Skip to main content
Top
Published in: Cancer Cell International 1/2019

Open Access 01-12-2019 | Photodynamic Therapy | Review

The role of photodynamic therapy on multidrug resistant breast cancer

Authors: Eric Chekwube Aniogo, Blassan Plackal Adimuriyil George, Heidi Abrahamse

Published in: Cancer Cell International | Issue 1/2019

Login to get access

Abstract

Breast cancer heterogeneity allows cells with different phenotypes to co-exist, contributing to treatment failure and development of drug resistance. In addition, abnormal signal transduction and dysfunctional DNA repair genes are common features with breast cancer resistance. Chemo-resistance of breast cancer associated with multidrug resistance events utilizes ATP-binding cassette (ABC) efflux transporters to decrease drug intracellular concentration. Photodynamic therapy (PDT) is the treatment that involves a combination of a photosensitizer (PS), light and molecular oxygen to induce cell death. This treatment modality has been considered as a possible approach in combatting multidrug resistance phenomenon although its therapeutic potential towards chemo-resistance is still unclear. Attempts to minimize the impact of efflux transporters on drug resistance suggested concurrent use of chemotherapy agents, nanotechnology, endolysosomal release of drug by photochemical internalization and the use of structurally related compound inhibitors to block the transport function of the multidrug resistant transporters. In this review, we briefly summarize the role of membrane ABC efflux transporters in therapeutic outcomes and highlight research findings related to PDT and its applications on breast cancer with multidrug resistance phenotype. With the development of an ideal PS for photodynamic cancer treatment, it is possible that light activation may be used not only to sensitize the tumour but also to enable release of PS into the cytosol and as such bypass efflux membrane proteins and inhibit escape pathways that may lead to resistance.

Literature
  1. Patel S. Breast cancer: lesser-known facets and hypotheses. Biomed Pharmacother. 2018;98:499–506.PubMedView Article
  2. American Cancer Society. Breast cancer facts and figures 2017–2018. p. 1–41.
  3. Tobias J, Hochhanser D. Breast cancer in cancer and its management. 7th ed. New York: Wiley; 2015. p. 237–74.
  4. Cadoo KA, Fornier MN, Morris PG. Biological subtypes of breast cancer: current concepts and implications for recurrence patterns. Q J Nucl Med Mol Imaging. 2013;57(4):312–21.PubMed
  5. Barrera-Rodriguez R, Fuentes JM. Multidrug resistance characterization in multicellular tumour spheroids from two human lung cancer cell lines. Cancer Cell Int. 2015;15:47.PubMedPubMed CentralView Article
  6. Chen Z, Shi T, Zhang L, Zhu P, Deng M, Huang C, Hu T, Jiang L, Li J. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family in multidrug resistance: a review of the past decade. Cancer Lett. 2016;370:153–64.PubMedView Article
  7. Spring BQ, Rizvi I, Xu N, Hasan T. The role of photodynamic therapy in overcoming cancer drug resistance. Photochem Photobiol Sci. 2015;14(8):1476–91.PubMedPubMed CentralView Article
  8. Anand P, Kunnumakara AB, Sundaram C, Harikumar KB, Tharakan ST, Lai SO, Sung B, Aggarwal BB. Cancer is a preventable disease that requires major lifestyle changes. Pharm Res. 2008;25(9):2097–116.PubMedPubMed CentralView Article
  9. Videira M, Reis RL, Brito MA. Deconstructing breast cancer cell biology and the mechanisms of multidrug resistance. Biochim Biophys Acta. 2014;1846:312–25.PubMed
  10. Cipollini G, Tommasi S, Paradiso A, Aretini P, Bonatti F, Brunetti I, Bruno M, Lombardi G, Schittulli F, Sensi E, et al. Genetic alterations in hereditary breast cancer. Ann Oncol. 2004;15(1):I7–13.PubMedView Article
