Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2019

Open Access 01-12-2019 | Stroke | Research

Lipocalin-2 may produce damaging effect after cerebral ischemia by inducing astrocytes classical activation

Authors: Nan Zhao, Xiaomeng Xu, Yongjun Jiang, Jie Gao, Fang Wang, Xiaohui Xu, Zhuoyu Wen, Yi Xie, Juanji Li, Rongrong Li, Qiushi Lv, Qian Liu, Qiliang Dai, Xinfeng Liu, Gelin Xu

Published in: Journal of Neuroinflammation | Issue 1/2019

Login to get access

Abstract

Background

Functions of astrocytes in the rehabilitation after ischemic stroke, especially their impacts on inflammatory processes, remain controversial. This study uncovered two phenotypes of astrocytes, of which one was helpful, and the other harmful to anoxic neurons after brain ischemia.

Methods

We tested the levels of inflammatory factors including TNF-a, IL-6, IL-10, iNOS, IL-1beta, and CXCL10 in primary astrocytes at 0 h, 6 h, 12 h, 24 h, and 48 h after OGD, grouped the hypoxia astrocytes into iNOS-positive (iNOS(+)) and iNOS-negative (iNOS(−)) by magnetic bead sorting, and then co-cultured the two groups of cells with OGD-treated neurons for 24 h. We further verified the polarization of astrocytes in vivo by detecting the co-localization of iNOS, GFAP, and Iba-1 on MCAO brain sections. Lentivirus overexpressing LCN2 and LCN2 knockout mice (#024630. JAX, USA) were used to explore the role of LCN2 in the functional polarization of astrocytes. 7.0-T MRI scanning and the modified Neurological Severity Score (mNSS) were used to evaluate the neurological outcomes of the mice.

Results

After oxygen-glucose deprivation (OGD), iNOS mRNA expression increased to the peak at 6 h in primary astrocytes, but keep baseline expression in LCN2-knockout astrocytes. In mice with transient middle cerebral artery occlusion (tMCAO), LCN2 was proved necessary for astrocyte classical activation. In LCN2 knockout mice with MCAO, no classically activated astrocytes were detected, and smaller infarct volumes and better neurological functions were observed.

