Skip to main content
Top
Published in: Virology Journal 1/2017

Open Access 01-12-2017 | Research

Molecular characterization of the duck enteritis virus US10 protein

Authors: Daixi Zhang, Maoyin Lai, Anchun Cheng, Mingshu Wang, Ying Wu, Qiao Yang, Mafeng Liu, Dekang Zhu, Renyong Jia, Shun Chen, Kunfeng Sun, Xinxin Zhao, Xiaoyue Chen

Published in: Virology Journal | Issue 1/2017

Login to get access

Abstract

Background

There is little information regarding the duck enteritis virus (DEV) US10 gene and its molecular characterization.

Methods

Duck enteritis virus US10 was amplified and cloned into the recombinant vector pET32a(+). The recombinant US10 protein was expressed in Escherichia coli BL21 cells and used to immunize rabbits for the preparation of polyclonal antibodies. The harvested rabbit antiserum against DEV US10 was detected and analyzed by agar immunodiffusion. Using this antibody, western blotting and indirect immunofluorescence analysis were used to analyze the expression level and subcellular localization of US10 in infected cells at different time points. Quantitative reverse-transcription PCR (qRT-PCR) and pharmacological inhibition tests were used to ascertain the kinetic class of the US10 gene. A mass spectrometry-based strategy was used to identify US10 in purified DEV virions and quantify its abundance.

Results

The recombinant pET32a(+)/US10 protein was expressed as inclusion bodies, purified by gradient urea washing, and used to prepare specific antibodies. The results of qRT-PCR, western blotting, and pharmacological inhibition tests revealed that US10 is mainly transcribed in the late stage of viral replication. However, the presence of the DNA polymerase inhibitor ganciclovir and the protein synthesis inhibitor cycloheximide blocked transcription. Therefore, US10 is a γ2 (true late) gene. Indirect immunofluorescence analysis showed that US10 proteins were initially diffusely distributed throughout the cytoplasm, but with the passage of time, they gradually relocated to a perinuclear region. The US10 protein was detected in purified DEV virions by mass spectrometry, but was not detected by western blotting, indicating that DEV US10 is a minor virion protein.

Conclusions

The DEV US10 gene is a γ2 gene and the US10 protein is localized in the perinuclear region. DEV US10 is a virion component.
Literature
1.
go back to reference Samia AM. Viral infections of waterfowl: duck virus enteritis (duck plague). In: Swayne DE, Glisson JR, Mcdougald LR, Nolan LK, Suarez DL, Nair VL, editors. Diseases of poultry. 13th ed. Oxford: Wiley-Blackwell; 2013. p. 431–40. Samia AM. Viral infections of waterfowl: duck virus enteritis (duck plague). In: Swayne DE, Glisson JR, Mcdougald LR, Nolan LK, Suarez DL, Nair VL, editors. Diseases of poultry. 13th ed. Oxford: Wiley-Blackwell; 2013. p. 431–40.
3.
go back to reference Baudet A. Mortality in ducks in the Netherlands caused by a filtrable virus; fowl plague. Tijdschr Diergeneeskd. 1923;50:455–9. Baudet A. Mortality in ducks in the Netherlands caused by a filtrable virus; fowl plague. Tijdschr Diergeneeskd. 1923;50:455–9.
7.
go back to reference Yang C, Li Q, Li J, Zhang G, Li H, Xia Y, Yang H, Yu K. Comparative genomic sequence analysis between a standard challenge strain and a vaccine strain of duck enteritis virus in China. Virus Genes. 2014;48(2):296–303. DOI:10.1007/s11262-013-1009-9.CrossRefPubMed Yang C, Li Q, Li J, Zhang G, Li H, Xia Y, Yang H, Yu K. Comparative genomic sequence analysis between a standard challenge strain and a vaccine strain of duck enteritis virus in China. Virus Genes. 2014;48(2):296–303. DOI:10.​1007/​s11262-013-1009-9.CrossRefPubMed
10.
go back to reference Yamada H, Daikoku T, Yamashita Y, Jiang Y, Tsurumi T, Nishiyama Y. The product of the US10 gene of herpes simplex virus type 1 is a capsid/tegument-associated phosphoprotein which copurifies with the nuclear matrix. J Gen Virol. 1997;78(11):2923–31.CrossRefPubMed Yamada H, Daikoku T, Yamashita Y, Jiang Y, Tsurumi T, Nishiyama Y. The product of the US10 gene of herpes simplex virus type 1 is a capsid/tegument-associated phosphoprotein which copurifies with the nuclear matrix. J Gen Virol. 1997;78(11):2923–31.CrossRefPubMed
11.
go back to reference Holden V, Yalamanchili R, Harty R, O’Callaghan D. Identification and characterization of an equine herpesvirus 1 late gene encoding a potential zinc finger. Virology. 1992;188(2):704–13.CrossRefPubMed Holden V, Yalamanchili R, Harty R, O’Callaghan D. Identification and characterization of an equine herpesvirus 1 late gene encoding a potential zinc finger. Virology. 1992;188(2):704–13.CrossRefPubMed
12.
go back to reference Liu H, Niikura M, Fulton J, Cheng H. Identification of chicken lymphocyte antigen 6 complex, locus E (LY6E, alias SCA2) as a putative Marek’s disease resistance gene via a virus-host protein interaction screen. Cytogenetic Genome Res. 2003;102:304–8. DOI:10.1159/000075767.CrossRef Liu H, Niikura M, Fulton J, Cheng H. Identification of chicken lymphocyte antigen 6 complex, locus E (LY6E, alias SCA2) as a putative Marek’s disease resistance gene via a virus-host protein interaction screen. Cytogenetic Genome Res. 2003;102:304–8. DOI:10.​1159/​000075767.CrossRef
14.
go back to reference Wu Y, Cheng A, Wang M, Zhang S, Zhu D, Jia R, et al. Establishment of real-time quantitative reverse transcription polymerase chain reaction assay for transcriptional analysis of duck enteritis virus UL55 gene. Virol J. 2011;8(1):1–13.CrossRef Wu Y, Cheng A, Wang M, Zhang S, Zhu D, Jia R, et al. Establishment of real-time quantitative reverse transcription polymerase chain reaction assay for transcriptional analysis of duck enteritis virus UL55 gene. Virol J. 2011;8(1):1–13.CrossRef
15.
go back to reference Pellett PE, Roizman B. Chapter 59: Herpesviridae. In: Knipe DM, Howley PM. Cohen JI, Griffin DE, Lamb RA, Martin MA, Racaniello VR, Roizman B, eiditors. Fields Virology, 6th ed. Philadelphia: Lippincott Williams & Wilkins; 2013, p. 1802-1822. Pellett PE, Roizman B. Chapter 59: Herpesviridae. In: Knipe DM, Howley PM. Cohen JI, Griffin DE, Lamb RA, Martin MA, Racaniello VR, Roizman B, eiditors. Fields Virology, 6th ed. Philadelphia: Lippincott Williams & Wilkins; 2013, p. 1802-1822.
28.
go back to reference Barber K, Daugherty H, Ander S, Jefferson V, Shack L, Pechan T, et al. Protein composition of the bovine Herpesvirus 1.1 Virion. Veterinary. Sciences. 2017;4:11. DOI:10.3390/vetsci4010011. Barber K, Daugherty H, Ander S, Jefferson V, Shack L, Pechan T, et al. Protein composition of the bovine Herpesvirus 1.1 Virion. Veterinary. Sciences. 2017;4:11. DOI:10.​3390/​vetsci4010011.
29.
go back to reference Kalamvoki M, Qu J, Roizman B. Translocation and colocalization of ICP4 and ICP0 in cells infected with herpes simplex virus 1 mutants lacking glycoprotein E, glycoprotein I, or the virion host shutoff product of the UL41 gene. J Virol. 2008;82(4):1701–13. DOI:10.1128/JVI.02157-07.CrossRefPubMed Kalamvoki M, Qu J, Roizman B. Translocation and colocalization of ICP4 and ICP0 in cells infected with herpes simplex virus 1 mutants lacking glycoprotein E, glycoprotein I, or the virion host shutoff product of the UL41 gene. J Virol. 2008;82(4):1701–13. DOI:10.​1128/​JVI.​02157-07.CrossRefPubMed
Metadata
Title
Molecular characterization of the duck enteritis virus US10 protein
Authors
Daixi Zhang
Maoyin Lai
Anchun Cheng
Mingshu Wang
Ying Wu
Qiao Yang
Mafeng Liu
Dekang Zhu
Renyong Jia
Shun Chen
Kunfeng Sun
Xinxin Zhao
Xiaoyue Chen
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2017
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-017-0841-2

Other articles of this Issue 1/2017

Virology Journal 1/2017 Go to the issue