  11. Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-Andre V, Sigova AA, Hoke HA, Young RA. Super-enhancers in the control of cell identity and disease. Cell. 2013;155(4):934–47.PubMedView Article
  12. Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH, Rahl PB, Lee TI, Young RA. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell. 2013;153(2):307–19.PubMedPubMed CentralView Article
  13. Tripathy D, Benz CC. Activated oncogenes and putative tumour suppressor genes involved in human breast cancers. In: Liu ET, Benz CC, editors. Oncogenes and tumor suppressor genes in human malignancies. Cancer treatment and research. Boston: Springer; 1993. p. 15–60.View Article
  14. Hopp TA, Fuqua SA. Estrogen receptor variants. J Mammary Gland Biol Neoplasia. 1998;3(1):73–83.PubMedView Article
  15. Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, Savagner P, Gitelman I, Richardson A, Weinberg RA. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell. 2004;117(7):927–39.PubMedView Article
  16. Pérez-Solis MA, Maya-Nuñez G, Casas-González P, Olivares A, Aguilar-Rojas A. Effects of the lifestyle habits in breast cancer transcriptional regulation. Cancer Cell Int. 2016. https://​doi.​org/​10.​1186/​s12935-016-0284-7.View ArticlePubMedPubMed Central
  17. Watson IR, Takahashi K, Futreal PA, Chin L. Emerging patterns of somatic mutations in cancer. Nat Rev Genet. 2013;14(10):703–18.PubMedPubMed CentralView Article
  18. Cancer Genome Atlas N. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70.View Article
  19. Pop L, Cojocneanu-Petric R, Pileczki V, Morar-Bolba G, Irimie A, Lazar V, Lombardo C, Paradiso A, Berindan-Neagoe I. Genetic alterations in sporadic triple negative breast cancer. Breast. 2018;38:30–8.PubMedView Article
  20. Lal S, Mc Cart Reed AE, de Luca XM, Simpson PT. Molecular signatures in breast cancer. Methods. 2017;131:135–46.PubMedView Article
  21. Hudis CA, Gianni L. Triple-negative breast cancer: an unmet medical need. Oncologist. 2011;16(1):1–11.PubMedView Article
  22. Shaheen S, Fawaz F, Shah S, Busselberg D. Differential expression and pathway analysis in drug-resistant triple negative breast cancer cell lines using RNASeq analysis. Int J Mol Sci. 2018;19(6):1810.PubMed CentralView Article
  23. Jitariu A, Cimpean AM, Ribatti D, Raica M. Triple negative breast cancer: the kiss of death. Oncotarget. 2017;8:46652–62.PubMedPubMed CentralView Article
  24. Luo L, Gao W, Wang J, Wang D, Peng X, Jia Z, Jiang Y, Li G, Tang D, Wang Y. Study on the mechanism of cell cycle checkpoint kinase 2 (CHEK2) gene dysfunction in chemotherapeutic drug resistance of triple negative breast cancer cells. Med Sci Monit. 2018;15(24):3176–83.View Article
  25. Xu X, Zhang L, He X, Zhang P, Sun C, Xu X, Lu Y, Li F. TGF-β plays a vital role in triple-negative breast cancer (TNBC) drug-resistance through regulating stemness, EMT and apoptosis. Biochem Biophys Res Commun. 2018;502(1):160–5.PubMedView Article
  26. Kim C, Gao R, Sei E, Brandt R, Hartman J, Hatschek T, Crosetto N, Foukakis T, Navin NE. Chemoresistance evolution in triple-negative breast cancer delineated by single-cell sequencing. Cell. 2018;173(4):879–93.PubMedView ArticlePubMed Central
  27. Pokharel D, Padula MP, Lu JF, Tacchi JL, Luk F, Djordjevic SP, Bebawy M. Proteome analysis of multidrug-resistant, breast cancer-derived microparticles. J Extracell Vesicles. 2014. https://​doi.​org/​10.​3402/​jev.​v3.​24384.View ArticlePubMedPubMed Central
  28. Mansoori B, Mohammadi A, Davudian S, Shirjang S, Baradaran B. The different mechanisms of cancer drug resistance: a brief review. Adv Pharm Bull. 2017;7(3):339–48.PubMedPubMed CentralView Article