Conclusions

The results indicated a novel pattern of astrocyte activation after ischemic stroke and lipocalin-2 (LCN2) plays a key role in polarizing and activating astrocytes.
Literature
1.
go back to reference Liddelow SA, Barres BA. Reactive astrocytes: production, function, and therapeutic potential. Immunity. 2017;46(6):957–67.PubMedCrossRef Liddelow SA, Barres BA. Reactive astrocytes: production, function, and therapeutic potential. Immunity. 2017;46(6):957–67.PubMedCrossRef
2.
3.
go back to reference Lively S, Schlichter LC. Microglia responses to pro-inflammatory stimuli (LPS, IFNgamma+TNFalpha) and reprogramming by resolving cytokines (IL-4, IL-10). Front Cell Neurosci. 2018;12:215.PubMedPubMedCentralCrossRef Lively S, Schlichter LC. Microglia responses to pro-inflammatory stimuli (LPS, IFNgamma+TNFalpha) and reprogramming by resolving cytokines (IL-4, IL-10). Front Cell Neurosci. 2018;12:215.PubMedPubMedCentralCrossRef
4.
go back to reference Sica A, Erreni M, Allavena P, Porta C. Macrophage polarization in pathology. Cell Mol Life Sci. 2015;72(21):4111–26.PubMedCrossRef Sica A, Erreni M, Allavena P, Porta C. Macrophage polarization in pathology. Cell Mol Life Sci. 2015;72(21):4111–26.PubMedCrossRef
5.
go back to reference Patel U, Rajasingh S, Samanta S, Cao T, Dawn B, Rajasingh J. Macrophage polarization in response to epigenetic modifiers during infection and inflammation. Drug Discov Today. 2017;22(1):186–93.PubMedCrossRef Patel U, Rajasingh S, Samanta S, Cao T, Dawn B, Rajasingh J. Macrophage polarization in response to epigenetic modifiers during infection and inflammation. Drug Discov Today. 2017;22(1):186–93.PubMedCrossRef
6.
go back to reference Ma Y, Wang J, Wang Y, Yang GY. The biphasic function of microglia in ischemic stroke. Prog Neurobiol. 2017;157:247–72.PubMedCrossRef Ma Y, Wang J, Wang Y, Yang GY. The biphasic function of microglia in ischemic stroke. Prog Neurobiol. 2017;157:247–72.PubMedCrossRef
7.
go back to reference Jang E, Kim JH, Lee S, Kim JH, Seo JW, Jin M, et al. Phenotypic polarization of activated astrocytes: the critical role of lipocalin-2 in the classical inflammatory activation of astrocytes. J Immunol. 2013;191(10):5204–19.PubMedCrossRef Jang E, Kim JH, Lee S, Kim JH, Seo JW, Jin M, et al. Phenotypic polarization of activated astrocytes: the critical role of lipocalin-2 in the classical inflammatory activation of astrocytes. J Immunol. 2013;191(10):5204–19.PubMedCrossRef
8.
go back to reference Jha MK, Lee S, Park DH, Kook H, Park KG, Lee IK, et al. Diverse functional roles of lipocalin-2 in the central nervous system. Neurosci Biobehav Rev. 2015;49:135–56.PubMedCrossRef Jha MK, Lee S, Park DH, Kook H, Park KG, Lee IK, et al. Diverse functional roles of lipocalin-2 in the central nervous system. Neurosci Biobehav Rev. 2015;49:135–56.PubMedCrossRef
9.
go back to reference Xing C, Wang X, Cheng C, Montaner J, Mandeville E, Leung W, et al. Neuronal production of lipocalin-2 as a help-me signal for glial activation. Stroke. 2014;45(7):2085–92.PubMedPubMedCentralCrossRef Xing C, Wang X, Cheng C, Montaner J, Mandeville E, Leung W, et al. Neuronal production of lipocalin-2 as a help-me signal for glial activation. Stroke. 2014;45(7):2085–92.PubMedPubMedCentralCrossRef
10.
go back to reference Suk K. Lipocalin-2 as a therapeutic target for brain injury: an astrocentric perspective. Prog Neurobiol. 2016;144:158–72.PubMedCrossRef Suk K. Lipocalin-2 as a therapeutic target for brain injury: an astrocentric perspective. Prog Neurobiol. 2016;144:158–72.PubMedCrossRef
11.
go back to reference Jha MK, Jeon S, Jin M, Ock J, Kim JH, Lee WH, et al. The pivotal role played by lipocalin-2 in chronic inflammatory pain. Exp Neurol. 2014;254:41–53.PubMedCrossRef Jha MK, Jeon S, Jin M, Ock J, Kim JH, Lee WH, et al. The pivotal role played by lipocalin-2 in chronic inflammatory pain. Exp Neurol. 2014;254:41–53.PubMedCrossRef
12.
