimmermann EA, Damerow S, Figge C, Julien C, Wulsten D, Thiele T, Martin M, Hamdy R, Reumann MK, Duda GN, Checa S, Willie BM. Sclerostin neutralizing antibody treatment enhances bone formation but does not rescue mechanically induced delayed healing. Journal of Bone and Mineral Research. 2018;33(9):1686–97.PubMedCrossRef
38.
go back to reference Morse A, McDonald MM, Schindeler A, Peacock L, Mikulec K, Cheng TL, Liu M, Ke HZ, Little DG. Sclerostin antibody increases callus size and strength but does not improve fracture union in a challenged open rat fracture model. Calcified Tissue International. 2017;101(2):217–28.PubMedCrossRef Morse A, McDonald MM, Schindeler A, Peacock L, Mikulec K, Cheng TL, Liu M, Ke HZ, Little DG. Sclerostin antibody increases callus size and strength but does not improve fracture union in a challenged open rat fracture model. Calcified Tissue International. 2017;101(2):217–28.PubMedCrossRef
39.
go back to reference Bhandari M, Schemitsch EH, Karachalios T, Sancheti P, Poolman RW, Caminis J, Daizadeh N, Dent-Acosta RE, Egbuna O, Chines A, Miclau T. Romosozumab in skeletally mature adults with a fresh unilateral tibial diaphyseal fracture: a randomized phase-2 study. JBJS. 2020;102(16):1416–26.CrossRef Bhandari M, Schemitsch EH, Karachalios T, Sancheti P, Poolman RW, Caminis J, Daizadeh N, Dent-Acosta RE, Egbuna O, Chines A, Miclau T. Romosozumab in skeletally mature adults with a fresh unilateral tibial diaphyseal fracture: a randomized phase-2 study. JBJS. 2020;102(16):1416–26.CrossRef
40.
go back to reference Schemitsch EH, et al. A randomized, placebo-controlled study of romosozumab for the treatment of hip fractures. J Bone Joint Surg Am. 2020;102(8):693.PubMedCrossRef Schemitsch EH, et al. A randomized, placebo-controlled study of romosozumab for the treatment of hip fractures. J Bone Joint Surg Am. 2020;102(8):693.PubMedCrossRef
41.
go back to reference Leder BZ. Parathyroid hormone and parathyroid hormone-related protein analogs in osteoporosis therapy. Current osteoporosis reports. 2017;15(2):110–9.PubMedPubMedCentralCrossRef Leder BZ. Parathyroid hormone and parathyroid hormone-related protein analogs in osteoporosis therapy. Current osteoporosis reports. 2017;15(2):110–9.PubMedPubMedCentralCrossRef
42.
go back to reference Baroi S, Czernik PJ, Chougule A, Griffin PR, Lecka-Czernik B. PPARG in osteocytes controls sclerostin expression, bone mass, marrow adiposity and mediates TZD-induced bone loss. Bone. 2021;147:115913.PubMedPubMedCentralCrossRef Baroi S, Czernik PJ, Chougule A, Griffin PR, Lecka-Czernik B. PPARG in osteocytes controls sclerostin expression, bone mass, marrow adiposity and mediates TZD-induced bone loss. Bone. 2021;147:115913.PubMedPubMedCentralCrossRef
43.
go back to reference Rasmussen NH, Dal J. Falls and fractures in diabetes—more than bone fragility. Current osteoporosis reports. 2019;17(3):147–56.PubMedCrossRef Rasmussen NH, Dal J. Falls and fractures in diabetes—more than bone fragility. Current osteoporosis reports. 2019;17(3):147–56.PubMedCrossRef
44.
go back to reference Komorita Y, Ohkuma T, Iwase M, Fujii H, Oku Y, Higashi T, Oshiro A, Sakamoto W, Yoshinari M, Nakamura U, Kitazono T. Polypharmacy and bone fracture risk in patients with type 2 diabetes: the Fukuoka Diabetes Registry. Diabetes research and clinical practice. 2021;181:109097.PubMedCrossRef Komorita Y, Ohkuma T, Iwase M, Fujii H, Oku Y, Higashi T, Oshiro A, Sakamoto W, Yoshinari M, Nakamura U, Kitazono T. Polypharmacy and bone fracture risk in patients with type 2 diabetes: the Fukuoka Diabetes Registry. Diabetes research and clinical practice. 2021;181:109097.PubMedCrossRef
45.
go back to reference Poiana C, Capatina C. Fracture risk assessment in patients with diabetes mellitus. Journal of Clinical Densitometry. 2017;20(3):432–43.PubMedCrossRef Poiana C, Capatina C. Fracture risk assessment in patients with diabetes mellitus. Journal of Clinical Densitometry. 2017;20(3):432–43.PubMedCrossRef
46.
go back to reference Hofbauer LC, Busse B, Eastell R, Ferrari S, Frost M, Müller R, Burden AM, Rivadeneira F, Napoli N, Rauner M. Bone fragility in diabetes: novel concepts and clinical implications. Lancet Diabetes Endocrinol. 2022;10(3):207-220. Hofbauer LC, Busse B, Eastell R, Ferrari S, Frost M, Müller R, Burden AM, Rivadeneira F, Napoli N, Rauner M. Bone fragility in diabetes: novel concepts and clinical implications. Lancet Diabetes Endocrinol. 2022;10(3):207-220.