  29. Cree IA, Charlton P. Molecular chess? Hallmarks of anticancer drug resistance. BMC Cancer. 2017;17(10):1–8.
  30. Dean M, Rzhetsky A, Allikmets R. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res. 2001;11(7):1156–66.PubMedView Article
  31. Ambudkar SV, Kimchi-Sarfaty C, Sauna ZE, Gottesman MM. P-glycoprotein: from genomics to mechanism. Oncogene. 2003;22(47):7468–85.PubMedView Article
  32. Huang Z, Hsu Y, Li L, Wang L, Song X, Yow CMN, Lei X, Musani A, Luo R, Day BJ. Photodynamic therapy of cancer—challenges of multidrug resistance. J Innov Opt Health Sci. 2015;8(1):1–13.View Article
  33. Biochuk S, Galembikova A, Sitenkov A, Khusnutdinov R, Dunaev P, Valeeva E, Usolova N. Establishment and characterization of a triple negative basal-like breast cancer cell line with multidrug resistance. Oncol Lett. 2017;14:5039–45.View Article
  34. Goler-Baron V, Assaraf YG. Overcoming multidrug resistance via photodestruction of ABCG2-rich extracellular vesicles sequestering photosensitive chemotherapeutics. PLoS ONE. 2012;7(4):e35487. https://​doi.​org/​10.​1371/​journal.​pone.​0035487.View ArticlePubMedPubMed Central
  35. Mao Q, Unadkat JD. Role of the breast cancer resistance protein (BCRP/ABCG2) in drug transport—an update. AAPS J. 2015;17(1):65–82.View ArticlePubMed
  36. Natarajan K, Xie Y, Baer MR, Ross D. Role of breast cancer resistance protein (BCRP/ABCG2) in cancer drug resistance. Biochem Pharm. 2012;83:1084–103.PubMedView Article
  37. Xia CQ, Smith PG. Drug efflux transporters and multidrug resistance in acute leukemia: therapeutic impact and novel approaches to mediation. Mol Pharmacol. 2012;82(6):1008–21.PubMedView Article
  38. Bao L, Hazari S, Mehra S, Kaushal D, Moroz K, Dash S. Increased expression of P-glycoprotein and doxorubicin chemoresistance of metastatic breast cancer is regulated by miR-298. Am J Pathol. 2012;180(6):2490–503.PubMedPubMed CentralView Article
  39. Binkhathlan Z, Lavasanifar A. P-glycoprotein inhibition as a therapeutic approach for overcoming multidrug resistance in cancer: current status and future perspectives. Curr Cancer Drug Targets. 2013;13:326–46.PubMedView Article
  40. Hu T, Li Z, Gao C, Cho C. Mechanism of drug resistance in colon cancer and its therapeutic strategies. World J Gastroenterol. 2016;22(30):6876–89.PubMedPubMed CentralView Article
  41. Juliano RL, Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta. 1976;455(1):152–62.PubMedView Article
  42. Szakacs G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM. Targeting multidrug resistance in cancer. Nat Rev Drug Discov. 2006;5(3):219–34.PubMedView Article
  43. Fletcher JI, Williams RT, Henderson MJ, Norris MD, Haber M. ABC transporters as mediators of drug resistance and contributors to cancer cell biology. Drug Resist Update. 2016;26:1–9.View Article
  44. Kathawala RJ, Gupta P, Ashby CR, Chen ZS. The modulation of ABC transporter-mediated multidrug resistance in cancer: a review of the past decade. Drug Resist Update. 2015;18:1–17.View Article
  45. Li W, Zhang H, Assaraf YG, Zhao K, Xu X, Xie J, Yang D, Chen Z. Overcoming ABC transporter-mediated multidrug resistance: molecular mechanisms and novel therapeutic drug strategies. Drug Resist Update. 2016;27:14–29.View Article