go back to reference Kang SS, Ren Y, Liu CC, Kurti A, Baker KE, Bu G, et al. Lipocalin-2 protects the brain during inflammatory conditions. Mol Psychiatry. 2018;23(2):344-50.PubMedPubMedCentralCrossRef Kang SS, Ren Y, Liu CC, Kurti A, Baker KE, Bu G, et al. Lipocalin-2 protects the brain during inflammatory conditions. Mol Psychiatry. 2018;23(2):344-50.PubMedPubMedCentralCrossRef
13.
go back to reference Wang G, Weng Y-C, Han X, Whaley JD, McCrae KR, Chou W-H. Lipocalin-2 released in response to cerebral ischaemia mediates reperfusion injury in mice. J Cell Mol Med. 2015;19(7):1637–45.PubMedPubMedCentralCrossRef Wang G, Weng Y-C, Han X, Whaley JD, McCrae KR, Chou W-H. Lipocalin-2 released in response to cerebral ischaemia mediates reperfusion injury in mice. J Cell Mol Med. 2015;19(7):1637–45.PubMedPubMedCentralCrossRef
14.
go back to reference Ni W, Zheng M, Xi G, Keep RF, Hua Y. Role of lipocalin-2 in brain injury after intracerebral hemorrhage. J Cereb Blood Flow Metab. 2015;35(9):1454–61.PubMedPubMedCentralCrossRef Ni W, Zheng M, Xi G, Keep RF, Hua Y. Role of lipocalin-2 in brain injury after intracerebral hemorrhage. J Cereb Blood Flow Metab. 2015;35(9):1454–61.PubMedPubMedCentralCrossRef
16.
go back to reference Jin M, Kim JH, Jang E, Lee YM, Soo Han H, Woo DK, et al. Lipocalin-2 deficiency attenuates neuroinflammation and brain injury after transient middle cerebral artery occlusion in mice. J Cereb Blood Flow Metab. 2014;34(8):1306–14.PubMedPubMedCentralCrossRef Jin M, Kim JH, Jang E, Lee YM, Soo Han H, Woo DK, et al. Lipocalin-2 deficiency attenuates neuroinflammation and brain injury after transient middle cerebral artery occlusion in mice. J Cereb Blood Flow Metab. 2014;34(8):1306–14.PubMedPubMedCentralCrossRef
17.
18.
go back to reference Wu L, Jiang Y, Zhu J, Wen Z, Xu X, Xu X, et al. Orosomucoid1: involved in vascular endothelial growth factor-induced blood-brain barrier leakage after ischemic stroke in mouse. Brain Res Bull. 2014;109:88–98.PubMedCrossRef Wu L, Jiang Y, Zhu J, Wen Z, Xu X, Xu X, et al. Orosomucoid1: involved in vascular endothelial growth factor-induced blood-brain barrier leakage after ischemic stroke in mouse. Brain Res Bull. 2014;109:88–98.PubMedCrossRef
19.
go back to reference Yang L, Jiang Y, Wen Z, Xu X, Xu X, Zhu J, et al. Over-expressed EGR1 may exaggerate ischemic injury after experimental stroke by decreasing BDNF expression. Neuroscience. 2015;290:509–17.PubMedCrossRef Yang L, Jiang Y, Wen Z, Xu X, Xu X, Zhu J, et al. Over-expressed EGR1 may exaggerate ischemic injury after experimental stroke by decreasing BDNF expression. Neuroscience. 2015;290:509–17.PubMedCrossRef
20.
go back to reference Xu L, Wang L, Wen Z, Wu L, Jiang Y, Yang L, et al. Caveolin-1 is a checkpoint regulator in hypoxia-induced astrocyte apoptosis via Ras/Raf/ERK pathway. Am J Physiol Cell Physiol. 2016;310(11):C903–10.PubMedCrossRef Xu L, Wang L, Wen Z, Wu L, Jiang Y, Yang L, et al. Caveolin-1 is a checkpoint regulator in hypoxia-induced astrocyte apoptosis via Ras/Raf/ERK pathway. Am J Physiol Cell Physiol. 2016;310(11):C903–10.PubMedCrossRef
21.
go back to reference Rossetti I, Zambusi L, Finardi A, Bodini A, Provini L, Furlan R, et al. Calcitonin gene-related peptide decreases IL-1beta, IL-6 as well as Ym1, Arg1, CD163 expression in a brain tissue context-dependent manner while ameliorating experimental autoimmune encephalomyelitis. J Neuroimmunol. 2018;323:94–104.PubMedCrossRef Rossetti I, Zambusi L, Finardi A, Bodini A, Provini L, Furlan R, et al. Calcitonin gene-related peptide decreases IL-1beta, IL-6 as well as Ym1, Arg1, CD163 expression in a brain tissue context-dependent manner while ameliorating experimental autoimmune encephalomyelitis. J Neuroimmunol. 2018;323:94–104.PubMedCrossRef
22.
go back to reference Daley JM, Brancato SK, Thomay AA, Reichner JS, Albina JE. The phenotype of murine wound macrophages. J Leukoc Biol. 2010;87(1):59–67.PubMedCrossRef Daley JM, Brancato SK, Thomay AA, Reichner JS, Albina JE. The phenotype of murine wound macrophages. J Leukoc Biol. 2010;87(1):59–67.PubMedCrossRef
23.