47.
go back to reference Rathmann W, Kostev K. Fracture risk in patients with newly diagnosed type 2 diabetes: a retrospective database analysis in primary care. Journal of Diabetes and its Complications. 2015;29(6):766–70.PubMedCrossRef Rathmann W, Kostev K. Fracture risk in patients with newly diagnosed type 2 diabetes: a retrospective database analysis in primary care. Journal of Diabetes and its Complications. 2015;29(6):766–70.PubMedCrossRef
49.
50.
go back to reference Schwartz AV, Vittinghoff E, Bauer DC, Hillier TA, Strotmeyer ES, Ensrud KE, Donaldson MG, Cauley JA, Harris TB, Koster A, Womack CR, Palermo L, Black DM, Study of Osteoporotic Fractures (SOF) Research Group, Osteoporotic Fractures in Men (MrOS) Research Group, Health, Aging, and Body Composition (Health ABC) Research Group. Association of BMD and FRAX score with risk of fracture in older adults with type 2 diabetes. Jama. 2011;305(21):2184–92.PubMedPubMedCentralCrossRef Schwartz AV, Vittinghoff E, Bauer DC, Hillier TA, Strotmeyer ES, Ensrud KE, Donaldson MG, Cauley JA, Harris TB, Koster A, Womack CR, Palermo L, Black DM, Study of Osteoporotic Fractures (SOF) Research Group, Osteoporotic Fractures in Men (MrOS) Research Group, Health, Aging, and Body Composition (Health ABC) Research Group. Association of BMD and FRAX score with risk of fracture in older adults with type 2 diabetes. Jama. 2011;305(21):2184–92.PubMedPubMedCentralCrossRef
51.
go back to reference Schacter GI, Leslie WD. DXA-based measurements in diabetes: can they predict fracture risk? Calcified tissue international. 2017;100(2):150–64.PubMedCrossRef Schacter GI, Leslie WD. DXA-based measurements in diabetes: can they predict fracture risk? Calcified tissue international. 2017;100(2):150–64.PubMedCrossRef
52.
go back to reference Champakanath A, Keshawarz A, Pyle L, Snell-Bergeon JK, Shah VN. Fracture risk assessment (FRAX) without BMD and risk of major osteoporotic fractures in adults with type 1 diabetes. Bone. 2021;143:115614.PubMedCrossRef Champakanath A, Keshawarz A, Pyle L, Snell-Bergeon JK, Shah VN. Fracture risk assessment (FRAX) without BMD and risk of major osteoporotic fractures in adults with type 1 diabetes. Bone. 2021;143:115614.PubMedCrossRef
53.
go back to reference Sihota P, Yadav RN, Dhaliwal R, Bose JC, Dhiman V, Neradi D, Karn S, Sharma S, Aggarwal S, Goni VG, Mehandia V, Vashishth D, Bhadada SK, Kumar N. Investigation of mechanical, material, and compositional determinants of human trabecular bone quality in type 2 diabetes. The Journal of Clinical Endocrinology & Metabolism. 2021;106(5):e2271–89.CrossRef Sihota P, Yadav RN, Dhaliwal R, Bose JC, Dhiman V, Neradi D, Karn S, Sharma S, Aggarwal S, Goni VG, Mehandia V, Vashishth D, Bhadada SK, Kumar N. Investigation of mechanical, material, and compositional determinants of human trabecular bone quality in type 2 diabetes. The Journal of Clinical Endocrinology & Metabolism. 2021;106(5):e2271–89.CrossRef
54.
go back to reference Baleanu F, Bergmann P, Hambye AS, Dekelver C, Iconaru L, Cappelle SI, Moreau M, Paesmans M, Karmali R, Body JJ. Assessment of bone quality with trabecular bone score in type 2 diabetes mellitus: A study from the FRISBEE cohort. International journal of clinical practice. 2019;73(5):e13347.PubMedCrossRef Baleanu F, Bergmann P, Hambye AS, Dekelver C, Iconaru L, Cappelle SI, Moreau M, Paesmans M, Karmali R, Body JJ. Assessment of bone quality with trabecular bone score in type 2 diabetes mellitus: A study from the FRISBEE cohort. International journal of clinical practice. 2019;73(5):e13347.PubMedCrossRef
55.
go back to reference Yamamoto M, Yamauchi M, Sugimoto T. Prevalent vertebral fracture is dominantly associated with spinal microstructural deterioration rather than bone mineral density in patients with type 2 diabetes mellitus. Plos one. 2019;14(9):e0222571.PubMedPubMedCentralCrossRef Yamamoto M, Yamauchi M, Sugimoto T. Prevalent vertebral fracture is dominantly associated with spinal microstructural deterioration rather than bone mineral density in patients with type 2 diabetes mellitus. Plos one. 2019;14(9):e0222571.PubMedPubMedCentralCrossRef
56.
go back to reference Janghorbani M, van Dam RM, Willett WC, Hu FB. Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. American journal of epidemiology. 2007;166(5):495–505.PubMedCrossRef Janghorbani M, van Dam RM, Willett WC, Hu FB. Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. American journal of epidemiology. 2007;166(5):495–505.PubMedCrossRef
57.
go back to reference Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes—a meta-analysis. Osteoporosis international. 2007;18(4):427–44.PubMedCrossRef Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes—a meta-analysis. Osteoporosis international. 2007;18(4):427–44.PubMedCrossRef
58.
go back to reference Dytfeld J, Michalak M. Type 2 diabetes and risk of low-energy fractures in postmenopausal women: meta-analysis of observational studies. Aging clinical and experimental research. 2017;29(2):301–9.PubMedCrossRef Dytfeld J, Michalak M. Type 2 diabetes and risk of low-energy fractures in postmenopausal women: meta-analysis of observational studies. Aging clinical and experimental research. 2017;29(2):301–9.PubMedCrossRef
59.