  46. Sharom FJ. Complex interplay between the P-glycoprotein multidrug efflux pump and the membrane: its role in modulating protein function. Front Oncol. 2014. https://​doi.​org/​10.​3389/​fonc.​2014.​00041.View ArticlePubMedPubMed Central
  47. Trock BJ, Leonessa F, Clarke R. Multidrug resistance in breast cancer: a meta-analysis of MDR1/gp170 expression and its possible functional significance. J Natl Cancer Inst. 1997;89(13):917–31.PubMedView Article
  48. Triller N, Korosec P, Kern I, Kosnik M, Debeljak A. Multidrug resistance in small cell lung cancer: expression of P-glycoprotein, multidrug resistance protein 1 and lung resistance protein in chemo-naïve patients and in relapsed disease. Lung Cancer. 2006;54(2):235–40.PubMedView Article
  49. Leith CP, Kopecky KJ, Chen IM, Eijdems L, Slovak ML, McConnell TS, Head DR, Weick J, Grever MR, Appelbaum FR, et al. Frequency and clinical significance of the expression of the multidrug resistance proteins MDR1/P-glycoprotein, MRP1, and LRP in acute myeloid leukemia: a southwest oncology group study. Blood. 1999;94(3):1086–99.PubMed
  50. Dean M, Allikmets R. Complete characterization of the human ABC gene family. J Bioenerg Biomembr. 2001;33(6):475–9.PubMedView Article
  51. Slot AJ, Molinski SV, Cole SP. Mammalian multidrug resistance proteins (MRPs). Essays Biochem. 2011;50(1):179–207.PubMedView Article
  52. Leier I, Jedlitschky G, Buchholz U, Cole SP, Deeley RG, Keppler D. The MRP gene encodes an ATP-dependent export pump for leukotriene C4 and structurally related conjugates. J Biol Chem. 1994;269(45):27807–10.PubMed
  53. Barnouin K, Leier I, Jedlitschky G, Pourtier-Manzanedo A, Konig J, Lehmann WD, Keppler D. Multidrug resistance protein-mediated transport of chlorambucil and melphalan conjugated to glutathione. Br J Cancer. 1998;77(2):201–9.PubMedPubMed CentralView Article
  54. Wijnholds J, Evers R, van Leusden MR, Mol CA, Zaman GJ, Mayer U, Beijnen JH, van der Valk M, Krimpenfort P, Borst P, Borst P. Increased sensitivity to anticancer drugs and decreased inflammatory response in mice lacking the multidrug resistance-associated protein. Nat Med. 1997;3(11):1275–9.PubMedView Article
  55. Ishikawa T. The ATP-dependent glutathione S-conjugate export pump. Trends Biochem Sci. 1992;17(11):463–8.PubMedView Article
  56. Ni Z, Bikadi Z, Rosenberg MF, Mao Q. Structure and function of the human breast cancer resistance protein (BCRP/ABCG2). Curr Drug Metab. 2010;11(7):603–17.PubMedPubMed CentralView Article
  57. Litman T, Jensen U, Hansen A, Covitz KM, Zhan Z, Fetsch P, Abati A, Hansen PR, Horn T, Skovsgaard T, et al. Use of peptide antibodies to probe for the mitoxantrone resistance-associated protein MXR/BCRP/ABCP/ABCG2. Biochem Biophys Acta. 2002;1565(1):6–16.PubMedView Article
  58. Doyle LA, Yang W, Abruzzo LV, Krogmann T, Gao Y, Rishi A, Ross DD. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci. 1998;95(26):15665–70.PubMedView ArticlePubMed Central