go back to reference Osmani N, Vitale N, Borg JP, Etienne-Manneville S. Scrib controls Cdc42 localization and activity to promote cell polarization during astrocyte migration. Curr Biol. 2006;16(24):2395–405.PubMedCrossRef Osmani N, Vitale N, Borg JP, Etienne-Manneville S. Scrib controls Cdc42 localization and activity to promote cell polarization during astrocyte migration. Curr Biol. 2006;16(24):2395–405.PubMedCrossRef
25.
go back to reference Ferreira AC, Da Mesquita S, Sousa JC, Correia-Neves M, Sousa N, Palha JA, et al. From the periphery to the brain: lipocalin-2, a friend or foe? Prog Neurobiol. 2015;131:120–36.PubMedCrossRef Ferreira AC, Da Mesquita S, Sousa JC, Correia-Neves M, Sousa N, Palha JA, et al. From the periphery to the brain: lipocalin-2, a friend or foe? Prog Neurobiol. 2015;131:120–36.PubMedCrossRef
26.
go back to reference Zhou T, Huang Z, Sun X, Zhu X, Zhou L, Li M, et al. Microglia polarization with M1/M2 phenotype changes in rd1 mouse model of retinal degeneration. Front Neuroanat. 2017;11:77.PubMedPubMedCentralCrossRef Zhou T, Huang Z, Sun X, Zhu X, Zhou L, Li M, et al. Microglia polarization with M1/M2 phenotype changes in rd1 mouse model of retinal degeneration. Front Neuroanat. 2017;11:77.PubMedPubMedCentralCrossRef
27.
go back to reference Steiner E, Enzmann GU, Lin S, Ghavampour S, Hannocks MJ, Zuber B, et al. Loss of astrocyte polarization upon transient focal brain ischemia as a possible mechanism to counteract early edema formation. Glia. 2012;60(11):1646–59.PubMedCrossRef Steiner E, Enzmann GU, Lin S, Ghavampour S, Hannocks MJ, Zuber B, et al. Loss of astrocyte polarization upon transient focal brain ischemia as a possible mechanism to counteract early edema formation. Glia. 2012;60(11):1646–59.PubMedCrossRef
28.
go back to reference Ito D, Tanaka K, Suzuki S, Dembo T, Fukuuchi Y. Enhanced expression of Iba1, ionized calcium-binding adapter molecule 1, after transient focal cerebral ischemia in rat brain. Stroke. 2001;32(5):1208–15.PubMedCrossRef Ito D, Tanaka K, Suzuki S, Dembo T, Fukuuchi Y. Enhanced expression of Iba1, ionized calcium-binding adapter molecule 1, after transient focal cerebral ischemia in rat brain. Stroke. 2001;32(5):1208–15.PubMedCrossRef
29.
go back to reference Aleem D, Tohid H. Pro-inflammatory cytokines, biomarkers, genetics and the immune system: a mechanistic approach of depression and psoriasis. Rev Colomb Psiquiatr. 2018;47(3):177–86.PubMedCrossRef Aleem D, Tohid H. Pro-inflammatory cytokines, biomarkers, genetics and the immune system: a mechanistic approach of depression and psoriasis. Rev Colomb Psiquiatr. 2018;47(3):177–86.PubMedCrossRef
30.
go back to reference Aras AB, Guven M, Akman T, Ozkan A, Sen HM, Duz U, et al. Neuroprotective effects of daidzein on focal cerebral ischemia injury in rats. Neural Regen Res. 2015;10(1):146–52.PubMedPubMedCentralCrossRef Aras AB, Guven M, Akman T, Ozkan A, Sen HM, Duz U, et al. Neuroprotective effects of daidzein on focal cerebral ischemia injury in rats. Neural Regen Res. 2015;10(1):146–52.PubMedPubMedCentralCrossRef
31.
go back to reference Aras AB, Guven M, Akman T, Alacam H, Kalkan Y, Silan C, et al. Genistein exerts neuroprotective effect on focal cerebral ischemia injury in rats. Inflammation. 2015;38(3):1311–21.PubMedCrossRef Aras AB, Guven M, Akman T, Alacam H, Kalkan Y, Silan C, et al. Genistein exerts neuroprotective effect on focal cerebral ischemia injury in rats. Inflammation. 2015;38(3):1311–21.PubMedCrossRef
32.
go back to reference Chamorro A, Meisel A, Planas AM, Urra X, van de Beek D, Veltkamp R. The immunology of acute stroke. Nat Rev Neurol. 2012;8(7):401–10.PubMedCrossRef Chamorro A, Meisel A, Planas AM, Urra X, van de Beek D, Veltkamp R. The immunology of acute stroke. Nat Rev Neurol. 2012;8(7):401–10.PubMedCrossRef
34.
go back to reference Jha MK, Kim JH, Song GJ, Lee WH, Lee IK, Lee HW, et al. Functional dissection of astrocyte-secreted proteins: implications in brain health and diseases. Prog Neurobiol. 2018;162:37–69.PubMedCrossRef Jha MK, Kim JH, Song GJ, Lee WH, Lee IK, Lee HW, et al. Functional dissection of astrocyte-secreted proteins: implications in brain health and diseases. Prog Neurobiol. 2018;162:37–69.PubMedCrossRef
35.
