Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2019

Open Access 01-12-2019 | Zika Virus | Review

The role of microglia in viral encephalitis: a review

Authors: Zhuangzhuang Chen, Di Zhong, Guozhong Li

Published in: Journal of Neuroinflammation | Issue 1/2019

Login to get access

Abstract

Viral encephalitis is still very prominent around the world, and traditional antiviral therapies still have shortcomings. Some patients cannot get effective relief or suffer from serious sequelae. At present, people are studying the role of the innate immune system in viral encephalitis. Microglia, as resident cells of the central nervous system (CNS), can respond quickly to various CNS injuries including trauma, ischemia, and infection and maintain the homeostasis of CNS, but this response is not always good; sometimes, it will exacerbate damage. Studies have shown that microglia also act as a double-edged sword during viral encephalitis. On the one hand, microglia can sense ATP signals through the purinergic receptor P2Y12 and are recruited around infected neurons to exert phagocytic activity. Microglia can exert a direct antiviral effect by producing type 1 interferon (IFN-1) to induce IFN-stimulated gene (ISG) expression of themselves or indirect antiviral effects by IFN-1 acting on other cells to activate corresponding signaling pathways. In addition, microglia can also exert an antiviral effect by inducing autophagy or secreting cytokines. On the other hand, microglia mediate presynaptic membrane damage in the hippocampus through complement, resulting in long-term memory impairment and cognitive dysfunction in patients with encephalitis. Microglia mediate fetal congenital malformations caused by Zika virus (ZIKV) infection. The gene expression profile of microglia in HIV encephalitis changes, and they tend to be a pro-inflammatory type. Microglia inhibited neuronal autophagy and aggravated the damage of CNS in HIV encephalitis; E3 ubiquitin ligase Pellino (pelia) expressed by microglia promotes the replication of virus in neurons. The interaction between amyloid-β peptide (Aβ) produced by neurons and activated microglia during viral infection is uncertain. Although neurons can mediate antiviral effects by activating receptor-interacting protein kinases 3 (RIPK3) in a death-independent pathway, the RIPK3 pathway of microglia is unknown. Different brain regions have different susceptibility to viruses, and the gene expression of microglia in different brain regions is specific. The relationship between the two needs to be further confirmed. How to properly regulate the function of microglia and make it exert more anti-inflammatory effects is our next research direction.
Literature
1.
go back to reference Tyler KL. Acute Viral Encephalitis Kenneth L.N Engl J Med. 2018;379:557–66.CrossRef Tyler KL. Acute Viral Encephalitis Kenneth L.N Engl J Med. 2018;379:557–66.CrossRef
2.
go back to reference George BP, Schneider EB, Venkatesan A. Encephalitis hospitalization rates and inpatient mortality in the United States, 2000-2010. PLoS One. 2014;9:e104169.PubMedPubMedCentralCrossRef George BP, Schneider EB, Venkatesan A. Encephalitis hospitalization rates and inpatient mortality in the United States, 2000-2010. PLoS One. 2014;9:e104169.PubMedPubMedCentralCrossRef
3.
go back to reference Vora NM, Holman RC, Mehal JM, Steiner CA, Blanton J, Sejvar J. Burden of encephalitis-associated hospitalizations in the United States, 1998-2010. Neurology. 2014;82:443–51.PubMedCrossRef Vora NM, Holman RC, Mehal JM, Steiner CA, Blanton J, Sejvar J. Burden of encephalitis-associated hospitalizations in the United States, 1998-2010. Neurology. 2014;82:443–51.PubMedCrossRef
5.
go back to reference Gomez Perdiguero E, et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. NaSture. 2015;518:547–51. Gomez Perdiguero E, et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. NaSture. 2015;518:547–51.
6.
go back to reference Crotti A, Ransohoff RM. Microglial physiology and pathophysiology: insights from genome-wide transcriptional profiling. Immunity. 2016;44:505–15.PubMedCrossRef Crotti A, Ransohoff RM. Microglial physiology and pathophysiology: insights from genome-wide transcriptional profiling. Immunity. 2016;44:505–15.PubMedCrossRef
9.
go back to reference Fekete R, Cserép C, Lénárt N, Tóth K, Orsolits B, Martinecz B, et al. Microglia control the spread of neurotropic virus infection via P2Y12 signalling and recruit monocytes through P2Y12-independent mechanisms. Acta Neuropathol. 2018;136:461–82.PubMedPubMedCentralCrossRef Fekete R, Cserép C, Lénárt N, Tóth K, Orsolits B, Martinecz B, et al. Microglia control the spread of neurotropic virus infection via P2Y12 signalling and recruit monocytes through P2Y12-independent mechanisms. Acta Neuropathol. 2018;136:461–82.PubMedPubMedCentralCrossRef
10.
go back to reference Illes P, Alexandre RJ. Molecular physiology of P2 receptors in the central nervous system. Eur J Pharmacol. 2004;483:5–17.PubMedCrossRef Illes P, Alexandre RJ. Molecular physiology of P2 receptors in the central nervous system. Eur J Pharmacol. 2004;483:5–17.PubMedCrossRef
11.
go back to reference Sperlagh B, Illes P. Purinergic modulation of microglial cell activation. Purinergic Signal. 2007;3:117–27.PubMedCrossRef Sperlagh B, Illes P. Purinergic modulation of microglial cell activation. Purinergic Signal. 2007;3:117–27.PubMedCrossRef
12.
go back to reference Davalos D, Grut zendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB. ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci2005; 8:752–758.PubMedCrossRef Davalos D, Grut zendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB. ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci2005; 8:752–758.PubMedCrossRef
13.
