Skip to main content

Advertisement

Log in

T-cell mediated anti-tumor immunity after photodynamic therapy: why does it not always work and how can we improve it?

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Photodynamic therapy (PDT) uses the combination of non-toxic photosensitizers and harmless light to generate reactive oxygen species that destroy tumors by a combination of direct tumor cell killing, vascular shutdown, and activation of the immune system. It has been shown in some animal models that mice that have been cured of cancer by PDT, may exhibit resistance to rechallenge. The cured mice can also possess tumor specific T-cells that recognize defined tumor antigens, destroy tumor cells in vitro, and can be adoptively transferred to protect naïve mice from cancer. However, these beneficial outcomes are the exception rather than the rule. The reasons for this lack of consistency lie in the ability of many tumors to suppress the host immune system and to actively evade immune attack. The presence of an appropriate tumor rejection antigen in the particular tumor cell line is a requisite for T-cell mediated immunity. Regulatory T-cells (CD25+, Foxp3+) are potent inhibitors of anti-tumor immunity, and their removal by low dose cyclophosphamide can potentiate the PDT-induced immune response. Treatments that stimulate dendritic cells (DC) such as CpG oligonucleotide can overcome tumor-induced DC dysfunction and improve PDT outcome. Epigenetic reversal agents can increase tumor expression of MHC class I and also simultaneously increase expression of tumor antigens. A few clinical reports have shown that anti-tumor immunity can be generated by PDT in patients, and it is hoped that these combination approaches may increase tumor cures in patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, J. Golab, Photodynamic therapy of cancer: an update, CA-Cancer J. Clin., 2011, 61, 250.

    Article  PubMed  PubMed Central  Google Scholar 

  2. J. Moan, Q. Peng, An outline of the hundred-year history of PDT, Anticancer Res., 2003, 23, 3591.

    PubMed  Google Scholar 

  3. P. Skupin-Mrugalska, L. Sobotta, M. Kucinska, M. Murias, J. Mielcarek, N. Duzgunes, Cellular changes, molecular pathways and the immune system following photodynamic treatment, Curr. Med. Chem., 2014, 21, 4059.

    Article  CAS  PubMed  Google Scholar 

  4. P. Mroz, F. Vatansever, A. Muchowicz, M. R. Hamblin, Photodynamic therapy of murine mastocytoma induces specific immune responses against the cancer/testis antigen P1A, Cancer Res., 2013, 73, 6462.

    Article  CAS  PubMed  Google Scholar 

  5. R. R. Allison, Photodynamic therapy: oncologic horizons, Future Oncol., 2014, 10, 123.

    Article  CAS  PubMed  Google Scholar 

  6. Q. Q. Dou, A. Rengaramchandran, S. T. Selvan, R. Paulmurugan, Y. Zhang, Core - shell upconversion nanoparticle - semiconductor heterostructures for photodynamic therapy, Sci. Rep., 2015, 5, 8252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. K. Ogawa, Y. Kobuke, Recent advances in two-photon photodynamic therapy, Anti-Cancer Agents Med. Chem., 2008, 8, 269.

    Article  CAS  Google Scholar 

  8. P. Mroz, M. R. Hamblin, The immunosuppressive side of PDT, Photochem. Photobiol. Sci., 2011, 10, 751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. B. W. Henderson, T. J. Dougherty, How does photodynamic therapy work?, Photochem. Photobiol., 1992, 55, 145.

    Article  CAS  PubMed  Google Scholar 

  10. M. Wachowska, M. Gabrysiak, A. Muchowicz, W. Bednarek, J. Barankiewicz, T. Rygiel, L. Boon, P. Mroz, M. R. Hamblin, J. Golab, 5-Aza-2′-deoxycytidine potentiates antitumour immune response induced by photodynamic therapy, Eur. J. Cancer, 2014, 50, 1370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. A. P. Castano, P. Mroz, M. R. Hamblin, Photodynamic therapy and anti-tumour immunity, Nat. Rev. Cancer, 2006, 6, 535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. D. Nowis, M. Makowski, T. Stoklosa, M. Legat, T. Issat, J. Golab, Direct tumor damage mechanisms of photodynamic therapy, Acta Biochim. Pol., 2005, 52, 339.

    Article  CAS  PubMed  Google Scholar 

  13. P. Mroz, A. Szokalska, M. X. Wu, M. R. Hamblin, Photodynamic therapy of tumors can lead to development of systemic antigen-specific immune response, PLoS One, 2010, 5, e15194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, Q. Peng, Photodynamic therapy, J. Natl. Cancer Inst., 1998, 90, 889.

    Article  CAS  PubMed  Google Scholar 

  15. B. W. Engbrecht, C. Menon, A. V. Kachur, S. M. Hahn, D. L. Fraker, Photofrin-mediated photodynamic therapy induces vascular occlusion and apoptosis in a human sarcoma xenograft model, Cancer Res., 1999, 59, 4334.