go back to reference Moayeri A, Mohamadpour M, Mousavi S, Shirzadpour E, Mohamadpour S, Amraei M. Fracture risk in patients with type 2 diabetes mellitus and possible risk factors: a systematic review and meta-analysis. Therapeutics and clinical risk management. 2017;13:455–68.PubMedPubMedCentralCrossRef Moayeri A, Mohamadpour M, Mousavi S, Shirzadpour E, Mohamadpour S, Amraei M. Fracture risk in patients with type 2 diabetes mellitus and possible risk factors: a systematic review and meta-analysis. Therapeutics and clinical risk management. 2017;13:455–68.PubMedPubMedCentralCrossRef
60.
go back to reference Koromani F, Ghatan S, van Hoek M, Zillikens MC, Oei EHG, Rivadeneira F, Oei L. Type 2 Diabetes Mellitus and Vertebral Fracture Risk. Curr Osteoporos Rep. 2021;19(1):50–57. Koromani F, Ghatan S, van Hoek M, Zillikens MC, Oei EHG, Rivadeneira F, Oei L. Type 2 Diabetes Mellitus and Vertebral Fracture Risk. Curr Osteoporos Rep. 2021;19(1):50–57.
61.
go back to reference Zhukouskaya VV, Eller-Vainicher C, Vadzianava VV, Shepelkevich AP, Zhurava IV, Korolenko GG, Salko OB, Cairoli E, Beck-Peccoz P, Chiodini I. Prevalence of morphometric vertebral fractures in patients with type 1 diabetes. Diabetes care. 2013;36(6):1635–40.PubMedPubMedCentralCrossRef Zhukouskaya VV, Eller-Vainicher C, Vadzianava VV, Shepelkevich AP, Zhurava IV, Korolenko GG, Salko OB, Cairoli E, Beck-Peccoz P, Chiodini I. Prevalence of morphometric vertebral fractures in patients with type 1 diabetes. Diabetes care. 2013;36(6):1635–40.PubMedPubMedCentralCrossRef
62.
go back to reference Koromani F, Oei L, Shevroja E, Trajanoska K, Schoufour J, Muka T, Franco OH, Ikram MA, Zillikens MC, Uitterlinden AG, Krestin GP, Anastassiades T, Josse R, Kaiser SM, Goltzman D, Lentle BC, Prior JC, Leslie WD, McCloskey E, et al. Vertebral fractures in individuals with type 2 diabetes: more than skeletal complications alone. Diabetes Care. 2020;43(1):137–44.PubMedCrossRef Koromani F, Oei L, Shevroja E, Trajanoska K, Schoufour J, Muka T, Franco OH, Ikram MA, Zillikens MC, Uitterlinden AG, Krestin GP, Anastassiades T, Josse R, Kaiser SM, Goltzman D, Lentle BC, Prior JC, Leslie WD, McCloskey E, et al. Vertebral fractures in individuals with type 2 diabetes: more than skeletal complications alone. Diabetes Care. 2020;43(1):137–44.PubMedCrossRef
63.
go back to reference Hayrapetyan A, Jansen JA, van den Beucken JJ. Signaling pathways involved in osteogenesis and their application for bone regenerative medicine. Tissue Engineering Part B: Reviews. 2015;21(1):75–87.CrossRef Hayrapetyan A, Jansen JA, van den Beucken JJ. Signaling pathways involved in osteogenesis and their application for bone regenerative medicine. Tissue Engineering Part B: Reviews. 2015;21(1):75–87.CrossRef
65.
go back to reference Fatima N, Faisal SM, Zubair S, Ajmal M, Siddiqui SS, Moin S, Owais M. Role of pro-inflammatory cytokines and biochemical markers in the pathogenesis of type 1 diabetes: correlation with age and glycemic condition in diabetic human subjects. PloS one. 2016;11(8):e0161548.PubMedPubMedCentralCrossRef Fatima N, Faisal SM, Zubair S, Ajmal M, Siddiqui SS, Moin S, Owais M. Role of pro-inflammatory cytokines and biochemical markers in the pathogenesis of type 1 diabetes: correlation with age and glycemic condition in diabetic human subjects. PloS one. 2016;11(8):e0161548.PubMedPubMedCentralCrossRef
66.
go back to reference Devaraj S, Venugopal SK, Singh U, Jialal I. Hyperglycemia induces monocytic release of interleukin-6 via induction of protein kinase C-α and-β. Diabetes. 2005;54(1):85–91.PubMedCrossRef Devaraj S, Venugopal SK, Singh U, Jialal I. Hyperglycemia induces monocytic release of interleukin-6 via induction of protein kinase C-α and-β. Diabetes. 2005;54(1):85–91.PubMedCrossRef
67.
go back to reference Kumar P, Natarajan K, Shanmugam N. High glucose driven expression of pro-inflammatory cytokine and chemokine genes in lymphocytes: molecular mechanisms of IL-17 family gene expression. Cellular signalling. 2014;26(3):528–39.PubMedCrossRef Kumar P, Natarajan K, Shanmugam N. High glucose driven expression of pro-inflammatory cytokine and chemokine genes in lymphocytes: molecular mechanisms of IL-17 family gene expression. Cellular signalling. 2014;26(3):528–39.PubMedCrossRef
68.
go back to reference Bastard J-P, Jardel C, Bruckert E, Blondy P, Capeau J, Laville M, Vidal H, Hainque B. Elevated levels of interleukin 6 are reduced in serum and subcutaneous adipose tissue of obese women after weight loss. The Journal of Clinical Endocrinology & Metabolism. 2000;85(9):3338–42. Bastard J-P, Jardel C, Bruckert E, Blondy P, Capeau J, Laville M, Vidal H, Hainque B. Elevated levels of interleukin 6 are reduced in serum and subcutaneous adipose tissue of obese women after weight loss. The Journal of Clinical Endocrinology & Metabolism. 2000;85(9):3338–42.