go back to reference Garcia JM, Stillings SA, Leclerc JL, Phillips H, Edwards NJ, Robicsek SA, Hoh BL, Blackburn S. Dore S role of interleukin-10 in acute brain injuries. Front Neurol. 2017;8:244.PubMedPubMedCentralCrossRef Garcia JM, Stillings SA, Leclerc JL, Phillips H, Edwards NJ, Robicsek SA, Hoh BL, Blackburn S. Dore S role of interleukin-10 in acute brain injuries. Front Neurol. 2017;8:244.PubMedPubMedCentralCrossRef
14.
go back to reference Wheeler DL, Sariol A, Meyerholz DK, Perlman S. Microglia are required for protection against lethal coronavirus encephalitis in mice. J Clin Invest. 2018;128:931–43.PubMedPubMedCentralCrossRef Wheeler DL, Sariol A, Meyerholz DK, Perlman S. Microglia are required for protection against lethal coronavirus encephalitis in mice. J Clin Invest. 2018;128:931–43.PubMedPubMedCentralCrossRef
15.
go back to reference Cervantes-Barragan L, et al. Control of coronavirus infection through plasmacytoid dendritic-cellderived type I interferon. Blood. 2007;109:1131–7.PubMedCrossRef Cervantes-Barragan L, et al. Control of coronavirus infection through plasmacytoid dendritic-cellderived type I interferon. Blood. 2007;109:1131–7.PubMedCrossRef
16.
go back to reference Drokhlyansky E, Goz Ayturk D, Soh TK, Chrenek R, O’Loughlin E, Madore C, Butovsky O, Cepko CL. The brain parenchyma has a type I interferon response that can limit virus spread. Proc Natl Acad Sci USA. 2017;114:E95-E104.CrossRef Drokhlyansky E, Goz Ayturk D, Soh TK, Chrenek R, O’Loughlin E, Madore C, Butovsky O, Cepko CL. The brain parenchyma has a type I interferon response that can limit virus spread. Proc Natl Acad Sci USA. 2017;114:E95-E104.CrossRef
17.
go back to reference Platanias LC. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol. 2005;5:375–86.PubMedCrossRef Platanias LC. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol. 2005;5:375–86.PubMedCrossRef
18.
go back to reference Lazear HM, Diamond MS. New insights into innate immune restriction of West Nile virus infection. Curr Opin Virol. 2015;11:1–6.PubMedCrossRef Lazear HM, Diamond MS. New insights into innate immune restriction of West Nile virus infection. Curr Opin Virol. 2015;11:1–6.PubMedCrossRef
20.
go back to reference Sun L, Wu J, Du F, Chen X, Chen ZJ. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science. 2013;339:786–91.PubMedCrossRef Sun L, Wu J, Du F, Chen X, Chen ZJ. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science. 2013;339:786–91.PubMedCrossRef
23.
go back to reference Perry AK, Chen G, Zheng D, Tang H, Cheng G. The host type I interferon response to viral and bacterial infections. Cell Res. 2005;15:407–22.PubMedCrossRef Perry AK, Chen G, Zheng D, Tang H, Cheng G. The host type I interferon response to viral and bacterial infections. Cell Res. 2005;15:407–22.PubMedCrossRef
24.
go back to reference Reinert LS, Lopusna K, Winther H, Sun C, Thomsen MK, Nandakumar R, Mogensen TH, Meyer M, Vaegter C, Nyengaard JR, et al. (2016) Sensing of HSV-1 by the cGAS-STING pathway in microglia orchestrates antiviral defence in the CNS. Nat Commun. 2016;7:13348. Reinert LS, Lopusna K, Winther H, Sun C, Thomsen MK, Nandakumar R, Mogensen TH, Meyer M, Vaegter C, Nyengaard JR, et al. (2016) Sensing of HSV-1 by the cGAS-STING pathway in microglia orchestrates antiviral defence in the CNS. Nat Commun. 2016;7:13348.
25.
go back to reference Chhatbar C, Detje CN, Grabski E, Borst K, Spanier J, Ghita L, Elliott DA, et al. Type I interferon receptor signaling of neurons and astrocytes regulates microglia activation during viral encephalitis. Cell Rep. 2018;25:118–29.PubMedCrossRefPubMedCentral Chhatbar C, Detje CN, Grabski E, Borst K, Spanier J, Ghita L, Elliott DA, et al. Type I interferon receptor signaling of neurons and astrocytes regulates microglia activation during viral encephalitis. Cell Rep. 2018;25:118–29.PubMedCrossRefPubMedCentral
26.
go back to reference Pyonteck SM, Akkari L, Schuhmacher AJ, Bowman RL, Sevenich L, Quail DF, Olson OC, Quick ML, Huse JT, Teijeiro V, et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med. 2013;19:1264–72.PubMedPubMedCentralCrossRef Pyonteck SM, Akkari L, Schuhmacher AJ, Bowman RL, Sevenich L, Quail DF, Olson OC, Quick ML, Huse JT, Teijeiro V, et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med. 2013;19:1264–72.PubMedPubMedCentralCrossRef
27.
go back to reference Greter M, Lelios I, Pelczar P, Hoeffel G, Price J, Leboeuf M, Kündig TM, Frei K, Ginhoux F, Merad M, Becher B. Stroma-derived interleukin-34 controls the development and maintenance of langerhans cells and the maintenance of microglia. Immunity. 2012;37:1050–60.PubMedPubMedCentralCrossRef Greter M, Lelios I, Pelczar P, Hoeffel G, Price J, Leboeuf M, Kündig TM, Frei K, Ginhoux F, Merad M, Becher B. Stroma-derived interleukin-34 controls the development and maintenance of langerhans cells and the maintenance of microglia. Immunity. 2012;37:1050–60.PubMedPubMedCentralCrossRef
28.
