Skip to main content
Top
Published in: Radiation Oncology 1/2018

Open Access 01-12-2018 | Research

Helium ion beam imaging for image guided ion radiotherapy

Authors: M. Martišíková, T. Gehrke, S. Berke, G. Aricò, O. Jäkel

Published in: Radiation Oncology | Issue 1/2018

Login to get access

Abstract

Background

Ion beam radiotherapy provides potential for increased dose conformation to the target volume. To translate it into a clinical advantage, it is necessary to guarantee a precise alignment of the actual internal patient geometry with the treatment beam. This is in particular challenging for inter- and intrafractional variations, including movement. Ion beams have the potential for a high sensitivity imaging of the patient geometry. However, the research on suitable imaging methods is not conclusive yet. Here we summarize the research activities within the “Clinical research group heavy ion therapy” funded by the DFG (KFO214). Our aim was to develop a method for the visualization of a 1 mm thickness difference with a spatial resolution of about 1 mm at clinically applicable doses.

Methods

We designed and built a dedicated system prototype for ion radiography using exclusively the pixelated semiconductor technology Timepix developed at CERN. Helium ions were chosen as imaging radiation due to their decreased scattering in comparison to protons, and lower damaging potential compared to carbon ions. The data acquisition procedure and a dedicated information processing algorithm were established. The performance of the method was evaluated at the ion beam therapy facility HIT in Germany with geometrical phantoms. The quality of the images was quantified by contrast-to-noise ratio (CNR) and spatial resolution (SR) considering the imaging dose.

Results

Using the unique method for single ion identification, degradation of the images due to the inherent contamination of the outgoing beam with light secondary fragments (hydrogen) was avoided. We demonstrated experimentally that the developed data processing increases the CNR by 350%. Consideration of the measured ion track directions improved the SR by 150%. Compared to proton radiographs at the same dose, helium radiographs exhibited 50% higher SR (0.56 ± 0.04lp/mm vs. 0.37 ± 0.02lp/mm) at a comparable CNR in the middle of the phantom. The clear visualization of the aimed inhomogeneity at a diagnostic dose level demonstrates a resolution of 0.1 g/cm2 or 0.6% in terms of water-equivalent thickness.

Conclusions

We developed a dedicated method for helium ion radiography, based exclusively on pixelated semiconductor detectors. The achievement of a clinically desired image quality in simple phantoms at diagnostic dose levels was demonstrated experimentally.
Footnotes
1
In this paper we use the term ion radiography for planar transmission imaging, which results into 2D images in the plane perpendicular to the beam. The term ion computed tomography is used for volumetric imaging, leading to 3D images. Smartly performed radiographies might provide the essential information of an ion computed tomography at reduced patient dose, imaging time, technical complexity and cost [14, 57].
 
2
The detectors, together with the readout interface FitPIX and the Pixet software package were purchased from the company Advacam s.r.o., U Pergamenky 12, 170 00 Praha 7, Czech Republic.
 