69.
go back to reference Harmer D, Falank C, Reagan MR. Interleukin-6 Interweaves the Bone Marrow Microenvironment, Bone Loss, and Multiple Myeloma. Front Endocrinol (Lausanne). 2019;9:788. Harmer D, Falank C, Reagan MR. Interleukin-6 Interweaves the Bone Marrow Microenvironment, Bone Loss, and Multiple Myeloma. Front Endocrinol (Lausanne). 2019;9:788.
70.
go back to reference Wu Q, Zhou X, Huang D, JI Y, Kang F. IL-6 enhances osteocyte-mediated osteoclastogenesis by promoting JAK2 and RANKL activity in vitro. Cellular Physiology and Biochemistry. 2017;41(4):1360–9.PubMedCrossRef Wu Q, Zhou X, Huang D, JI Y, Kang F. IL-6 enhances osteocyte-mediated osteoclastogenesis by promoting JAK2 and RANKL activity in vitro. Cellular Physiology and Biochemistry. 2017;41(4):1360–9.PubMedCrossRef
71.
go back to reference Peruzzi B, Cappariello A, del Fattore A, Rucci N, de Benedetti F, Teti A. c-Src and IL-6 inhibit osteoblast differentiation and integrate IGFBP5 signalling. Nature communications. 2012;3(1):1–10.CrossRef Peruzzi B, Cappariello A, del Fattore A, Rucci N, de Benedetti F, Teti A. c-Src and IL-6 inhibit osteoblast differentiation and integrate IGFBP5 signalling. Nature communications. 2012;3(1):1–10.CrossRef
72.
go back to reference Kaneshiro S, Ebina K, Shi K, Higuchi C, Hirao M, Okamoto M, Koizumi K, Morimoto T, Yoshikawa H, Hashimoto J. IL-6 negatively regulates osteoblast differentiation through the SHP2/MEK2 and SHP2/Akt2 pathways in vitro. Journal of bone and mineral metabolism. 2014;32(4):378–92.PubMedCrossRef Kaneshiro S, Ebina K, Shi K, Higuchi C, Hirao M, Okamoto M, Koizumi K, Morimoto T, Yoshikawa H, Hashimoto J. IL-6 negatively regulates osteoblast differentiation through the SHP2/MEK2 and SHP2/Akt2 pathways in vitro. Journal of bone and mineral metabolism. 2014;32(4):378–92.PubMedCrossRef
73.
go back to reference Kristiansen OP, Mandrup-Poulsen T. Interleukin-6 and diabetes: the good, the bad, or the indifferent? Diabetes. 2005;54(Suppl 2):S114–24.PubMedCrossRef Kristiansen OP, Mandrup-Poulsen T. Interleukin-6 and diabetes: the good, the bad, or the indifferent? Diabetes. 2005;54(Suppl 2):S114–24.PubMedCrossRef
74.
go back to reference Marahleh A, Kitaura H, Ohori F, Kishikawa A, Ogawa S, Shen WR, Qi J, Noguchi T, Nara Y, Mizoguchi I. TNF-α Directly Enhances Osteocyte RANKL Expression and Promotes Osteoclast Formation. Front Immunol. 2019;10:2925. Marahleh A, Kitaura H, Ohori F, Kishikawa A, Ogawa S, Shen WR, Qi J, Noguchi T, Nara Y, Mizoguchi I. TNF-α Directly Enhances Osteocyte RANKL Expression and Promotes Osteoclast Formation. Front Immunol. 2019;10:2925.
75.
go back to reference Nakashima T, Hayashi M, Fukunaga T, Kurata K, Oh-hora M, Feng JQ, Bonewald LF, Kodama T, Wutz A, Wagner EF, Penninger JM, Takayanagi H. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nature medicine. 2011;17(10):1231–4.PubMedCrossRef Nakashima T, Hayashi M, Fukunaga T, Kurata K, Oh-hora M, Feng JQ, Bonewald LF, Kodama T, Wutz A, Wagner EF, Penninger JM, Takayanagi H. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nature medicine. 2011;17(10):1231–4.PubMedCrossRef
76.
go back to reference Ding Y, Wei J, Hettinghouse A, Li G, Li X, Einhorn TA, Liu CJ. Progranulin promotes bone fracture healing via TNFR pathways in mice with type 2 diabetes mellitus. Annals of the New York Academy of Sciences. 2021;1490(1):77–89.PubMedPubMedCentralCrossRef Ding Y, Wei J, Hettinghouse A, Li G, Li X, Einhorn TA, Liu CJ. Progranulin promotes bone fracture healing via TNFR pathways in mice with type 2 diabetes mellitus. Annals of the New York Academy of Sciences. 2021;1490(1):77–89.PubMedPubMedCentralCrossRef
77.
go back to reference Wei J, Zhang L, Ding Y, Liu R, Guo Y, Hettinghouse A, Buza J, de la Croix J, Li X, Einhorn TA, Liu CJ. Progranulin promotes diabetic fracture healing in mice with type 1 diabetes. Annals of the New York Academy of Sciences. 2020;1460(1):43–56.PubMedCrossRef Wei J, Zhang L, Ding Y, Liu R, Guo Y, Hettinghouse A, Buza J, de la Croix J, Li X, Einhorn TA, Liu CJ. Progranulin promotes diabetic fracture healing in mice with type 1 diabetes. Annals of the New York Academy of Sciences. 2020;1460(1):43–56.PubMedCrossRef
78.