  59. Burger H, Foekens JA, Look MP, Meijer-van H, Gelder ME, Klijn JG, Wiemer EA, Stoter G, Nooter K. RNA expression of breast cancer resistance protein, lung resistance-related protein, multidrug resistance-associated protein 1 and 2, and multidrug resistance gene 1 in breast cancer: correlation with chemotherapeutic response. Clin Cancer Res. 2003;9(2):827–36.PubMed
  60. Yuan JH, Cheng JQ, Jiang LY, Ji WD, Guo LF, Liu JJ, Xu XY, He JS, Wang XM, Zhuang ZX. Breast cancer resistance protein expression and 5-fluorouracil resistance. Biomed Environ Sci. 2008;21(4):290–5.PubMedView Article
  61. Robey RW, Steadman K, Polgar O, Bates SE. ABCG2-mediated transport of photosensitizers: potential impact on photodynamic therapy. Cancer Biol Ther. 2005;4:187–94.PubMedView Article
  62. Korkaya H, Malik F. Breast cancer stem cells: responsible for therapeutic resistance and relapse? In: Ahmad A, editor. Breast cancer metastasis and drug resistance. New York: Springer; 2013. p. 385–98.View Article
  63. Huiwen Y, Pengcheng B. Non-coding RNAs in cancer stem cells. Cancer Lett. 2018;421:121–6.View Article
  64. Rich JN. Cancer stem cells in radiation resistance. Cancer Res. 2007;67(19):8980–4.PubMedView Article
  65. Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, Qian D, Lam JS, Allies LE, Wong M, et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature. 2009;456(7239):780–3.View Article
  66. Kwiatkowski S, Knap B, Przystupski D, Saczko J, Kedzierska E, Knap-Czop K, Kotlinska J, Michel O, Kotowski K, Kulbacka J. Photodynamic therapy—mechanisms, photosensitizers and combinations. Biomed Pharmacother. 2018;106:1098–107.PubMedView Article
  67. Baptista MS, Cadet J, Di-Mascio P, Ghogare AA, Greer A, Hamblin MR, Lorente C, Nunez SC, Ribeiro MS, Thomas AH, et al. Type I and type II photosensitized oxidation reactions: guidelines and mechanistic pathways. Photochem Photobiol. 2017;93(4):912–9.PubMedPubMed CentralView Article
  68. Banerjee SM, MacRobert AJ, Mosse CA, Periera B, Bown SG, Keshtgar MRS. Photodynamic therapy: inception to application in breast cancer. Breast. 2017;31:105–13.PubMedView Article
  69. Olsen CE, Weyergang A, Edwards VT, Berg K, Brech A, Weisheit S, Hogset A, Selbo PK. Development of resistance to photodynamic therapy (PDT) in human breast cancer cells is photosensitizer-dependent: possible mechanisms and approaches for overcoming PDT-resistance. Biochem Pharmacol. 2017;144:63–77.PubMedView Article
  70. Verma S, Watt GM, Mai Z, Hasan T. Strategies for enhanced photodynamic therapy effects. Photochem Photobiol. 2007;83(5):996–1005.PubMedView Article
  71. Abrahamse H, Hamblin RM. New photosensitizers for photodynamic therapy. Biochem J. 2016;473:347–464.PubMedView Article
  72. Oniszczuk A, Wojtunik-Kulesza KA, Oniszczuk T, Kasprzak K. The potential of photodynamic therapy (PDT)—experimental investigations and clinical use. Biomed Pharmacother. 2016;83:912–29.PubMedView Article
  73. Wachowska M, Muchowicz A, Demkow U. Immunological aspects of antitumor photodynamic therapy outcome. Cent Eur J Immunol. 2015;40(4):481–5.PubMedView Article
  74. Postiglione I, Chiaviello A, Palumbo G. Enhancing photodynamic therapy efficacy by combination therapy: dated, current and oncoming strategies. Cancers. 2011;3(2):2597–629.PubMedPubMed CentralView Article