    CAS  PubMed  Google Scholar 

  16. T. J. Dougherty, An update on photodynamic therapy applications, J. Clin. Laser Med. Surg., 2002, 20, 3.

    Article  PubMed  Google Scholar 

  17. N. L. Oleinick, H. H. Evans, The photobiology of photodynamic therapy: cellular targets and mechanisms, Radiat. Res., 1998, 150, S146.

    Article  CAS  PubMed  Google Scholar 

  18. A. A. Lugade, J. P. Moran, S. A. Gerber, R. C. Rose, J. G. Frelinger, E. M. Lord, Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor, J. Immunol., 2005, 174, 7516.

    Article  CAS  PubMed  Google Scholar 

  19. E. J. Friedman, Immune modulation by ionizing radiation and its implications for cancer immunotherapy, Curr. Pharm. Des., 2002, 8, 1765.

    Article  CAS  PubMed  Google Scholar 

  20. E. D. Crum, Effect of cisplatin upon expression of in vivo immune tumor resistance, Cancer Immunol. Immunother., 1993, 36, 18.

    Article  CAS  PubMed  Google Scholar 

  21. C. S. Ng, T. W. Lee, S. Wan, I. Y. Wan, A. D. Sihoe, A. A. Arifi, A. P. Yim, Thoracotomy is associated with significantly more profound suppression in lymphocytes and natural killer cells than video-assisted thoracic surgery following major lung resections for cancer, J. Invest. Surg., 2005, 18, 81.

    Article  PubMed  Google Scholar 

  22. P. G. Lokhov, E. E. Balashova, Design of universal cancer vaccines using natural tumor vessel-specific antigens (SANTAVAC), Hum. Vaccin Immunother., 2015, 0.

    Google Scholar 

  23. K. Perica, J. C. Varela, M. Oelke, J. Schneck, Adoptive T cell immunotherapy for cancer, Rambam Maimonides Med. J., 2015, 6, e0004.

    Article  PubMed  PubMed Central  Google Scholar 

  24. N. Murakami, L. V. Riella, Co-inhibitory pathways and their importance in immune regulation, Transplantation, 2014, 98, 3.

    Article  CAS  PubMed  Google Scholar 

  25. C. M. Brackett, B. Owczarczak, K. Ramsey, P. G. Maier, S. O. Gollnick, IL-6 potentiates tumor resistance to photodynamic therapy (PDT), Lasers Surg. Med., 2011, 43, 676.

    Article  PubMed  PubMed Central  Google Scholar 

  26. T. G. St Denis, K. Aziz, A. A. Waheed, Y. Y. Huang, S. K. Sharma, P. Mroz, M. R. Hamblin, Combination approaches to potentiate immune response after photodynamic therapy for cancer, Photochem. Photobiol. Sci., 2011, 10, 792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. M. Korbelik, Induction of tumor immunity by photodynamic therapy, J. Clin. Laser Med. Surg., 1996, 14, 329.

    Article  CAS  PubMed  Google Scholar 

  28. M. Korbelik, J. Sun, I. Cecic, Photodynamic therapy-induced cell surface expression and release of heat shock proteins: relevance for tumor response, Cancer Res., 2005, 65, 1018.

    CAS  PubMed  Google Scholar 

  29. A. P. Castano, P. Mroz, M. X. Wu, M. R. Hamblin, Photodynamic therapy plus low-dose cyclophosphamide generates antitumor immunity in a mouse model, Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 5495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Y. Y. Huang, M. Tanaka, D. Vecchio, M. Garcia-Diaz, J. Chang, Y. Morimoto, M. R. Hamblin, Photodynamic therapy induces an immune response against a bacterial pathogen, Expert Rev. Clin. Immunol., 2012, 8, 479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. H. Jiang, D. J. Granville, J. R. North, A. M. Richter, D. W. Hunt, Selective action of the photosensitizer QLT0074 on activated human T lymphocytes, Photochem. Photobiol., 2002, 76, 224.

    Article  CAS  PubMed  Google Scholar 

  32. H. Jiang, D. J. Granville, B. M. McManus, J. G. Levy, D. W. Hunt, Selective depletion of a thymocyte subset in vitro with an immunomodulatory photosensitizer, Clin. Immunol., 1999, 91, 178.

    Article  CAS  PubMed  Google Scholar 

  33. I. Cecic, B. Stott, M. Korbelik, Acute phase response-associated systemic neutrophil mobilization in mice bearing tumors treated by photodynamic therapy, Int. Immunopharmacol., 2006, 6, 1259.