go back to reference Tanaka N, Yonekura H, Yamagishi SI, Fujimori H, Yamamoto Y, Yamamoto H. The receptor for advanced glycation end products is induced by the glycation products themselves and tumor necrosis factor-α through nuclear factor-κB, and by 17β-estradiol through Sp-1 in human vascular endothelial cells. Journal of Biological Chemistry. 2000;275(33):25781–90.PubMedCrossRef Tanaka N, Yonekura H, Yamagishi SI, Fujimori H, Yamamoto Y, Yamamoto H. The receptor for advanced glycation end products is induced by the glycation products themselves and tumor necrosis factor-α through nuclear factor-κB, and by 17β-estradiol through Sp-1 in human vascular endothelial cells. Journal of Biological Chemistry. 2000;275(33):25781–90.PubMedCrossRef
79.
go back to reference Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal transduction and targeted therapy. 2017;2(1):1–9.CrossRef Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal transduction and targeted therapy. 2017;2(1):1–9.CrossRef
80.
go back to reference Weinberg E, Maymon T, Weinreb M. AGEs induce caspase-mediated apoptosis of rat BMSCs via TNFa production and oxidative stress. J Mol Endocrinol. 2014;52(1):67–76.PubMedCrossRef Weinberg E, Maymon T, Weinreb M. AGEs induce caspase-mediated apoptosis of rat BMSCs via TNFa production and oxidative stress. J Mol Endocrinol. 2014;52(1):67–76.PubMedCrossRef
81.
go back to reference Tanaka K, Yamagata K, Kubo S, Nakayamada S, Sakata K, Matsui T, Yamagishi SI, Okada Y, Tanaka Y. Glycolaldehyde-modified advanced glycation end-products inhibit differentiation of human monocytes into osteoclasts via upregulation of IL-10. Bone. 2019;128:115034.PubMedCrossRef Tanaka K, Yamagata K, Kubo S, Nakayamada S, Sakata K, Matsui T, Yamagishi SI, Okada Y, Tanaka Y. Glycolaldehyde-modified advanced glycation end-products inhibit differentiation of human monocytes into osteoclasts via upregulation of IL-10. Bone. 2019;128:115034.PubMedCrossRef
82.
go back to reference Xu LX, Kukita T, Kukita A, Otsuka T, Niho Y, Iijima T. Interleukin-10 selectively inhibits osteoclastogenesis by inhibiting differentiation of osteoclast progenitors into preosteoclast-like cells in rat bone marrow culture system. Journal of cellular physiology. 1995;165(3):624–9.PubMedCrossRef Xu LX, Kukita T, Kukita A, Otsuka T, Niho Y, Iijima T. Interleukin-10 selectively inhibits osteoclastogenesis by inhibiting differentiation of osteoclast progenitors into preosteoclast-like cells in rat bone marrow culture system. Journal of cellular physiology. 1995;165(3):624–9.PubMedCrossRef
83.
go back to reference Zhang Q, Chen B, Yan F, Guo J, Zhu X, Ma S, Yang W. Interleukin-10 inhibits bone resorption: a potential therapeutic strategy in periodontitis and other bone loss diseases. Biomed Res Int. 2014;2014:284836. Zhang Q, Chen B, Yan F, Guo J, Zhu X, Ma S, Yang W. Interleukin-10 inhibits bone resorption: a potential therapeutic strategy in periodontitis and other bone loss diseases. Biomed Res Int. 2014;2014:284836.
84.
go back to reference Nakano N, Fukuhara-Takaki K, Jono T, Nakajou K, Eto N, Horiuchi S, Takeya M, Nagai R. Association of advanced glycation end products with A549 cells, a human pulmonary epithelial cell line, is mediated by a receptor distinct from the scavenger receptor family and RAGE. Journal of biochemistry. 2006;139(5):821–9.PubMedCrossRef Nakano N, Fukuhara-Takaki K, Jono T, Nakajou K, Eto N, Horiuchi S, Takeya M, Nagai R. Association of advanced glycation end products with A549 cells, a human pulmonary epithelial cell line, is mediated by a receptor distinct from the scavenger receptor family and RAGE. Journal of biochemistry. 2006;139(5):821–9.PubMedCrossRef
85.
go back to reference Schmidt AM, et al. The biology of the receptor for advanced glycation end products and its ligands. Biochim et Biophys Acta (BBA)-Molecul Cell Res. 2000;1498(2-3):99–111.CrossRef Schmidt AM, et al. The biology of the receptor for advanced glycation end products and its ligands. Biochim et Biophys Acta (BBA)-Molecul Cell Res. 2000;1498(2-3):99–111.CrossRef
86.
go back to reference Takeuchi M, Yamagishi S-i. Involvement of toxic AGEs (TAGE) in the pathogenesis of diabetic vascular complications and Alzheimer's disease. Journal of Alzheimer's Disease. 2009;16(4):845–58.PubMedCrossRef Takeuchi M, Yamagishi S-i. Involvement of toxic AGEs (TAGE) in the pathogenesis of diabetic vascular complications and Alzheimer's disease. Journal of Alzheimer's Disease. 2009;16(4):845–58.PubMedCrossRef
87.