  75. Anzengruber F, Avci P, de-Freitas LF, Hamblin MR. T-cell mediated antitumor immunity after photodynamic therapy: why does it not always work and how can we improve it? Photochem Photobiol Sci. 2015;14(8):1492–509.PubMedPubMed CentralView Article
  76. Chen J, Mao L, Liu S, Liang Y, Wang S, Wang Y, Zhao Q, Zhang X, Che Y, Gao L, et al. Effects of a novel porphyrin-based photosensitizer on sensitive and multidrug-resistant human gastric cancer cell lines. J Photochem Photobiol B. 2015;151:186–93.PubMedView Article
  77. Castano AP, Mroz P, Wu MX, Hamblin MR. Photodynamic therapy plus low-dose cyclophosphamide generates antitumor immunity in a mouse model. Proce Natl Acad Sci. 2008;105(14):5495–500.View Article
  78. Weyergang A, Berstad ME, Bull-Hansen B, Olsen CE, Selbo PK, Berg K. Photochemical activation of drugs for the treatment of therapy-resistant cancers. Photochem Photobiol Sci. 2015;14(8):1465–75.PubMedView Article
  79. Bostad M, Kausberg M, Weyergang A, Olsen CE, Berg K, Hogset A, Selbo PK. Light-triggered, efficient cytosolic release of IM7-saporin targeting the putative cancer stem cell marker CD44 by photochemical internalization. Mol Pharm. 2014;11(8):2764–76.PubMedView Article
  80. Kusuzaki K, Minami G, Takeshita H, Murata H, Hashiguchi S, Nozaki T, Ashihara T, Hirasawa Y. Photodynamic inactivation with acridine orange on a multidrug-resistant mouse osteosarcoma cell line. Jpn J Cancer Res. 2000;91:439–45.PubMedPubMed CentralView Article
  81. Kulbacka J, Chwilkowska A, Bar J, Pola A, Banas T, Gamian A, Saczko J. Oxidative alterations induced in vitro by the photodynamic reaction in doxorubicin-sensitive (LoVo) and resistant (LoVoDX) colon adenocarcinoma cells. Exp Biol Med. 2010;235(1):98–110.View Article
  82. Philchenkov AA, Schishko ED, Zavelevich MP, Kuiava LM, Miura K, Blokhin DY, Shton IO, Gamaleia NF. Photodynamic responsiveness of human leukemia Jurkat/A4 cells with multidrug resistant phenotype. Exp Oncol. 2014;36(4):241–5.PubMed
  83. Tsai T, Hong R, Tsai JC, Lou PJ, Ling IF, Chen CT. Effect of 5-aminolevulinic acid-mediated photodynamic therapy on MCF-7 and MCF-7/ADR cells. Lasers Surg Med. 2004;34(1):62–72.PubMedView Article
  84. Feuerstein T, Berkovitch-Luria G, Nudelman A, Rephaeli A, Malik Z. Modulating ALA-PDT efficacy of multidrug resistant MCF-7 breast cancer cells using ALA prodrug. Photochem Photobiol Sci. 2011;10(12):1926–33.PubMedView Article
  85. Chen J, Liu S, Zhao J, Wang S, Liu T, Li X. Effects of a novel photoactivated photosensitizer on MDR1 over-expressing human breast cancer cells. J Photochem Photobiol B. 2017;171:67–74.PubMedView Article
  86. Kukcinaviciute E, Sasnauskiene A, Dabkeviciene D, Kirveliene V, Jonusiene V. Effect of mTHPC-mediated photodynamic therapy on 5-fluorouracil resistant human colorectal cancer cells. Photochem Photobiol Sci. 2017;16(7):1063–70.PubMedView Article
  87. Yuan Y, Cai T, Xia X, Zhang R, Chiba P, Cai Y. Nanoparticle delivery of anticancer drugs overcomes multidrug resistance in breast cancer. J Drug Deliv. 2016;9:3350–7.View Article