go back to reference Buttgereit A, Lelios I, Yu X, Vrohlings M, Krakoski NR, Gautier EL, Nishinakamura R, Becher B, Greter M. Sall1 is a transcriptional regulator defining microglia identity and function. Nat Immunol. 2016;17:1397–406.PubMedCrossRef Buttgereit A, Lelios I, Yu X, Vrohlings M, Krakoski NR, Gautier EL, Nishinakamura R, Becher B, Greter M. Sall1 is a transcriptional regulator defining microglia identity and function. Nat Immunol. 2016;17:1397–406.PubMedCrossRef
29.
go back to reference Daniels BP, Jujjavarapu H, Durrant DM, Williams JL, Green RR, White JP, Lazear HM, Gale M Jr, Diamond MS, Klein RS. Regional astrocyte IFN signaling restricts pathogenesis during neurotropic viral infection. J Clin Invest. 2017;127:843–56.PubMedPubMedCentralCrossRef Daniels BP, Jujjavarapu H, Durrant DM, Williams JL, Green RR, White JP, Lazear HM, Gale M Jr, Diamond MS, Klein RS. Regional astrocyte IFN signaling restricts pathogenesis during neurotropic viral infection. J Clin Invest. 2017;127:843–56.PubMedPubMedCentralCrossRef
30.
go back to reference Daniels BP, Holman DW, Cruz-Orengo L, Jujjavarapu H, Durrant DM, Klein RS. Viral pathogen-associated molecular patterns regulate blood-brain barrier integrity via competing innate cytokine signals. MBio. 2014;5:e01476–14.PubMedPubMedCentralCrossRef Daniels BP, Holman DW, Cruz-Orengo L, Jujjavarapu H, Durrant DM, Klein RS. Viral pathogen-associated molecular patterns regulate blood-brain barrier integrity via competing innate cytokine signals. MBio. 2014;5:e01476–14.PubMedPubMedCentralCrossRef
31.
go back to reference Engelhardt B, Ransohoff RM. Capture, crawl, cross: the T cell code to breach the blood-brain barriers. Trends Immunol. 2012;33:579–89.PubMedCrossRef Engelhardt B, Ransohoff RM. Capture, crawl, cross: the T cell code to breach the blood-brain barriers. Trends Immunol. 2012;33:579–89.PubMedCrossRef
32.
go back to reference Bitsch A, et al. Interferon beta-1b modulates serum sVCAM-1 levels in primary progressive multiple sclerosis. Acta Neurol Scand. 2004;110:386–92.PubMedCrossRef Bitsch A, et al. Interferon beta-1b modulates serum sVCAM-1 levels in primary progressive multiple sclerosis. Acta Neurol Scand. 2004;110:386–92.PubMedCrossRef
33.
go back to reference Getts DR, Terry RL, Getts MT, Muller M, Rana S, Deffrasnes C, Ashhurst TM, Radford J, Hofer M, Thomas S, Campbell IL, King NJ. Targeted blockade in lethal West Nile virus encephalitis indicates a crucial role for very late antigen (VLA)-4-dependent recruitment of nitric oxide-producing macrophages.J Neuroinflammation. 2012;9:246. Getts DR, Terry RL, Getts MT, Muller M, Rana S, Deffrasnes C, Ashhurst TM, Radford J, Hofer M, Thomas S, Campbell IL, King NJ. Targeted blockade in lethal West Nile virus encephalitis indicates a crucial role for very late antigen (VLA)-4-dependent recruitment of nitric oxide-producing macrophages.J Neuroinflammation. 2012;9:246.
34.
35.
go back to reference Cheeran MC, Hu S, Yager SL, Gekker G, Peterson PK, Lokensgard JR. Cytomegalovirus induces cytokine and chemokine production differentially in microglia and astrocytes: antiviral implications. J Neuro-Oncol. 2001;7:135–47. Cheeran MC, Hu S, Yager SL, Gekker G, Peterson PK, Lokensgard JR. Cytomegalovirus induces cytokine and chemokine production differentially in microglia and astrocytes: antiviral implications. J Neuro-Oncol. 2001;7:135–47.
36.
go back to reference Cheeran MC, Hu S, Sheng WS, Peterson PK, Lokensgard JR. CXCL10 production from cytomegalovirus-stimulated microglia is regulated by both human and viral interleukin-10. J Virol. 2003;77:4502–15.PubMedPubMedCentralCrossRef Cheeran MC, Hu S, Sheng WS, Peterson PK, Lokensgard JR. CXCL10 production from cytomegalovirus-stimulated microglia is regulated by both human and viral interleukin-10. J Virol. 2003;77:4502–15.PubMedPubMedCentralCrossRef
37.
go back to reference Lokensgard JR, Hu S, Sheng W, vanOijen M, cox D, Cheeran MC, Peterson PK. Robust expression of TNF-alpha, IL-1beta, RANTES, and IP-10 by human microglial cells during nonproductive infection with herpes simplex virus. J Neuro-Oncol 2001;7:208–219. Lokensgard JR, Hu S, Sheng W, vanOijen M, cox D, Cheeran MC, Peterson PK. Robust expression of TNF-alpha, IL-1beta, RANTES, and IP-10 by human microglial cells during nonproductive infection with herpes simplex virus. J Neuro-Oncol 2001;7:208–219.