go back to reference Ohashi K, Takahashi HK, Mori S, Liu K, Wake H, Sadamori H, Matsuda H, Yagi T, Yoshino T, Nishibori M, Tanaka N. Advanced glycation end products enhance monocyte activation during human mixed lymphocyte reaction. Clinical immunology. 2010;134(3):345–53.PubMedCrossRef Ohashi K, Takahashi HK, Mori S, Liu K, Wake H, Sadamori H, Matsuda H, Yagi T, Yoshino T, Nishibori M, Tanaka N. Advanced glycation end products enhance monocyte activation during human mixed lymphocyte reaction. Clinical immunology. 2010;134(3):345–53.PubMedCrossRef
88.
go back to reference Figarola JL, Shanmugam N, Natarajan R, Rahbar S. Anti-inflammatory effects of the advanced glycation end product inhibitor LR-90 in human monocytes. Diabetes. 2007;56(3):647–55.PubMedCrossRef Figarola JL, Shanmugam N, Natarajan R, Rahbar S. Anti-inflammatory effects of the advanced glycation end product inhibitor LR-90 in human monocytes. Diabetes. 2007;56(3):647–55.PubMedCrossRef
89.
go back to reference Okazaki K, Yamaguchi T, Tanaka KI, Notsu M, Ogawa N, Yano S, Sugimoto T. Advanced glycation end products (AGEs), but not high glucose, inhibit the osteoblastic differentiation of mouse stromal ST2 cells through the suppression of osterix expression, and inhibit cell growth and increasing cell apoptosis. Calcified tissue international. 2012;91(4):286–96.PubMedCrossRef Okazaki K, Yamaguchi T, Tanaka KI, Notsu M, Ogawa N, Yano S, Sugimoto T. Advanced glycation end products (AGEs), but not high glucose, inhibit the osteoblastic differentiation of mouse stromal ST2 cells through the suppression of osterix expression, and inhibit cell growth and increasing cell apoptosis. Calcified tissue international. 2012;91(4):286–96.PubMedCrossRef
90.
go back to reference Takahashi HK, Mori S, Wake H, Liu K, Yoshino T, Ohashi K, Tanaka N, Shikata K, Makino H, Nishibori M. Advanced glycation end products subspecies-selectively induce adhesion molecule expression and cytokine production in human peripheral blood mononuclear cells. Journal of Pharmacology and Experimental Therapeutics. 2009;330(1):89–98.PubMedCrossRef Takahashi HK, Mori S, Wake H, Liu K, Yoshino T, Ohashi K, Tanaka N, Shikata K, Makino H, Nishibori M. Advanced glycation end products subspecies-selectively induce adhesion molecule expression and cytokine production in human peripheral blood mononuclear cells. Journal of Pharmacology and Experimental Therapeutics. 2009;330(1):89–98.PubMedCrossRef
91.
go back to reference Lee E-J, Kang MK, Kim YH, Kim DY, Oh H, Kim SI, Oh SY, Na W, Kang YH. Coumarin ameliorates impaired bone turnover by inhibiting the formation of advanced glycation end products in diabetic osteoblasts and osteoclasts. Biomolecules. 2020;10(7):1052.PubMedCentralCrossRef Lee E-J, Kang MK, Kim YH, Kim DY, Oh H, Kim SI, Oh SY, Na W, Kang YH. Coumarin ameliorates impaired bone turnover by inhibiting the formation of advanced glycation end products in diabetic osteoblasts and osteoclasts. Biomolecules. 2020;10(7):1052.PubMedCentralCrossRef
92.
go back to reference Saito M, Kida Y, Kato S, Marumo K. Diabetes, collagen, and bone quality. Current osteoporosis reports. 2014;12(2):181–8.PubMedCrossRef Saito M, Kida Y, Kato S, Marumo K. Diabetes, collagen, and bone quality. Current osteoporosis reports. 2014;12(2):181–8.PubMedCrossRef
93.
go back to reference Turecek C, Fratzl-Zelman N, Rumpler M, Buchinger B, Spitzer S, Zoehrer R, Durchschlag E, Klaushofer K, Paschalis EP, Varga F. Collagen cross-linking influences osteoblastic differentiation. Calcified tissue international. 2008;82(5):392–400.PubMedCrossRef Turecek C, Fratzl-Zelman N, Rumpler M, Buchinger B, Spitzer S, Zoehrer R, Durchschlag E, Klaushofer K, Paschalis EP, Varga F. Collagen cross-linking influences osteoblastic differentiation. Calcified tissue international. 2008;82(5):392–400.PubMedCrossRef
94.
go back to reference Schwartz AV, Sellmeyer DE. Diabetes, fracture, and bone fragility. Current osteoporosis reports. 2007;5(3):105–11.PubMedCrossRef Schwartz AV, Sellmeyer DE. Diabetes, fracture, and bone fragility. Current osteoporosis reports. 2007;5(3):105–11.PubMedCrossRef
95.
go back to reference Khosravi R, Sodek KL, Faibish M, Trackman PC. Collagen advanced glycation inhibits its discoidin domain receptor 2 (DDR2)-mediated induction of lysyl oxidase in osteoblasts. Bone. 2014;58:33–41.PubMedCrossRef Khosravi R, Sodek KL, Faibish M, Trackman PC. Collagen advanced glycation inhibits its discoidin domain receptor 2 (DDR2)-mediated induction of lysyl oxidase in osteoblasts. Bone. 2014;58:33–41.PubMedCrossRef
96.
go back to reference Luc K, et al. Oxidative stress and inflammatory markers in prediabetes and diabetes. J. Physiol. Pharmacol. 2019;70(6):809–24. Luc K, et al. Oxidative stress and inflammatory markers in prediabetes and diabetes. J. Physiol. Pharmacol. 2019;70(6):809–24.