  88. Hong L, Liu C, Zeng Y, Hao Y, Huang J, Yang Z, Li R. Nanoceria-mediated drug delivery for targeted photodynamic therapy on drug-resistant breast cancer. ACS Appl Mater Interfaces. 2016;8:31510–23.View Article
  89. Liang XJ, Chen C, Zhao Y, Wang PC. Circumventing tumor resistance to chemotherapy by nanotechnology. Methods Mol Biol. 2010;596:467–88.PubMedPubMed CentralView Article
  90. Shukla S, Chen ZS, Ambudkar SV. Tyrosine kinase inhibitors as modulators of ABC transporter-mediated drug resistance. Drug Resist Update. 2012;15(1–2):70–80.View Article
  91. Tsuruo T, Iida H, Tsukagoshi S, Sakurai Y. Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res. 1981;41(5):1967–72.PubMed
  92. Twentyman PR, Fox NE, White DJ. Cyclosporin A and its analogues as modifiers of Adriamycin and vincristine resistance in a multi-drug resistance human lung cancer cell line. Br J Cancer. 1987;56(1):55–7.PubMedPubMed CentralView Article
  93. Xu Y, Zhi F, Xu G, Tang X, Lu S, Wu J, Hu Y. Overcoming multidrug-resistance in vitro and in vivo using the novel P-glycoprotein inhibitor 1416. Biosci Rep. 2012;32(6):559–66.PubMedPubMed CentralView Article
  94. Kelly RJ, Draper D, Chen CC, Robey RW, Figg WD, Piekarz RL, Chen X, Gardner ER, Balis FM, Venkatesan AM, et al. A pharmacodynamics study of the docetaxel in combination with the P-glycoprotein antagonist tariquidar (XR9576) in patients with lung, ovarian and cervical cancer. Clin Cancer Res. 2011;17(3):569–80.PubMedView Article
  95. Kannan P, Telu S, Shukla S, Ambudkar SV, Pike VW, Halldin C, Gottesman MM, Innis RB, Hall MD. The “specific” P-glycoprotein inhibitor Tariquidar is also a substrate and an inhibitor for breast cancer resistance protein (BCRP/ABCG2). ACS Chem Neurosci. 2011;2(2):82–9.PubMedView Article
  96. Ween MP, Armstrong MA, Oehler MK, Ricciardelli C. The role of ABC transporters in ovarian cancer progression and chemoresistance. Crit Rev Oncol Hematol. 2015;96:220–56.PubMedView Article
  97. Zhang Y, Yang S, Guo X. New insights into Vinca alkaloids resistance mechanism and circumvention in lung cancer. Biomed Pharmacother. 2017;96:659–66.PubMedView Article
  98. Priebe W, Krawczyk M, Kuo MT, Yamane Y, Savaraj N, Ishikawa T. Doxorubicin and daunorubicin-glutathione conjugates, but not unconjugated drugs, competitively inhibit leukotriene C4 transport mediated by MRP/GS-X pump. Biochem Biophys Res Commun. 1998;247(3):859–63.PubMedView Article
  99. Deeley RG, Cole SP. Substrate recognition and transport by multidrug resistance protein 1 (ABCCI). FEBS Lett. 2006;580(4):1103–11.PubMedView Article
  100. Liu Y, Di Y, Zhou Z, Mo S, Zhou S. Multidrug resistance-associated proteins and implications in drug development. Clin Exp Pharmacol Physiol. 2010;37:115–20.PubMedView Article
Metadata
Title
The role of photodynamic therapy on multidrug resistant breast cancer
Authors
Eric Chekwube Aniogo
Blassan Plackal Adimuriyil George
Heidi Abrahamse
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2019
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-019-0815-0

Other articles of this Issue 1/2019

Cancer Cell International 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine