Skip to main content
Top
Published in: Virology Journal 1/2015

Open Access 01-12-2015 | Research

Duck enteritis virus UL54 is an IE protein primarily located in the nucleus

Authors: Chaoyue Liu, Anchun Cheng, Mingshu Wang, Shun Chen, Renyong Jia, Dekang Zhu, Mafeng Liu, Kunfeng Sun, Qiao Yang, Xiaoyue Chen

Published in: Virology Journal | Issue 1/2015

Login to get access

Abstract

Background

The UL54 protein of Duck Enteritis Virus (DEV) is a homolog of herpes simplex virus-1 (HSV-1) immediate-early infectious cell protein 27 (ICP27), a multifunctional protein essential for viral infection. Nonetheless, there is little information on the UL54 protein of DEV.

Methods

The UL54 gene was cloned into the pPAL7 vector, and the recombinant protein, expressed in the E. coli Rosetta, was used to produce a specific antibody. Using this antibody, Western blotting and indirect immunofluorescence analysis (IFA) were used to analyze the expression level and intracellular localization, respectively, of UL54 in DEV-infected cells at different times. Real-time quantitative reverse transcription PCR (RT-PCR) and the pharmacological inhibition test were utilized to ascertain the kinetic class of the UL54 gene.

Results

UL54 was expressed as a fusion protein of approximately 66.0 kDa using the prokaryotic expression system, and this protein was used to generate the specific anti-UL54 antibody. The UL54 protein was initially diffusely distributed throughout the cytoplasmic region; then, after 2 h, it gradually distributed into the nucleus, peaking at 24 h, and complete localization to the nucleus was observed thereafter. The UL54 transcript was detected as early as 0.5 h, and peak expression was observed at 24 h. The UL54 gene was insensitive to the DNA polymerase inhibitor Ganciclovir (GCV) and the protein synthesis inhibitor Cycloheximide (CHX), both of which confirmed that UL54 was an immediate early gene.