38.
go back to reference Liu Y, Gordesky-Gold B, Leney-Greene M, Weinbren NL, Tudor M, Cherry S. Inflammation-induced, STING-dependent autophagy restricts Zika virus infection in the Drosophila brain. Cell Host Microbe. 2018;24:57–68.PubMedCrossRefPubMedCentral Liu Y, Gordesky-Gold B, Leney-Greene M, Weinbren NL, Tudor M, Cherry S. Inflammation-induced, STING-dependent autophagy restricts Zika virus infection in the Drosophila brain. Cell Host Microbe. 2018;24:57–68.PubMedCrossRefPubMedCentral
39.
go back to reference Buchon N, Silverman N, Cherry S. Immunity in Drosophila melanogaster-from microbial recognition to whole-organism physiology. Nat Rev Immunol. 2014;14:796–810.PubMedPubMedCentralCrossRef Buchon N, Silverman N, Cherry S. Immunity in Drosophila melanogaster-from microbial recognition to whole-organism physiology. Nat Rev Immunol. 2014;14:796–810.PubMedPubMedCentralCrossRef
40.
go back to reference Burdette DL, Vance RE. STING and the innate immune response to nucleic acids in the cytosol. Nat Immunol. 2013;14:19–26.PubMedCrossRef Burdette DL, Vance RE. STING and the innate immune response to nucleic acids in the cytosol. Nat Immunol. 2013;14:19–26.PubMedCrossRef
41.
go back to reference Choi J, Park S, Biering SB, Selleck E, Liu CY, Zhang X, Fujita N, Saitoh T, Akira S, Yoshimori T, et al. The parasitophorous vacuole membrane of toxoplasma gondii is targeted for disruption by ubiquitin-like conjugation systems of autophagy. Immunity. 2014;40:924–35.PubMedPubMedCentralCrossRef Choi J, Park S, Biering SB, Selleck E, Liu CY, Zhang X, Fujita N, Saitoh T, Akira S, Yoshimori T, et al. The parasitophorous vacuole membrane of toxoplasma gondii is targeted for disruption by ubiquitin-like conjugation systems of autophagy. Immunity. 2014;40:924–35.PubMedPubMedCentralCrossRef
42.
go back to reference Moy RH, Gold B, Molleston JM, Schad V, Yanger K, Salzano MV, Yagi Y, Fitzgerald KA, Stanger BZ, Soldan SS, Cherry S. Antiviral autophagy restricts Rift Valley fever virus infection and is conserved from flies to mammals. Immunity. 2014;40:51–65.PubMedCrossRef Moy RH, Gold B, Molleston JM, Schad V, Yanger K, Salzano MV, Yagi Y, Fitzgerald KA, Stanger BZ, Soldan SS, Cherry S. Antiviral autophagy restricts Rift Valley fever virus infection and is conserved from flies to mammals. Immunity. 2014;40:51–65.PubMedCrossRef
43.
go back to reference Moretti J, Roy S, Bozec D, Martinez J, Chapman JR, Ueberheide B, Lamming DW, Chen ZJ, Horng T, Yeretssian G, et al. STING senses microbial viability to orchestrate stress-mediated autophagy of the endoplasmic reticulum. Cell. 2017;171:809–23.PubMedPubMedCentralCrossRef Moretti J, Roy S, Bozec D, Martinez J, Chapman JR, Ueberheide B, Lamming DW, Chen ZJ, Horng T, Yeretssian G, et al. STING senses microbial viability to orchestrate stress-mediated autophagy of the endoplasmic reticulum. Cell. 2017;171:809–23.PubMedPubMedCentralCrossRef
45.
go back to reference Scott RC, Schuldiner O, Neufeld TP. Role and regulation starvation-induced autophagy in the Drosophila fat body. Dev Cell. 2014:167–78.PubMedCrossRef Scott RC, Schuldiner O, Neufeld TP. Role and regulation starvation-induced autophagy in the Drosophila fat body. Dev Cell. 2014:167–78.PubMedCrossRef
46.
go back to reference Morris O, Liu X, Domingues C, Runchel C, Chai A, Basith S, Tenev T, Chen H, Choi S, Pennetta G, et al. Signal integration by the IkB protein pickle shapes Drosophila innate host defense. Cell Host Microbe. 2016;20:283–95.PubMedPubMedCentralCrossRef Morris O, Liu X, Domingues C, Runchel C, Chai A, Basith S, Tenev T, Chen H, Choi S, Pennetta G, et al. Signal integration by the IkB protein pickle shapes Drosophila innate host defense. Cell Host Microbe. 2016;20:283–95.PubMedPubMedCentralCrossRef
47.
go back to reference Joubert PE, Werneke SW, de la Calle C, Guivel-Benhassine F, Giodini A, Peduto L, Levine B, Schwartz O, Lenschow DJ, Albert ML. Chikungunya virus-induced autophagy delays caspase-dependent cell death. J Exp Med. 2012;209:1029–47.PubMedPubMedCentralCrossRef Joubert PE, Werneke SW, de la Calle C, Guivel-Benhassine F, Giodini A, Peduto L, Levine B, Schwartz O, Lenschow DJ, Albert ML. Chikungunya virus-induced autophagy delays caspase-dependent cell death. J Exp Med. 2012;209:1029–47.PubMedPubMedCentralCrossRef
49.
go back to reference Nakamoto M, Moy RH, Xu J, Bambina S, Yasunaga A, Shelly SS, Gold B, Cherry S. Virus recognition by Toll-7 activates antiviral autophagy in Drosophila. Immunity. 2012;36:658–67.PubMedPubMedCentralCrossRef Nakamoto M, Moy RH, Xu J, Bambina S, Yasunaga A, Shelly SS, Gold B, Cherry S. Virus recognition by Toll-7 activates antiviral autophagy in Drosophila. Immunity. 2012;36:658–67.PubMedPubMedCentralCrossRef
50.
go back to reference Sejvar JJ, et al. Neurologic manifestations and outcome of West Nile virus infection. J Am Med Assoc. 2003;290:511–5.CrossRef Sejvar JJ, et al. Neurologic manifestations and outcome of West Nile virus infection. J Am Med Assoc. 2003;290:511–5.CrossRef
51.