3
MATLAB. Version 9.2.0.556344 (R2017a). The MathWorks, Inc., Natick, Massachusetts, USA.
 
Literature
1.
go back to reference Abe S, et al. Heavy ion CT system based on measurement of residual range distribution. Jpn J Med Phys. 2002;22(1):39–47. Abe S, et al. Heavy ion CT system based on measurement of residual range distribution. Jpn J Med Phys. 2002;22(1):39–47.
2.
go back to reference Amaldi U, et al. Construction, test and operation of a proton range radiography system. Nucl Instrum Meth Phys Res A. 2011;629(1):337–44.CrossRef Amaldi U, et al. Construction, test and operation of a proton range radiography system. Nucl Instrum Meth Phys Res A. 2011;629(1):337–44.CrossRef
3.
go back to reference Bashkirov VA, et al. Novel scintillation detector design and performance for proton radiography and computed tomography. Med Phys. 2016;43(2):664–74.CrossRefPubMedPubMedCentral Bashkirov VA, et al. Novel scintillation detector design and performance for proton radiography and computed tomography. Med Phys. 2016;43(2):664–74.CrossRefPubMedPubMedCentral
5.
go back to reference Berke S. Investigation of the detector response of Timepix detector in therapeutic ion beam. Master thesis. Germany: Heidelberg University; 2016. Berke S. Investigation of the detector response of Timepix detector in therapeutic ion beam. Master thesis. Germany: Heidelberg University; 2016.
6.
go back to reference Böhlen T, Cerutti F, Chin M, Fassò A, Ferrari A, Ortega P, Mairani A, Sala P, Smirnov G, Vlachoudis V. The FLUKA code: developments and challenges for high energy and medical applications. Nucl Data Sheets. 2014;120:211–4.CrossRef Böhlen T, Cerutti F, Chin M, Fassò A, Ferrari A, Ortega P, Mairani A, Sala P, Smirnov G, Vlachoudis V. The FLUKA code: developments and challenges for high energy and medical applications. Nucl Data Sheets. 2014;120:211–4.CrossRef
7.
go back to reference Budinger T, Crowe K, Kanstein L. Preliminary experiments with helium ion radiography at the 184-inch cyclotron technical report Lawrence Berkeley laboratory. USA: University of California, Berkeley; 1974. LBL-2654 Budinger T, Crowe K, Kanstein L. Preliminary experiments with helium ion radiography at the 184-inch cyclotron technical report Lawrence Berkeley laboratory. USA: University of California, Berkeley; 1974. LBL-2654
8.
go back to reference Campbell M, et al. Towards a new generation of pixel detector readout chips. J Instrum. 2016;11:C01007. Campbell M, et al. Towards a new generation of pixel detector readout chips. J Instrum. 2016;11:C01007.
9.
go back to reference Chen Z, et al. A novel track imaging system as a range counter. Nucl Instrum Meth Phys Res A. 2016;817:57–62.CrossRef Chen Z, et al. A novel track imaging system as a range counter. Nucl Instrum Meth Phys Res A. 2016;817:57–62.CrossRef
10.
go back to reference Civinini C, et al. Development of a proton computed tomography. J Instrum. 2010;12:C01034.CrossRef Civinini C, et al. Development of a proton computed tomography. J Instrum. 2010;12:C01034.CrossRef
11.
go back to reference Combs SE, et al. Particle therapy at the Heidelberg ion therapy center (HIT)—integrated research-driven university-hospital-based radiation oncology service in Heidelberg, Germany. Radiother Oncol. 2010;95:41–4.CrossRefPubMed Combs SE, et al. Particle therapy at the Heidelberg ion therapy center (HIT)—integrated research-driven university-hospital-based radiation oncology service in Heidelberg, Germany. Radiother Oncol. 2010;95:41–4.CrossRefPubMed
12.
go back to reference Cormack AM, Koehler AM. Quantitative Proton Tomography: Preliminary Experiments, Phys. Med. Biol. 1976;21:560–569. Cormack AM, Koehler AM. Quantitative Proton Tomography: Preliminary Experiments, Phys. Med. Biol. 1976;21:560–569.
13.
go back to reference Crowe KM, et al. Axial scanning with 900 MeV alpha particles. IEEE Trans Nucl Sci. 1975;22(3):1752–4.CrossRef Crowe KM, et al. Axial scanning with 900 MeV alpha particles. IEEE Trans Nucl Sci. 1975;22(3):1752–4.CrossRef
14.