go back to reference Makar TK, Bever CT, Singh IS, Royal W, Sahu SN, Sura TP, et al. Brain-derived neurotrophic factor gene delivery in an animal model of multiple sclerosis using bone marrow stem cells as a vehicle. J Neuroimmunol. 2009;210(1–2):40–51.PubMedCrossRef Makar TK, Bever CT, Singh IS, Royal W, Sahu SN, Sura TP, et al. Brain-derived neurotrophic factor gene delivery in an animal model of multiple sclerosis using bone marrow stem cells as a vehicle. J Neuroimmunol. 2009;210(1–2):40–51.PubMedCrossRef
36.
go back to reference Jiang Y, Wei N, Zhu J, Lu T, Chen Z, Xu G, et al. Effects of brain-derived neurotrophic factor on local inflammation in experimental stroke of rat. Mediat Inflamm. 2010;2010:372423. Jiang Y, Wei N, Zhu J, Lu T, Chen Z, Xu G, et al. Effects of brain-derived neurotrophic factor on local inflammation in experimental stroke of rat. Mediat Inflamm. 2010;2010:372423.
37.
go back to reference Perigolo-Vicente R, Ritt K, Goncalves-de-Albuquerque CF, Castro-Faria-Neto HC, Paes-de-Carvalho R, Giestal-de-Araujo E. IL-6, A1 and A2aR: a crosstalk that modulates BDNF and induces neuroprotection. Biochem Biophys Res Commun. 2014;449(4):477–82.PubMedCrossRef Perigolo-Vicente R, Ritt K, Goncalves-de-Albuquerque CF, Castro-Faria-Neto HC, Paes-de-Carvalho R, Giestal-de-Araujo E. IL-6, A1 and A2aR: a crosstalk that modulates BDNF and induces neuroprotection. Biochem Biophys Res Commun. 2014;449(4):477–82.PubMedCrossRef
38.
go back to reference Yun SP, Kam TI, Panicker N, Kim S, Oh Y, Park JS, et al. Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson’s disease. Nat Med. 2018;24(7):931–8.PubMedPubMedCentralCrossRef Yun SP, Kam TI, Panicker N, Kim S, Oh Y, Park JS, et al. Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson’s disease. Nat Med. 2018;24(7):931–8.PubMedPubMedCentralCrossRef
39.
go back to reference Ozkan A, Sen HM, Sehitoglu I, Alacam H, Guven M, Aras AB, et al. Neuroprotective effect of humic acid on focal cerebral ischemia injury: an experimental study in rats. Inflammation. 2015;38(1):32–9.PubMedCrossRef Ozkan A, Sen HM, Sehitoglu I, Alacam H, Guven M, Aras AB, et al. Neuroprotective effect of humic acid on focal cerebral ischemia injury: an experimental study in rats. Inflammation. 2015;38(1):32–9.PubMedCrossRef
40.
go back to reference Tokmak M, Yuksel Y, Sehitoglu MH, Guven M, Akman T, Aras AB, et al. The neuroprotective effect of syringic acid on spinal cord ischemia/reperfusion injury in rats. Inflammation. 2015;38(5):1969–78.PubMedCrossRef Tokmak M, Yuksel Y, Sehitoglu MH, Guven M, Akman T, Aras AB, et al. The neuroprotective effect of syringic acid on spinal cord ischemia/reperfusion injury in rats. Inflammation. 2015;38(5):1969–78.PubMedCrossRef
41.
go back to reference Guven M, Sehitoglu MH, Yuksel Y, Tokmak M, Aras AB, Akman T, et al. The neuroprotective effect of coumaric acid on spinal cord ischemia/reperfusion injury in rats. Inflammation. 2015;38(5):1986–95.PubMedCrossRef Guven M, Sehitoglu MH, Yuksel Y, Tokmak M, Aras AB, Akman T, et al. The neuroprotective effect of coumaric acid on spinal cord ischemia/reperfusion injury in rats. Inflammation. 2015;38(5):1986–95.PubMedCrossRef
42.
go back to reference Guven M, Yuksel Y, Sehitoglu MH, Tokmak M, Aras AB, Akman T, et al. The effect of coumaric acid on ischemia-reperfusion injury of sciatic nerve in rats. Inflammation. 2015;38(6):2124–32.PubMedCrossRef Guven M, Yuksel Y, Sehitoglu MH, Tokmak M, Aras AB, Akman T, et al. The effect of coumaric acid on ischemia-reperfusion injury of sciatic nerve in rats. Inflammation. 2015;38(6):2124–32.PubMedCrossRef
Metadata
Title
Lipocalin-2 may produce damaging effect after cerebral ischemia by inducing astrocytes classical activation
Authors
Nan Zhao
Xiaomeng Xu
Yongjun Jiang
Jie Gao
Fang Wang
Xiaohui Xu
Zhuoyu Wen
Yi Xie
Juanji Li
Rongrong Li
Qiushi Lv
Qian Liu
Qiliang Dai
Xinfeng Liu
Gelin Xu
Publication date
01-12-2019
Publisher
BioMed Central
Keyword
Stroke
Published in
Journal of Neuroinflammation / Issue 1/2019
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-019-1556-7

Other articles of this Issue 1/2019

Journal of Neuroinflammation 1/2019 Go to the issue