go back to reference Sadek JR, Pergam SA, Harrington JA, Echevarria LA, Davis LE, Goade D, Harnar J, Nofchissey RA, et al. Persistent neuropsychological impairment associated with West Nile virus infection. J Clin Exp Neuropsychol. 2010;32:81–7.PubMedCrossRef Sadek JR, Pergam SA, Harrington JA, Echevarria LA, Davis LE, Goade D, Harnar J, Nofchissey RA, et al. Persistent neuropsychological impairment associated with West Nile virus infection. J Clin Exp Neuropsychol. 2010;32:81–7.PubMedCrossRef
52.
go back to reference Vasek MJ, Garber C, Dorsey D, Durrant DM, Bollman B, Soung A, Yu J, Perez-Torres C, Frouin A, Wilton DK, et al. A complement-microglial axis drives synapse loss during virus-induced memory impairment. Nature. 2016;534:538–43.PubMedPubMedCentralCrossRef Vasek MJ, Garber C, Dorsey D, Durrant DM, Bollman B, Soung A, Yu J, Perez-Torres C, Frouin A, Wilton DK, et al. A complement-microglial axis drives synapse loss during virus-induced memory impairment. Nature. 2016;534:538–43.PubMedPubMedCentralCrossRef
53.
go back to reference Cagnin AR, Myers RN, Gunn AD, Lawrence T, Stevens GW, Kreutzberg T, et al. In vivo visualization of activated glia by [11C] (R)-PK11195-PET following herpes encephalitis reveals projected neuronal damage beyond the primary focal lesion. Brain. 2001;124:2014–27.PubMedCrossRef Cagnin AR, Myers RN, Gunn AD, Lawrence T, Stevens GW, Kreutzberg T, et al. In vivo visualization of activated glia by [11C] (R)-PK11195-PET following herpes encephalitis reveals projected neuronal damage beyond the primary focal lesion. Brain. 2001;124:2014–27.PubMedCrossRef
54.
go back to reference Habbas S, Santello M, Becker D, Stubbe H, Zappia G, Liaudet N, Klaus FR, Kollias G, Fontana A, Pryce CR, Suter T, Volterra A, Neuroinflammatory TNFa impairs memory via astrocyte signaling. Cell;2015;163:1730–41. Habbas S, Santello M, Becker D, Stubbe H, Zappia G, Liaudet N, Klaus FR, Kollias G, Fontana A, Pryce CR, Suter T, Volterra A, Neuroinflammatory TNFa impairs memory via astrocyte signaling. Cell;2015;163:1730–41.
55.
go back to reference Santello M, Bezzi P, Volterra A. TNFa controls glutamatergic gliotransmission in the hippocampal dentate gyrus. Neuron. 2011;69:988–1001.PubMedCrossRef Santello M, Bezzi P, Volterra A. TNFa controls glutamatergic gliotransmission in the hippocampal dentate gyrus. Neuron. 2011;69:988–1001.PubMedCrossRef
56.
57.
go back to reference Moron AF, Cavalheiro S, Milani H, et al. Microcephaly associated with maternal Zika virus infection. BJOG. 2016;123:1265–9.PubMedCrossRef Moron AF, Cavalheiro S, Milani H, et al. Microcephaly associated with maternal Zika virus infection. BJOG. 2016;123:1265–9.PubMedCrossRef
58.
go back to reference Cao-Lormeau VM, Blake A, Mons S, et al. Guillain-Barré syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study. Lancet. 2016;387:1531–9.PubMedPubMedCentralCrossRef Cao-Lormeau VM, Blake A, Mons S, et al. Guillain-Barré syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study. Lancet. 2016;387:1531–9.PubMedPubMedCentralCrossRef
59.
go back to reference Rasmussen SA, Jamieson DJ, Honein MA, Petersen LR. Zika virus and birth defects-reviewing the evidence for causality. N Engl J Med. 2016;374:1981–7.PubMedCrossRef Rasmussen SA, Jamieson DJ, Honein MA, Petersen LR. Zika virus and birth defects-reviewing the evidence for causality. N Engl J Med. 2016;374:1981–7.PubMedCrossRef
60.
go back to reference Mlakar J, Korva M, Tul N, et al. Zika virus associated with microcephaly. N Engl J Med. 2016;374:951–8.PubMedCrossRef Mlakar J, Korva M, Tul N, et al. Zika virus associated with microcephaly. N Engl J Med. 2016;374:951–8.PubMedCrossRef
61.
go back to reference Lum FM, Low DK, Fan Y, Tan JJ, Lee B, Chan JK, Rénia L, Ginhoux F, Ng LF. Zika virus infects human fetal brain microglia and induces inflammation. Clin Infect Dis. 2017;64:914–20.PubMedCrossRef Lum FM, Low DK, Fan Y, Tan JJ, Lee B, Chan JK, Rénia L, Ginhoux F, Ng LF. Zika virus infects human fetal brain microglia and induces inflammation. Clin Infect Dis. 2017;64:914–20.PubMedCrossRef
62.
go back to reference Dudvarski Stankovic N, Teodorczyk M, Ploen R, Zipp F, Schmidt MHH. Microglia–blood vessel interactions: a double-edged sword in brain pathologies. Acta Neuropathol. 2016;131:347–63.PubMedCrossRef Dudvarski Stankovic N, Teodorczyk M, Ploen R, Zipp F, Schmidt MHH. Microglia–blood vessel interactions: a double-edged sword in brain pathologies. Acta Neuropathol. 2016;131:347–63.PubMedCrossRef
63.