go back to reference Doolan PJ, et al. Patient-specific stopping power calibration for proton therapy planning based on single-detector proton radiography. Phys Med Biol. 2015;60(5):1901–17.CrossRefPubMed Doolan PJ, et al. Patient-specific stopping power calibration for proton therapy planning based on single-detector proton radiography. Phys Med Biol. 2015;60(5):1901–17.CrossRefPubMed
15.
go back to reference Fekete CA, et al. Developing a phenomenological model of the proton trajectory within a heterogeneous medium required for proton imaging. Phys Med Biol. 2015;60(13):5071–82.CrossRefPubMed Fekete CA, et al. Developing a phenomenological model of the proton trajectory within a heterogeneous medium required for proton imaging. Phys Med Biol. 2015;60(13):5071–82.CrossRefPubMed
16.
go back to reference Ferrari A, Sala P R, Fassò A, Ranft J. FLUKA: a multi-particle transport code. 2005;CERN 2005-10, INFN/TC 05/11, SLAC-R-773.CrossRef Ferrari A, Sala P R, Fassò A, Ranft J. FLUKA: a multi-particle transport code. 2005;CERN 2005-10, INFN/TC 05/11, SLAC-R-773.CrossRef
17.
go back to reference Fujita H, et al. A simple method for determining the modulation transfer function in digital radiography. IEEE Trans Med Imaging. 1992;11(1):34–9.CrossRefPubMed Fujita H, et al. A simple method for determining the modulation transfer function in digital radiography. IEEE Trans Med Imaging. 1992;11(1):34–9.CrossRefPubMed
18.
go back to reference Gallas R, et al. A novel method for assessment of fragmentation and beam-material interactions in helium ion radiotherapy with a miniaturized setup. Eur J Med Phys. 2017;42:116–26. Gallas R, et al. A novel method for assessment of fragmentation and beam-material interactions in helium ion radiotherapy with a miniaturized setup. Eur J Med Phys. 2017;42:116–26.
19.
go back to reference Gehrke T, et al. Energy deposition measurements of single 1H, 4He and 12C ions of therapeutic energies in a silicon pixel detector. J Instrum. 2017;12:P04025.CrossRef Gehrke T, et al. Energy deposition measurements of single 1H, 4He and 12C ions of therapeutic energies in a silicon pixel detector. J Instrum. 2017;12:P04025.CrossRef
22.
go back to reference Haberer T, et al. Magnetic scanning system for heavy ion therapy. Nucl Instrum Meth Phys Res A. 1993;330(1-2):296–305.CrossRef Haberer T, et al. Magnetic scanning system for heavy ion therapy. Nucl Instrum Meth Phys Res A. 1993;330(1-2):296–305.CrossRef
23.
go back to reference Hanson KM. Proton computed tomography. IEEE Trans Nucl Sci. 1979;26(1):1630–40. Hanson KM. Proton computed tomography. IEEE Trans Nucl Sci. 1979;26(1):1630–40.
24.
go back to reference Hanson KM, et al. Proton computed tomography of human specimens. Phys Med Biol. 1982;27(1):25–36.CrossRefPubMed Hanson KM, et al. Proton computed tomography of human specimens. Phys Med Biol. 1982;27(1):25–36.CrossRefPubMed
25.
go back to reference Hartmann B, et al. Distortion of the per-pixel signal in the Timepix detector observed in high energy carbon ion beams. J Instrum. 2014;9(09):P09006.CrossRef Hartmann B, et al. Distortion of the per-pixel signal in the Timepix detector observed in high energy carbon ion beams. J Instrum. 2014;9(09):P09006.CrossRef
26.
go back to reference Hartmann B, et al. A novel method for fragmentation studies in particle therapy: principles of ion identification. Int J Particle Ther. 2017;3(4):439–49.CrossRef Hartmann B, et al. A novel method for fragmentation studies in particle therapy: principles of ion identification. Int J Particle Ther. 2017;3(4):439–49.CrossRef
27.
go back to reference Highland VL. Some practical remarks on multiple scattering. Nucl Instrum Meth Phys Res A. 1975;129(2):497–9.CrossRef Highland VL. Some practical remarks on multiple scattering. Nucl Instrum Meth Phys Res A. 1975;129(2):497–9.CrossRef
28.
go back to reference Hurley RF, et al. Water-equivalent path length calibration of a prototype proton CT scanner. Medical Physics. 2012;39(5):2438–46. Hurley RF, et al. Water-equivalent path length calibration of a prototype proton CT scanner. Medical Physics. 2012;39(5):2438–46.
29.