Conclusions

The DEV UL54 gene was expressed in a prokaryotic expression system and characterized for expression level, intracellular localization and gene kinetic class. We propose that these results will provide the foundation for further functional analyses of this gene.
Literature
1.
go back to reference Metwally SA. Duck Virus Enteritis (Duck Plague). In: Swayne DE, Glisson JR, McDougald LR, Nolan LK, Suarez DL, Nair V, editors. Diseases of Poultry. 13th ed. India: John Wiley & Sons, Inc; 2013. p. 431–40. Metwally SA. Duck Virus Enteritis (Duck Plague). In: Swayne DE, Glisson JR, McDougald LR, Nolan LK, Suarez DL, Nair V, editors. Diseases of Poultry. 13th ed. India: John Wiley & Sons, Inc; 2013. p. 431–40.
2.
go back to reference Malik P, Tabarraei A, Kehlenbach RH, Korfali N, Iwasawa R, Graham SV, et al. Herpes simplex virus ICP27 protein directly interacts with the nuclear pore complex through NUP62, inhibiting host nucleocytoplasmic transport pathways. J Biol Chem. 2012;287(15):12277–92. doi:10.1074/jbc.M111.331777.PubMedCentralCrossRefPubMed Malik P, Tabarraei A, Kehlenbach RH, Korfali N, Iwasawa R, Graham SV, et al. Herpes simplex virus ICP27 protein directly interacts with the nuclear pore complex through NUP62, inhibiting host nucleocytoplasmic transport pathways. J Biol Chem. 2012;287(15):12277–92. doi:10.​1074/​jbc.​M111.​331777.PubMedCentralCrossRefPubMed
3.
go back to reference Li M, Wang S, Cai M, Zheng C. Identification of nuclear and nucleolar localization signals of pseudorabies virus (PRV) early protein UL54 reveals that its nuclear targeting is required for efficient production of PRV. J Virol. 2011;85(19):10239–51.PubMedCentralCrossRefPubMed Li M, Wang S, Cai M, Zheng C. Identification of nuclear and nucleolar localization signals of pseudorabies virus (PRV) early protein UL54 reveals that its nuclear targeting is required for efficient production of PRV. J Virol. 2011;85(19):10239–51.PubMedCentralCrossRefPubMed
4.
go back to reference Lia M, Wangb S, Caia M, Guoa H, Zhenga C. Characterization of molecular determinants for nucleocytoplasmic shuttling of PRV UL54. Virology. 2011;417(2):385–93.CrossRef Lia M, Wangb S, Caia M, Guoa H, Zhenga C. Characterization of molecular determinants for nucleocytoplasmic shuttling of PRV UL54. Virology. 2011;417(2):385–93.CrossRef
5.
go back to reference Dinga Q, Guoa H, Lina F, Pana W, Yeb B, Zhenga AC. Characterization of the nuclear import and export mechanisms of bovine herpesvirus-1 infected cell protein 27. Virus Res. 2010;149(1):95–103.CrossRef Dinga Q, Guoa H, Lina F, Pana W, Yeb B, Zhenga AC. Characterization of the nuclear import and export mechanisms of bovine herpesvirus-1 infected cell protein 27. Virus Res. 2010;149(1):95–103.CrossRef
6.
go back to reference Guo H, Ding Q, Lin F, Pan W, Lin J, Zheng AC. Characterization of the nuclear and nucleolar localization signals of bovine herpesvirus-1 infected cell protein 27. Virus Res. 2009;145(2):312–20.CrossRefPubMed Guo H, Ding Q, Lin F, Pan W, Lin J, Zheng AC. Characterization of the nuclear and nucleolar localization signals of bovine herpesvirus-1 infected cell protein 27. Virus Res. 2009;145(2):312–20.CrossRefPubMed
7.
go back to reference Huang Y-J, Chien M-S, Wu C-Y, Huang C. Mapping of functional regions conferring nuclear localization and RNA-binding activity of pseudorabies virus early protein UL54. J Virol Methods. 2005;130(1–2):102–7.CrossRefPubMed Huang Y-J, Chien M-S, Wu C-Y, Huang C. Mapping of functional regions conferring nuclear localization and RNA-binding activity of pseudorabies virus early protein UL54. J Virol Methods. 2005;130(1–2):102–7.CrossRefPubMed
8.
go back to reference Soliman TM, Sandri-Goldin RM, Silverstein SJ. Shuttling of the herpes simplex virus type 1 regulatory protein ICP27 between the nucleus and cytoplasm mediates the expression of late proteins. J Virol. 1997;71(12):9188–97.PubMedCentralPubMed Soliman TM, Sandri-Goldin RM, Silverstein SJ. Shuttling of the herpes simplex virus type 1 regulatory protein ICP27 between the nucleus and cytoplasm mediates the expression of late proteins. J Virol. 1997;71(12):9188–97.PubMedCentralPubMed
14.
go back to reference Dai-ju JQ, Li L, Johnson LA, Sandri-Goldin RM. ICP27 Interacts with the C-Terminal Domain of RNA Polymerase II and Facilitates Its Recruitment to Herpes Simplex Virus 1 Transcription Sites, Where It Undergoes Proteasomal Degradation during Infection. J Virol. 2006;80(7):3567–81.PubMedCentralCrossRefPubMed Dai-ju JQ, Li L, Johnson LA, Sandri-Goldin RM. ICP27 Interacts with the C-Terminal Domain of RNA Polymerase II and Facilitates Its Recruitment to Herpes Simplex Virus 1 Transcription Sites, Where It Undergoes Proteasomal Degradation during Infection. J Virol. 2006;80(7):3567–81.PubMedCentralCrossRefPubMed
15.
go back to reference Ellison KS, Maranchuk RA, Mottet KL, Smiley JR. Control of VP16 Translation by the Herpes Simplex Virus Type 1 Immediate-Early Protein ICP27. J Virol. 2005;79(7):4120–31.PubMedCentralCrossRefPubMed Ellison KS, Maranchuk RA, Mottet KL, Smiley JR. Control of VP16 Translation by the Herpes Simplex Virus Type 1 Immediate-Early Protein ICP27. J Virol. 2005;79(7):4120–31.PubMedCentralCrossRefPubMed
16.