go back to reference Cosenza MA, Zhao ML, Si Q, Lee SC. Human brain parenchymal microglia express CD14 and CD45 and are productively infected by HIV-1 in HIV-1 encephalitis. Brain Pathol. 2002;12:442–55.PubMedCrossRef Cosenza MA, Zhao ML, Si Q, Lee SC. Human brain parenchymal microglia express CD14 and CD45 and are productively infected by HIV-1 in HIV-1 encephalitis. Brain Pathol. 2002;12:442–55.PubMedCrossRef
64.
go back to reference Williams KC, Hickey WF. Central nervous system damage, monocytes and macrophages, and neurological disorders in AIDS. Annu Rev Neurosci. 2002;25:537–62.PubMedCrossRef Williams KC, Hickey WF. Central nervous system damage, monocytes and macrophages, and neurological disorders in AIDS. Annu Rev Neurosci. 2002;25:537–62.PubMedCrossRef
65.
go back to reference Persidsky Y, Gendelman HE. Mononuclear phagocyte immunity and the neuropathogenesis of HIV-1 infection. J Leukoc Biol. 2003;74:691–701.PubMedCrossRef Persidsky Y, Gendelman HE. Mononuclear phagocyte immunity and the neuropathogenesis of HIV-1 infection. J Leukoc Biol. 2003;74:691–701.PubMedCrossRef
66.
go back to reference Gras GF, Chretien AV, Vallat-Decouvelaere G, Le Pavec F, Porcheray C, Bossuet C, Leone P, Mialocq N, Dereuddre-Bosquet P, et al. Regulated expression of sodium-dependent glutamate transporters and synthetase: a neuroprotective role for activated microglia and macrophages in HIV infection? Brain Pathol. 2003;13:211–22.PubMedCrossRef Gras GF, Chretien AV, Vallat-Decouvelaere G, Le Pavec F, Porcheray C, Bossuet C, Leone P, Mialocq N, Dereuddre-Bosquet P, et al. Regulated expression of sodium-dependent glutamate transporters and synthetase: a neuroprotective role for activated microglia and macrophages in HIV infection? Brain Pathol. 2003;13:211–22.PubMedCrossRef
67.
go back to reference Alirezaei M, Kiosses WB, Fox HS. Decreased neuronal autophagy in HIV dementia: a mechanism of indirect neurotoxicity. Autophagy. 2008;4:963–6.PubMedCrossRef Alirezaei M, Kiosses WB, Fox HS. Decreased neuronal autophagy in HIV dementia: a mechanism of indirect neurotoxicity. Autophagy. 2008;4:963–6.PubMedCrossRef
68.
go back to reference Ginsberg SD, Alldred MJ, Gunnam SM, Schiroli C, Lee SH, Morgello S, Fischer T. Expression profiling suggests microglial impairment in HIV neuropathogenesis. Ann Neurol. 2018;83:406–17.PubMedPubMedCentralCrossRef Ginsberg SD, Alldred MJ, Gunnam SM, Schiroli C, Lee SH, Morgello S, Fischer T. Expression profiling suggests microglial impairment in HIV neuropathogenesis. Ann Neurol. 2018;83:406–17.PubMedPubMedCentralCrossRef
69.
go back to reference Arribas JR, Storch GA, Clifford DB, Tselis AC. Cytomegalovirus encephalitis. AnnI ntern Med. 1996;125:577–87.CrossRef Arribas JR, Storch GA, Clifford DB, Tselis AC. Cytomegalovirus encephalitis. AnnI ntern Med. 1996;125:577–87.CrossRef
70.
go back to reference Grassi MP, Clerici F, Perin C, D'Arminio Monforte A, Vago L, Borella M, Boldorini R, Mangoni A. Microglial nodular encephalitis and ventriculoencephalitis due to cytomegalovirus in patients with AIDS: two distinct clinical patterns. Clin Infect Dis. 1998;27:504–8.PubMedCrossRef Grassi MP, Clerici F, Perin C, D'Arminio Monforte A, Vago L, Borella M, Boldorini R, Mangoni A. Microglial nodular encephalitis and ventriculoencephalitis due to cytomegalovirus in patients with AIDS: two distinct clinical patterns. Clin Infect Dis. 1998;27:504–8.PubMedCrossRef
71.
go back to reference Tröscher AR, Wimmer I, emada-Garrido L, Köck U. Gessl D, et al. Acta Neuropathol: Microglial nodules provide the environment for pathogenic T cells in human encephalitis; 2019.PubMedPubMedCentralCrossRef Tröscher AR, Wimmer I, emada-Garrido L, Köck U. Gessl D, et al. Acta Neuropathol: Microglial nodules provide the environment for pathogenic T cells in human encephalitis; 2019.PubMedPubMedCentralCrossRef
72.
go back to reference Luo H, Winkelmann ER, Zhu S, Ru W, Mays E, Silvas JA, Vollmer LL, et al. Peli1 facilitates virus replication and promotes neuroinflammation during West Nile virus infection. J Clin Invest. 2018;128:4980–91.PubMedPubMedCentralCrossRef Luo H, Winkelmann ER, Zhu S, Ru W, Mays E, Silvas JA, Vollmer LL, et al. Peli1 facilitates virus replication and promotes neuroinflammation during West Nile virus infection. J Clin Invest. 2018;128:4980–91.PubMedPubMedCentralCrossRef
73.
go back to reference Cheeran MC, Hu S, Sheng WS, Rashid A, Peterson PK, Lokensgard JR. Differential responses of human brain cells to West Nile virus infection. J Neuro-Oncol. 2005;11:512–5. Cheeran MC, Hu S, Sheng WS, Rashid A, Peterson PK, Lokensgard JR. Differential responses of human brain cells to West Nile virus infection. J Neuro-Oncol. 2005;11:512–5.
74.
go back to reference Xiao Y, Jin J, Chang M, Chang JH, Hu H, Zhou X, Brittain GC, Stansberg C, et al. Peli1 promotes microglia-mediated CNS inflammation by regulating Traf3 degradation. Nat Med. 2013;19:595–602.PubMedPubMedCentralCrossRef Xiao Y, Jin J, Chang M, Chang JH, Hu H, Zhou X, Brittain GC, Stansberg C, et al. Peli1 promotes microglia-mediated CNS inflammation by regulating Traf3 degradation. Nat Med. 2013;19:595–602.PubMedPubMedCentralCrossRef
75.
go back to reference Town T, Jeng D, Alexopoulou L, Tan J, Flavell RA. Microglia recognize double-stranded RNA via TLR3. J Immunol. 2006;176:3804–12.PubMedCrossRef Town T, Jeng D, Alexopoulou L, Tan J, Flavell RA. Microglia recognize double-stranded RNA via TLR3. J Immunol. 2006;176:3804–12.PubMedCrossRef
76.
go back to reference Bourgade K, Le Page A, Bocti C, Witkowski JM, Dupuis G, Frost EH, Fulop T. Protective effect of amyloid-β peptides against herpes simplex Virus-1 infection in a neuronal cell culture model. J Alzheimers Dis. 2016;50:1227–41.PubMedCrossRef Bourgade K, Le Page A, Bocti C, Witkowski JM, Dupuis G, Frost EH, Fulop T. Protective effect of amyloid-β peptides against herpes simplex Virus-1 infection in a neuronal cell culture model. J Alzheimers Dis. 2016;50:1227–41.PubMedCrossRef
77.
go back to reference Eimer WA, Vijaya Kumar DK, Navalpur Shanmugam NK, Rodriguez AS, Mitchell T, Washicosky KJ, György B, Breakefield XO, Tanzi RE, Moir RD. Alzheimer’s disease-associated β-amyloid is rapidly seeded by herpesviridae to protect against brain infection. Neuron. 2018;99:56–63.PubMedPubMedCentralCrossRef Eimer WA, Vijaya Kumar DK, Navalpur Shanmugam NK, Rodriguez AS, Mitchell T, Washicosky KJ, György B, Breakefield XO, Tanzi RE, Moir RD. Alzheimer’s disease-associated β-amyloid is rapidly seeded by herpesviridae to protect against brain infection. Neuron. 2018;99:56–63.PubMedPubMedCentralCrossRef
78.
go back to reference Tzeng NS, Chung CH, Lin FH, Chiang CP, Yeh CB, Huang SY, Lu RB, Chang HA, Kao YC, Yeh HW, et al. Anti-herpetic medications and reduced risk of dementia in patients with herpes simplex virus infections-a Nationwide. Population-Based Cohort Study in Taiwan Neurotherapeutics. 2018;15:417–29.PubMed Tzeng NS, Chung CH, Lin FH, Chiang CP, Yeh CB, Huang SY, Lu RB, Chang HA, Kao YC, Yeh HW, et al. Anti-herpetic medications and reduced risk of dementia in patients with herpes simplex virus infections-a Nationwide. Population-Based Cohort Study in Taiwan Neurotherapeutics. 2018;15:417–29.PubMed
79.
80.
go back to reference Parkhurst CN, Yang G, Ninan I, Savas JN, et al. Microglia promote learning dependent synapse formation through brain-derived neurotrophic factor. Cell. 2013;155:1596–609.PubMedPubMedCentralCrossRef Parkhurst CN, Yang G, Ninan I, Savas JN, et al. Microglia promote learning dependent synapse formation through brain-derived neurotrophic factor. Cell. 2013;155:1596–609.PubMedPubMedCentralCrossRef
81.
go back to reference Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK, David E, et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell. 2017;169:1276–90.PubMedCrossRef Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK, David E, et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell. 2017;169:1276–90.PubMedCrossRef
82.
go back to reference Mazaheri F, Snaidero N, Kleinberger G, Madore C, Daria A, et al. TREM2 deficiency impairs chemotaxis and microglial responses to neuronal injury. EMBO Rep. 2017;18:1186–98.PubMedPubMedCentralCrossRef Mazaheri F, Snaidero N, Kleinberger G, Madore C, Daria A, et al. TREM2 deficiency impairs chemotaxis and microglial responses to neuronal injury. EMBO Rep. 2017;18:1186–98.PubMedPubMedCentralCrossRef
83.
go back to reference Ulland TK, Song WM, Huang SC, Ulrich JD, Sergushichev A, Beatty WL, Loboda AA, et al. TREM2 maintains microglial metabolic fitness in Alzheimer’s disease. Cell. 2017;170:649–63.PubMedPubMedCentralCrossRef Ulland TK, Song WM, Huang SC, Ulrich JD, Sergushichev A, Beatty WL, Loboda AA, et al. TREM2 maintains microglial metabolic fitness in Alzheimer’s disease. Cell. 2017;170:649–63.PubMedPubMedCentralCrossRef
84.
go back to reference Wang Y, Ulland TK, Ulrich JD, Song W, Tzaferis JA, Hole JT, Yuan P, Mahan TE, Shi Y, Gilfillan S, et al. TREM2-mediated early microglial response limits diffusion and toxicity of amyloid plaques. J Exp Med. 2016b;213:667–75.PubMedPubMedCentralCrossRef Wang Y, Ulland TK, Ulrich JD, Song W, Tzaferis JA, Hole JT, Yuan P, Mahan TE, Shi Y, Gilfillan S, et al. TREM2-mediated early microglial response limits diffusion and toxicity of amyloid plaques. J Exp Med. 2016b;213:667–75.PubMedPubMedCentralCrossRef
85.