go back to reference Jäkel O, et al. Relation between carbon ion ranges and X-ray CT numbers. Med Phys. 2001;28:701–3.CrossRefPubMed Jäkel O, et al. Relation between carbon ion ranges and X-ray CT numbers. Med Phys. 2001;28:701–3.CrossRefPubMed
30.
go back to reference Jäkel O, Reis P. The influence of metal artefacts on the range of ion beams. Phys Med Biol. 2007;52:635–44.CrossRefPubMed Jäkel O, Reis P. The influence of metal artefacts on the range of ion beams. Phys Med Biol. 2007;52:635–44.CrossRefPubMed
31.
go back to reference Jakubek J. Precise energy calibration of pixel detector working in time-over-threshold mode. Nucl Instrum Meth Phys Res A. 2011;633(S1):S262–6.CrossRef Jakubek J. Precise energy calibration of pixel detector working in time-over-threshold mode. Nucl Instrum Meth Phys Res A. 2011;633(S1):S262–6.CrossRef
32.
go back to reference Johnson RP, et al. A fast experimental scanner for proton CT: technical performance and first experience with phantom scans. IEEE Trans Nucl Sci. 2015;63(1):52–60.CrossRefPubMedPubMedCentral Johnson RP, et al. A fast experimental scanner for proton CT: technical performance and first experience with phantom scans. IEEE Trans Nucl Sci. 2015;63(1):52–60.CrossRefPubMedPubMedCentral
33.
go back to reference Johnson RP. Review of medical radiography and tomography with proton beams. Rep Prog Phys. 2017;81(1):016701.CrossRef Johnson RP. Review of medical radiography and tomography with proton beams. Rep Prog Phys. 2017;81(1):016701.CrossRef
34.
36.
go back to reference Koybasi O, et al. Development of a 2D scintillating Fiber detector for proton radiography. IEEE Nucl Sci Symp Med Imaging Conf Rec (NSS/MIC). 2012;HT-3-3:4318–23. Koybasi O, et al. Development of a 2D scintillating Fiber detector for proton radiography. IEEE Nucl Sci Symp Med Imaging Conf Rec (NSS/MIC). 2012;HT-3-3:4318–23.
38.
go back to reference Kramer SL, et al. Proton Imaging for Medical Applications. Radiology. 1980;135:85–494.CrossRef Kramer SL, et al. Proton Imaging for Medical Applications. Radiology. 1980;135:85–494.CrossRef
39.
go back to reference Kraus V, et al. FITPix - fast interface for Timepix pixel detectors. J Instrum. 2011;6(01):C01079.CrossRef Kraus V, et al. FITPix - fast interface for Timepix pixel detectors. J Instrum. 2011;6(01):C01079.CrossRef
40.
go back to reference Kurz C, et al. Initial clinical evaluation of PET-based ion beam therapy monitoring under consideration of organ motion. Med Phys. 2016;43(2):975–82.CrossRefPubMed Kurz C, et al. Initial clinical evaluation of PET-based ion beam therapy monitoring under consideration of organ motion. Med Phys. 2016;43(2):975–82.CrossRefPubMed
41.
go back to reference Llopart X, et al. Timepix, a 65k programmable pixel readout chip for arrival time, energy and/or photon counting measurements. Nucl Instrum Meth Phys Res A. 2007;581(1–2):485–94.CrossRef Llopart X, et al. Timepix, a 65k programmable pixel readout chip for arrival time, energy and/or photon counting measurements. Nucl Instrum Meth Phys Res A. 2007;581(1–2):485–94.CrossRef
42.
go back to reference Lynch GR, Dahl OI. Approximations to multiple coulomb scattering. Nucl Instrum Meth Phys Res B. 1991;58(1):6–10.CrossRef Lynch GR, Dahl OI. Approximations to multiple coulomb scattering. Nucl Instrum Meth Phys Res B. 1991;58(1):6–10.CrossRef
43.
go back to reference Moffett DR, et al. Initial test of a proton radiographic system. IEEE Trans Nucl Sci. 1975;22(3):1749–51.CrossRef Moffett DR, et al. Initial test of a proton radiographic system. IEEE Trans Nucl Sci. 1975;22(3):1749–51.CrossRef
44.
go back to reference Mori I, Machida Y. Deriving the modulation transfer function of CT from extremely noisy edge profiles. Radiol Phys Technol. 2009;2(1):22–32.CrossRefPubMed Mori I, Machida Y. Deriving the modulation transfer function of CT from extremely noisy edge profiles. Radiol Phys Technol. 2009;2(1):22–32.CrossRefPubMed
45.
go back to reference Ohno Y, et al. Measurement of electron density distribution using heavy ion CT. Nucl Instrum Meth Phys Res A. 2004;525:279–83.CrossRef Ohno Y, et al. Measurement of electron density distribution using heavy ion CT. Nucl Instrum Meth Phys Res A. 2004;525:279–83.CrossRef