go back to reference Hann LE, Cook WJ, Uprichard SL, Knipe DM, Coen DM. The role of herpes simplex virus ICP27 in the regulation of UL24 gene expression by differential polyadenylation. J Virol. 1998;72(10):7709–14.PubMedCentralPubMed Hann LE, Cook WJ, Uprichard SL, Knipe DM, Coen DM. The role of herpes simplex virus ICP27 in the regulation of UL24 gene expression by differential polyadenylation. J Virol. 1998;72(10):7709–14.PubMedCentralPubMed
18.
go back to reference Kim JC, Choi SH, Kim JK, Kim SY, Kim HJ, Im JS, et al. Herpes simplex virus type 1 ICP27 induces apoptotic cell death by increasing intracellular reactive oxygen species. Mol Biol. 2008;42(3):413–20.CrossRef Kim JC, Choi SH, Kim JK, Kim SY, Kim HJ, Im JS, et al. Herpes simplex virus type 1 ICP27 induces apoptotic cell death by increasing intracellular reactive oxygen species. Mol Biol. 2008;42(3):413–20.CrossRef
20.
go back to reference Bright H, Perez DL, Christy C, Cockle P, Eyles JE, Hammond D, et al. The efficacy of HSV-2 vaccines based on gD and gB is enhanced by the addition of ICP27. Vaccine. 2012;30(52):7529–35. doi:10.1016/j.vaccine.CrossRefPubMed Bright H, Perez DL, Christy C, Cockle P, Eyles JE, Hammond D, et al. The efficacy of HSV-2 vaccines based on gD and gB is enhanced by the addition of ICP27. Vaccine. 2012;30(52):7529–35. doi:10.​1016/​j.​vaccine.CrossRefPubMed
23.
go back to reference Farrell Jr RE. RT-PCR: A Science and an Art Form. In: Farrell RE, editor. RNA Methodologies. 4th ed. San Diego: Academic; 2010. p. 385–448.CrossRef Farrell Jr RE. RT-PCR: A Science and an Art Form. In: Farrell RE, editor. RNA Methodologies. 4th ed. San Diego: Academic; 2010. p. 385–448.CrossRef
26.
go back to reference Chalifour A, Basso J, Gagnon N, Trudel M, Simard C. Transcriptional and Translational Expression Kinetics of the Early Gene Encoding the BICP27 Protein of Bovine Herpesvirus Type 1. Virology. 1996;224(1):326–9. doi:10.1006/viro.1996.0536.CrossRefPubMed Chalifour A, Basso J, Gagnon N, Trudel M, Simard C. Transcriptional and Translational Expression Kinetics of the Early Gene Encoding the BICP27 Protein of Bovine Herpesvirus Type 1. Virology. 1996;224(1):326–9. doi:10.​1006/​viro.​1996.​0536.CrossRefPubMed
27.
go back to reference Brehm M, Samaniego LA, Bonneau RH, DeLuca NA, Tevethia SS. Immunogenicity of Herpes Simplex Virus Type 1 Mutants Containing Deletions in One or More α-Genes: ICP4, ICP27, ICP22, and ICP0. Virology. 1999;256(2):258–69. doi:10.1006/viro.1999.9653.CrossRefPubMed Brehm M, Samaniego LA, Bonneau RH, DeLuca NA, Tevethia SS. Immunogenicity of Herpes Simplex Virus Type 1 Mutants Containing Deletions in One or More α-Genes: ICP4, ICP27, ICP22, and ICP0. Virology. 1999;256(2):258–69. doi:10.​1006/​viro.​1999.​9653.CrossRefPubMed
28.
go back to reference Banks TA, Jenkins FJ, Kanangat S, Nair S, Dasgupta S, Foster CM, et al. Vaccination with the Immediate-Early Protein ICP47 of Herpes Simplex Virus-Type 1 (HSV-1) Induces Virus-Specific Lymphoproliferation, but Fails to Protect against Lethal Challenge. Virology. 1994;200(1):236–45. doi:10.1006/viro.1994.1181.CrossRefPubMed Banks TA, Jenkins FJ, Kanangat S, Nair S, Dasgupta S, Foster CM, et al. Vaccination with the Immediate-Early Protein ICP47 of Herpes Simplex Virus-Type 1 (HSV-1) Induces Virus-Specific Lymphoproliferation, but Fails to Protect against Lethal Challenge. Virology. 1994;200(1):236–45. doi:10.​1006/​viro.​1994.​1181.CrossRefPubMed
29.
go back to reference Liu C, Cheng A, Wang M. Bioinformatics Analysis of the Duck Enteritis Virus UL54 Gene. Res J Appl Sci Eng Technol. 2014;7(14):2813–7. Liu C, Cheng A, Wang M. Bioinformatics Analysis of the Duck Enteritis Virus UL54 Gene. Res J Appl Sci Eng Technol. 2014;7(14):2813–7.
30.
go back to reference Liu Q, Jia R, Wang M, Huang J, Zhu D, Chen S, et al. Cloning, expression and purification of duck hepatitis B virus (DHBV) core protein and its use in the development of an indirect ELISA for serologic detection of DHBV infection. Arch Virol. 2014;159(5):897–904. doi:10.1007/s00705-013-1897-y.CrossRefPubMed Liu Q, Jia R, Wang M, Huang J, Zhu D, Chen S, et al. Cloning, expression and purification of duck hepatitis B virus (DHBV) core protein and its use in the development of an indirect ELISA for serologic detection of DHBV infection. Arch Virol. 2014;159(5):897–904. doi:10.​1007/​s00705-013-1897-y.CrossRefPubMed
31.
go back to reference Cheng A, Zhang S, Zhang X, Wang M, Zhu D, Jia R, et al. Prokaryotic expression and characteristics of duck enteritis virus UL29 gene. Acta Virol. 2012;56(4):293–304.CrossRefPubMed Cheng A, Zhang S, Zhang X, Wang M, Zhu D, Jia R, et al. Prokaryotic expression and characteristics of duck enteritis virus UL29 gene. Acta Virol. 2012;56(4):293–304.CrossRefPubMed
34.
Metadata
Title
Duck enteritis virus UL54 is an IE protein primarily located in the nucleus
Authors
Chaoyue Liu
Anchun Cheng
Mingshu Wang
Shun Chen
Renyong Jia
Dekang Zhu
Mafeng Liu
Kunfeng Sun
Qiao Yang
Xiaoyue Chen
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2015
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-015-0424-z

Other articles of this Issue 1/2015

Virology Journal 1/2015 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.