97.
go back to reference Rehman K, Akash MSH. Mechanism of generation of oxidative stress and pathophysiology of type 2 diabetes mellitus: how are they interlinked? Journal of cellular biochemistry. 2017;118(11):3577–85.PubMedCrossRef Rehman K, Akash MSH. Mechanism of generation of oxidative stress and pathophysiology of type 2 diabetes mellitus: how are they interlinked? Journal of cellular biochemistry. 2017;118(11):3577–85.PubMedCrossRef
98.
go back to reference Callaway DA, Jiang JX. Reactive oxygen species and oxidative stress in osteoclastogenesis, skeletal aging and bone diseases. Journal of Bone and Mineral Metabolism. 2015;33(4):359–70.PubMedCrossRef Callaway DA, Jiang JX. Reactive oxygen species and oxidative stress in osteoclastogenesis, skeletal aging and bone diseases. Journal of Bone and Mineral Metabolism. 2015;33(4):359–70.PubMedCrossRef
99.
go back to reference Almeida M, O’Brien CA. Basic biology of skeletal aging: role of stress response pathways. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences. 2013;68(10):1197–208.CrossRef Almeida M, O’Brien CA. Basic biology of skeletal aging: role of stress response pathways. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences. 2013;68(10):1197–208.CrossRef
100.
go back to reference Bartell SM, Kim HN, Ambrogini E, Han L, Iyer S, Serra Ucer S, Rabinovitch P, Jilka RL, Weinstein RS, Zhao H, O’Brien CA, Manolagas SC, Almeida M. FoxO proteins restrain osteoclastogenesis and bone resorption by attenuating H2O2 accumulation. Nature communications. 2014;5(1):1–12.CrossRef Bartell SM, Kim HN, Ambrogini E, Han L, Iyer S, Serra Ucer S, Rabinovitch P, Jilka RL, Weinstein RS, Zhao H, O’Brien CA, Manolagas SC, Almeida M. FoxO proteins restrain osteoclastogenesis and bone resorption by attenuating H2O2 accumulation. Nature communications. 2014;5(1):1–12.CrossRef
101.
go back to reference Wang Y, Dong G, Jeon HH, Elazizi M, la LB, Hameedaldeen A, Xiao E, Tian C, Alsadun S, Choi Y, Graves DT. FOXO1 mediates RANKL-induced osteoclast formation and activity. The Journal of Immunology. 2015;194(6):2878–87.PubMedCrossRef Wang Y, Dong G, Jeon HH, Elazizi M, la LB, Hameedaldeen A, Xiao E, Tian C, Alsadun S, Choi Y, Graves DT. FOXO1 mediates RANKL-induced osteoclast formation and activity. The Journal of Immunology. 2015;194(6):2878–87.PubMedCrossRef
102.
go back to reference Guo T-Y, Liu LJ, Xu LZ, Zhang JC, Li SX, Chen C, He LG, Chen YM, Yang HD, Lu L, Hashimoto K. Alterations of the daily rhythms of HPT axis induced by chronic unpredicted mild stress in rats. Endocrine. 2015;48(2):637–43.PubMedCrossRef Guo T-Y, Liu LJ, Xu LZ, Zhang JC, Li SX, Chen C, He LG, Chen YM, Yang HD, Lu L, Hashimoto K. Alterations of the daily rhythms of HPT axis induced by chronic unpredicted mild stress in rats. Endocrine. 2015;48(2):637–43.PubMedCrossRef
103.
go back to reference Hyeon S, Lee H, Yang Y, Jeong W. Nrf2 deficiency induces oxidative stress and promotes RANKL-induced osteoclast differentiation. Free Radical Biology and Medicine. 2013;65:789–99.PubMedCrossRef Hyeon S, Lee H, Yang Y, Jeong W. Nrf2 deficiency induces oxidative stress and promotes RANKL-induced osteoclast differentiation. Free Radical Biology and Medicine. 2013;65:789–99.PubMedCrossRef
104.
go back to reference Simpson C, Jayaramaraju D, Agraharam D, Gudipati S, Shanmuganathan R, Giannoudis PV. The effects of diabetes medications on post-operative long bone fracture healing. Eur J Orthop Surg Traumatol. 2015;25(8):1239–43.PubMedCrossRef Simpson C, Jayaramaraju D, Agraharam D, Gudipati S, Shanmuganathan R, Giannoudis PV. The effects of diabetes medications on post-operative long bone fracture healing. Eur J Orthop Surg Traumatol. 2015;25(8):1239–43.PubMedCrossRef
105.
go back to reference Mu W, Wang Z, Ma C, Jiang Y, Zhang N, Hu K, Li L, Wang Z. Metformin promotes the proliferation and differentiation of murine preosteoblast by regulating the expression of sirt6 and oct4. Pharmacol Res. 2018;129:462–74.PubMedCrossRef Mu W, Wang Z, Ma C, Jiang Y, Zhang N, Hu K, Li L, Wang Z. Metformin promotes the proliferation and differentiation of murine preosteoblast by regulating the expression of sirt6 and oct4. Pharmacol Res. 2018;129:462–74.PubMedCrossRef
106.