46.
go back to reference Naimuddin M, et al. Development of a proton computed tomography detector system. J Instrum. 2016;11:C02012.CrossRef Naimuddin M, et al. Development of a proton computed tomography detector system. J Instrum. 2016;11:C02012.CrossRef
47.
go back to reference Oborn BM, Dowdell S, Metcalfe PE, Crozier S, Mohan R, Keall PJ. Future of medical physics: real-time MRI-guided proton therapy. Med Phys. 2017;44(8):e77–90.CrossRefPubMed Oborn BM, Dowdell S, Metcalfe PE, Crozier S, Mohan R, Keall PJ. Future of medical physics: real-time MRI-guided proton therapy. Med Phys. 2017;44(8):e77–90.CrossRefPubMed
48.
go back to reference Pettersen HES, et al. Proton tracking in a high-granularity digital tracking calorimeter for proton CT purposes. Nucl Instrum Meth Phys Res A. 2017;860(SC):51–61.CrossRef Pettersen HES, et al. Proton tracking in a high-granularity digital tracking calorimeter for proton CT purposes. Nucl Instrum Meth Phys Res A. 2017;860(SC):51–61.CrossRef
50.
go back to reference Poikela T, et al. Timepix 3: a 65K channel hybrid pixel readout chip with simultaneous ToA/ToT and sparse readout. J Instrum. 2014;9:C05013. Poikela T, et al. Timepix 3: a 65K channel hybrid pixel readout chip with simultaneous ToA/ToT and sparse readout. J Instrum. 2014;9:C05013.
51.
52.
go back to reference Price T, et al. PRaVDA: high energy physics towards proton computed tomography. Nucl Instrum Meth Phys Res A. 2016;824:226–7.CrossRef Price T, et al. PRaVDA: high energy physics towards proton computed tomography. Nucl Instrum Meth Phys Res A. 2016;824:226–7.CrossRef
53.
go back to reference Richter C, et al. First clinical application of a prompt gamma based in vivo proton range verification system. Radiother Oncol. 2016;118:232–7.CrossRefPubMed Richter C, et al. First clinical application of a prompt gamma based in vivo proton range verification system. Radiother Oncol. 2016;118:232–7.CrossRefPubMed
54.
go back to reference Rinaldi I, et al. Experimental characterization of a prototype detector system for carbon ion radiography and tomography. Phys Med Biol. 2013;58(3):413–27.CrossRefPubMed Rinaldi I, et al. Experimental characterization of a prototype detector system for carbon ion radiography and tomography. Phys Med Biol. 2013;58(3):413–27.CrossRefPubMed
55.
go back to reference Schardt D, Elsässer T, Schulz-Ertner D. Heavy-ion tumor therapy: physical and radiobiological benefits. Rev Mod Phys. 2010;82:383–425.CrossRef Schardt D, Elsässer T, Schulz-Ertner D. Heavy-ion tumor therapy: physical and radiobiological benefits. Rev Mod Phys. 2010;82:383–425.CrossRef
56.
go back to reference Schegerer A. Bekanntmachung der aktualisierten diagnostischen Referenzwerte für diagnostische und interventionelle Röntgenanwendungen technical report, Bundesamt für Strahlenschutz. 2016. Schegerer A. Bekanntmachung der aktualisierten diagnostischen Referenzwerte für diagnostische und interventionelle Röntgenanwendungen technical report, Bundesamt für Strahlenschutz. 2016.
57.
go back to reference Schneider U, et al. Patient specific optimization of the relation between CT-Hounsfield units and proton stopping power with proton radiography. Med Phys. 2005;32(1):195–9.CrossRefPubMed Schneider U, et al. Patient specific optimization of the relation between CT-Hounsfield units and proton stopping power with proton radiography. Med Phys. 2005;32(1):195–9.CrossRefPubMed
58.
go back to reference Schulte RW, et al. A maximum likelihood proton path formalism for application in proton computed tomography. Med Phys. 2008;35(11):4849–56.CrossRefPubMed Schulte RW, et al. A maximum likelihood proton path formalism for application in proton computed tomography. Med Phys. 2008;35(11):4849–56.CrossRefPubMed
59.
go back to reference Seco J, Depauw N. Proof of principle study of the use of a CMOS active pixel sensor for proton radiography. Med Phys. 2011;38(2):622–3.CrossRefPubMed Seco J, Depauw N. Proof of principle study of the use of a CMOS active pixel sensor for proton radiography. Med Phys. 2011;38(2):622–3.CrossRefPubMed