go back to reference Yuan P, Condello C, Keene CD, Wang Y, Bird TD, Paul SM, Luo W, Colonna M, Baddeley D, Grutzendler J. TREM2 haplodeficiency in mice and humans impairs the microglia barrier function leading to decreased amyloid compaction and severe axonal dystrophy. Neuron. 2016;90:724–39.PubMedPubMedCentralCrossRef Yuan P, Condello C, Keene CD, Wang Y, Bird TD, Paul SM, Luo W, Colonna M, Baddeley D, Grutzendler J. TREM2 haplodeficiency in mice and humans impairs the microglia barrier function leading to decreased amyloid compaction and severe axonal dystrophy. Neuron. 2016;90:724–39.PubMedPubMedCentralCrossRef
86.
go back to reference Venegas C, Kumar S, Franklin BS, Dierkes T, Brinkschulte R, Tejera D, et al. Microglia-derived ASC specks cross seed amyloid-beta in Alzheimer’s disease. Nature. 2017;552:355–61.PubMedCrossRef Venegas C, Kumar S, Franklin BS, Dierkes T, Brinkschulte R, Tejera D, et al. Microglia-derived ASC specks cross seed amyloid-beta in Alzheimer’s disease. Nature. 2017;552:355–61.PubMedCrossRef
87.
go back to reference Hong S, Beja-Glasser VF, Nfonoyim BM, Frouin A, Li S, et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science. 2016;352:712–6.PubMedPubMedCentralCrossRef Hong S, Beja-Glasser VF, Nfonoyim BM, Frouin A, Li S, et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science. 2016;352:712–6.PubMedPubMedCentralCrossRef
88.
go back to reference Wang H, Sun L, Su L, Rizo J, Liu L, Wang LF, Wang FS, Wang X. Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol Cell. 2014;54:133–46.PubMedCrossRef Wang H, Sun L, Su L, Rizo J, Liu L, Wang LF, Wang FS, Wang X. Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol Cell. 2014;54:133–46.PubMedCrossRef
89.
go back to reference Huang Z, Wu SQ, Liang Y, Zhou X, Chen W, Li L, Wu J, Zhuang Q, Chen C, Li J, Zhong CQ, Xia W, Zhou R, Zheng C, Han J. RIP1/RIP3 binding to HSV-1 ICP6 initiates necroptosis to restrict virus propagation in mice. Cell Host Microbe. 2015;17:229–42.PubMedCrossRef Huang Z, Wu SQ, Liang Y, Zhou X, Chen W, Li L, Wu J, Zhuang Q, Chen C, Li J, Zhong CQ, Xia W, Zhou R, Zheng C, Han J. RIP1/RIP3 binding to HSV-1 ICP6 initiates necroptosis to restrict virus propagation in mice. Cell Host Microbe. 2015;17:229–42.PubMedCrossRef
90.
go back to reference Daniels BP, Snyder AG, Olsen TM, Orozco S, Oguin TH, Tait SWG, Martinez J, Gale M, LooYM, Oberst a. RIPK3 restricts viral pathogenesis via cell death independent neuroinflammation.Cell.2017;169:301–313.PubMedPubMedCentralCrossRef Daniels BP, Snyder AG, Olsen TM, Orozco S, Oguin TH, Tait SWG, Martinez J, Gale M, LooYM, Oberst a. RIPK3 restricts viral pathogenesis via cell death independent neuroinflammation.Cell.2017;169:301–313.PubMedPubMedCentralCrossRef
92.
go back to reference Salter MW, Beggs S. Sublime microglia: expanding roles for the guardians of the CNS. Cell. 2014;158:15–24.PubMedCrossRef Salter MW, Beggs S. Sublime microglia: expanding roles for the guardians of the CNS. Cell. 2014;158:15–24.PubMedCrossRef
93.
go back to reference Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 2005;308:1314–8.PubMedCrossRef Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 2005;308:1314–8.PubMedCrossRef
94.
go back to reference Prinz M, Priller J, Sisodia SS, Ransohoff RM. Heterogeneity of CNS myeloid cells and their roles in neurodegeneration. Nat Neurosci. 2011;14:1227–35.PubMedCrossRef Prinz M, Priller J, Sisodia SS, Ransohoff RM. Heterogeneity of CNS myeloid cells and their roles in neurodegeneration. Nat Neurosci. 2011;14:1227–35.PubMedCrossRef
95.
96.
go back to reference Gomez Perdiguero E, Schulz C, Geissmann F. Development and homeostasis of “resident” myeloid cells: the case of the microglia. Glia. 2013;61:112–20.PubMedCrossRef Gomez Perdiguero E, Schulz C, Geissmann F. Development and homeostasis of “resident” myeloid cells: the case of the microglia. Glia. 2013;61:112–20.PubMedCrossRef
97.
go back to reference Takahashi K, Rochford CD, Neumann H. Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J Exp Med. 2005;201:647–57.PubMedPubMedCentralCrossRef Takahashi K, Rochford CD, Neumann H. Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J Exp Med. 2005;201:647–57.PubMedPubMedCentralCrossRef
98.
go back to reference Farfara D, Trudler D, Segev-Amzaleg N, Galron R, Stein R, Frenkel D. G-secretase component presenilin is important for microglia b-amyloid clearance. Ann Neurol. 2011;69:170–80.PubMedCrossRef Farfara D, Trudler D, Segev-Amzaleg N, Galron R, Stein R, Frenkel D. G-secretase component presenilin is important for microglia b-amyloid clearance. Ann Neurol. 2011;69:170–80.PubMedCrossRef
Metadata
Title
The role of microglia in viral encephalitis: a review
Authors
Zhuangzhuang Chen
Di Zhong
Guozhong Li
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2019
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-019-1443-2

Other articles of this Issue 1/2019

Journal of Neuroinflammation 1/2019 Go to the issue