go back to reference Jeyabalan J, Viollet B, Smitham P, Ellis SA, Zaman G, Bardin C, Goodship A, Roux JP, Pierre M, Chenu C. The anti-diabetic drug metformin does not affect bone mass in vivo or fracture healing. Osteoporos Int. 2013;24(10):2659–70.PubMedPubMedCentralCrossRef Jeyabalan J, Viollet B, Smitham P, Ellis SA, Zaman G, Bardin C, Goodship A, Roux JP, Pierre M, Chenu C. The anti-diabetic drug metformin does not affect bone mass in vivo or fracture healing. Osteoporos Int. 2013;24(10):2659–70.PubMedPubMedCentralCrossRef
107.
go back to reference Smieszek A, Tomaszewski KA, Kornicka K, Marycz K. Metformin Promotes Osteogenic Differentiation of Adipose-Derived Stromal Cells and Exerts Pro-Osteogenic Effect Stimulating Bone Regeneration. J Clin Med. 2018;7(12):482. Smieszek A, Tomaszewski KA, Kornicka K, Marycz K. Metformin Promotes Osteogenic Differentiation of Adipose-Derived Stromal Cells and Exerts Pro-Osteogenic Effect Stimulating Bone Regeneration. J Clin Med. 2018;7(12):482.
108.
110.
go back to reference Liu L, Aronson J, Lecka-Czernik B. Rosiglitazone disrupts endosteal bone formation during distraction osteogenesis by local adipocytic infiltration. Bone. 2013;52(1):247–58.PubMedCrossRef Liu L, Aronson J, Lecka-Czernik B. Rosiglitazone disrupts endosteal bone formation during distraction osteogenesis by local adipocytic infiltration. Bone. 2013;52(1):247–58.PubMedCrossRef
111.
go back to reference Liu L, Aronson J, Huang S, Lu Y, Czernik P, Rahman S, Kolli V, Suva LJ, Lecka-Czernik B. Rosiglitazone inhibits bone regeneration and causes significant accumulation of fat at sites of new bone formation. Calcif Tissue Int. 2012;91(2):139–48.PubMedPubMedCentralCrossRef Liu L, Aronson J, Huang S, Lu Y, Czernik P, Rahman S, Kolli V, Suva LJ, Lecka-Czernik B. Rosiglitazone inhibits bone regeneration and causes significant accumulation of fat at sites of new bone formation. Calcif Tissue Int. 2012;91(2):139–48.PubMedPubMedCentralCrossRef
112.
go back to reference Stechschulte LA, Czernik PJ, Rotter ZC, Tausif FN, Corzo CA, Marciano DP, Asteian A, Zheng J, Bruning JB, Kamenecka TM, Rosen CJ, Griffin PR, Lecka-Czernik B. PPARG post-translational modifications regulate bone formation and bone resorption. EBioMedicine. 2016;10:174–84.PubMedPubMedCentralCrossRef Stechschulte LA, Czernik PJ, Rotter ZC, Tausif FN, Corzo CA, Marciano DP, Asteian A, Zheng J, Bruning JB, Kamenecka TM, Rosen CJ, Griffin PR, Lecka-Czernik B. PPARG post-translational modifications regulate bone formation and bone resorption. EBioMedicine. 2016;10:174–84.PubMedPubMedCentralCrossRef
113.
go back to reference Harrison SA, Alkhouri N, Davison BA, Sanyal A, Edwards C, Colca JR, Lee BH, Loomba R, Cusi K, Kolterman O, Cotter G, Dittrich HC. Insulin sensitizer MSDC-0602K in non-alcoholic steatohepatitis: A randomized, double-blind, placebo-controlled phase IIb study. J Hepatol. 2020;72(4):613–26.PubMedCrossRef Harrison SA, Alkhouri N, Davison BA, Sanyal A, Edwards C, Colca JR, Lee BH, Loomba R, Cusi K, Kolterman O, Cotter G, Dittrich HC. Insulin sensitizer MSDC-0602K in non-alcoholic steatohepatitis: A randomized, double-blind, placebo-controlled phase IIb study. J Hepatol. 2020;72(4):613–26.PubMedCrossRef
114.
go back to reference Gehling DJ, Lecka-Czernik B, Ebraheim NA. Orthopedic complications in diabetes. Bone. 2016;82:79–92.PubMedCrossRef Gehling DJ, Lecka-Czernik B, Ebraheim NA. Orthopedic complications in diabetes. Bone. 2016;82:79–92.PubMedCrossRef
Metadata
Title
Diabetes and Impaired Fracture Healing: A Narrative Review of Recent Literature
Authors
Mina Tanios
Bradley Brickman
Emily Cage
Kassem Abbas
Cody Smith
Marina Atallah
Sudipta Baroi
Beata Lecka-Czernik
Publication date
12-08-2022
Publisher
Springer US
Published in
Current Osteoporosis Reports / Issue 5/2022
Print ISSN: 1544-1873
Electronic ISSN: 1544-2241
DOI
https://doi.org/10.1007/s11914-022-00740-z

Other articles of this Issue 5/2022

Current Osteoporosis Reports 5/2022 Go to the issue

Orthopedic Management of Fractures (R Natoli and L Gerstenfeld, Section Editors)

Relationship of Aging, Inflammation, and Skeletal Stem Cells and Their Effects on Fracture Repair

Muscle and Bone (A Bonetto and M Brotto, Section Editors)

Muscle and Bone Defects in Metastatic Disease

Bone and Diabetes (A Schwartz and P Vestergaard, Section Editors)

Weight Loss Interventions and Skeletal Health in Persons with Diabetes

Nutrition, Exercise and Lifestyle (S Shapses and R Daly, Section Editors)

Attenuating Muscle Mass Loss in Critical Illness: the Role of Nutrition and Exercise