60.
go back to reference Seco J, Spadea MF. Imaging in particle therapy: state of the art and future perspective. Acta Oncol. 2015;54:1254–8.CrossRefPubMed Seco J, Spadea MF. Imaging in particle therapy: state of the art and future perspective. Acta Oncol. 2015;54:1254–8.CrossRefPubMed
61.
go back to reference Soukup P, Jakubek J, Vykydal Z. 3D sensitive voxel detector of ionizing radiation based on Timepix device. J Instrum. 2011;6(01):C01060.CrossRef Soukup P, Jakubek J, Vykydal Z. 3D sensitive voxel detector of ionizing radiation based on Timepix device. J Instrum. 2011;6(01):C01060.CrossRef
62.
go back to reference Steward VW. Are X-rays the ultimate? Proton (heavy ion) radiography in neurologic diagnosis. J Neurol Sci. 1978;39:261–93.CrossRefPubMed Steward VW. Are X-rays the ultimate? Proton (heavy ion) radiography in neurologic diagnosis. J Neurol Sci. 1978;39:261–93.CrossRefPubMed
63.
go back to reference Taylor JT, et al. A new silicon tracker for proton imaging and dosimetry. Nucl Instrum Meth Phys Res A. 2016;831:362–6.CrossRef Taylor JT, et al. A new silicon tracker for proton imaging and dosimetry. Nucl Instrum Meth Phys Res A. 2016;831:362–6.CrossRef
64.
go back to reference Telsemeyer J, Jäkel O, Martišíková M. Quantitative carbon ion beam radiography and tomography with a flat-panel detector. Phys Med Biol. 2012;57(23):7957–71.CrossRefPubMed Telsemeyer J, Jäkel O, Martišíková M. Quantitative carbon ion beam radiography and tomography with a flat-panel detector. Phys Med Biol. 2012;57(23):7957–71.CrossRefPubMed
65.
go back to reference Tessonier T, et al. Phase space generation for proton and carbon ion beams for external users’ applications at the Heidelberg ion therapy center. Front Oncol. 2015;5:297. Tessonier T, et al. Phase space generation for proton and carbon ion beams for external users’ applications at the Heidelberg ion therapy center. Front Oncol. 2015;5:297.
66.
go back to reference Testa M, et al. Proton radiography and proton computed tomography based on time-resolved dose measurements. Phys Med Biol. 2013;58:8215–33.CrossRefPubMed Testa M, et al. Proton radiography and proton computed tomography based on time-resolved dose measurements. Phys Med Biol. 2013;58:8215–33.CrossRefPubMed
67.
go back to reference Volz L, et al. Stopping power accuracy and achievable spatial resolution of helium ion imaging using a prototype particle CT detector system. Curr Dir Biomed Eng. 2017;3(3):401–4. Volz L, et al. Stopping power accuracy and achievable spatial resolution of helium ion imaging using a prototype particle CT detector system. Curr Dir Biomed Eng. 2017;3(3):401–4.
68.
go back to reference Williams DC. The most likely path of an energetic charged particle through a uniform medium. Phys Med Biol. 2004;49(13):2899–911.CrossRefPubMed Williams DC. The most likely path of an energetic charged particle through a uniform medium. Phys Med Biol. 2004;49(13):2899–911.CrossRefPubMed
69.
go back to reference Wohlfahrt P, et al. Clinical implementation of dual-energy CT for proton treatment planning on pseudo-monoenergetic CT scans. Int J Rad Oncol Biol Phys. 2017;97(2):427–34.CrossRef Wohlfahrt P, et al. Clinical implementation of dual-energy CT for proton treatment planning on pseudo-monoenergetic CT scans. Int J Rad Oncol Biol Phys. 2017;97(2):427–34.CrossRef
70.
go back to reference Zygmanski P, et al. The measurement of proton stopping power using proton-cone-beam computed tomography. Phys Med Biol. 2000;45(2):511–28.CrossRefPubMed Zygmanski P, et al. The measurement of proton stopping power using proton-cone-beam computed tomography. Phys Med Biol. 2000;45(2):511–28.CrossRefPubMed
Metadata
Title
Helium ion beam imaging for image guided ion radiotherapy
Authors
M. Martišíková
T. Gehrke
S. Berke
G. Aricò
O. Jäkel
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2018
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-018-1046-6

Other articles of this Issue 1/2018

Radiation Oncology 1/2018 Go to the issue