    Article  CAS  PubMed  Google Scholar 

  34. I. Cecic, C. S. Parkins, M. Korbelik, Induction of systemic neutrophil response in mice by photodynamic therapy of solid tumors, Photochem. Photobiol., 2001, 74, 712.

    Article  CAS  PubMed  Google Scholar 

  35. W. J. de Vree, M. C. Essers, H. S. de Bruijn, W. M. Star, J. F. Koster, W. Sluiter, Evidence for an important role of neutrophils in the efficacy of photodynamic therapy in vivo, Cancer Res., 1996, 56, 2908.

    PubMed  Google Scholar 

  36. G. Krosl, M. Korbelik, G. J. Dougherty, Induction of immune cell infiltration into murine SCCVII tumour by photofrin-based photodynamic therapy, Br. J. Cancer, 1995, 71, 549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. I. Cecic, M. Korbelik, Mediators of peripheral blood neutrophilia induced by photodynamic therapy of solid tumors, Cancer Lett., 2002, 183, 43.

    Article  CAS  PubMed  Google Scholar 

  38. P. C. Kousis, B. W. Henderson, P. G. Maier, S. O. Gollnick, Photodynamic therapy enhancement of antitumor immunity is regulated by neutrophils, Cancer Res., 2007, 67, 10501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. R. W. Steubing, S. Yeturu, A. Tuccillo, C. H. Sun, M. W. Berns, Activation of macrophages by Photofrin II during photodynamic therapy, J. Photochem. Photobiol., B, 1991, 10, 133.

    Article  CAS  Google Scholar 

  40. M. Korbelik, G. Krosl, Enhanced macrophage cytotoxicity against tumor cells treated with photodynamic therapy, Photochem. Photobiol., 1994, 60, 497.

    Article  CAS  PubMed  Google Scholar 

  41. D. W. Hunt, J. G. Levy, Immunomodulatory aspects of photodynamic therapy, Expert Opin. Invest. Drugs, 1998, 7, 57.

    Article  CAS  Google Scholar 

  42. D. W. Hunt, H. Jiang, D. J. Granville, A. H. Chan, S. Leong, J. G. Levy, Consequences of the photodynamic treatment of resting and activated peripheral T lymphocytes, Immunopharmacology, 1999, 41, 31.

    Article  CAS  PubMed  Google Scholar 

  43. N. Yamamoto, S. Homma, T. W. Sery, L. A. Donoso, J. K. Hoober, Photodynamic immunopotentiation: in vitro activation of macrophages by treatment of mouse peritoneal cells with haematoporphyrin derivative and light, Eur. J. Cancer, 1991, 27, 467.

    Article  CAS  PubMed  Google Scholar 

  44. N. Yamamoto, V. R. Naraparaju, Immunotherapy of BALB/c mice bearing Ehrlich ascites tumor with vitamin D-binding protein-derived macrophage activating factor, Cancer Res., 1997, 57, 2187.

    CAS  PubMed  Google Scholar 

  45. H. Nygren, G. Dahlen, L. A. Nilsson, Human complement activation by lipopolysaccharides from bacteroides oralis, fusobacterium nucleatum, and veillonella parvula, Infect. Immun., 1979, 26, 391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. J. P. Lai, Z. D. Tao, J. Y. Xiao, S. P. Zhao, Y. Q. Tian, Effect of photodynamic therapy on selected laboratory values of patients with nasopharyngeal carcinoma, Ann. Otol. Rhinol. Laryngol., 1997, 106, 680.

    Article  CAS  PubMed  Google Scholar 

  47. M. Korbelik, G. J. Dougherty, Photodynamic therapy-mediated immune response against subcutaneous mouse tumors, Cancer Res., 1999, 59, 1941.

    CAS  PubMed  Google Scholar 

  48. L. Zheng, Y. Li, Y. Cui, H. Yin, T. Liu, G. Yu, F. Lv, J. Yang, Generation of an effective anti-lung cancer vaccine by DTPP-mediated photodynamic therapy and mechanistic studies, Lasers Med. Sci., 2013, 28, 1383.

    Article  PubMed  Google Scholar 

  49. S. C. Sun, G. Xiao, Deregulation of NF-kappaB and its upstream kinases in cancer, Cancer Metastasis Rev., 2003, 22, 405.

    Article  CAS  PubMed  Google Scholar 

  50. P. A. Baeuerle, T. Henkel, Function and activation of NF-kappa B in the immune system, Annu. Rev. Immunol., 1994, 12, 141.

    Article  CAS  PubMed  Google Scholar 

  51. B. Haefner, NF-kappa B: arresting a major culprit in cancer, Drug Discovery Today, 2002, 7, 653.

    Article  CAS  PubMed  Google Scholar 

  52. A. Ferrario, K. Von Tiehl, S. Wong, M. Luna, C. J. Gomer, Cyclooxygenase-2 inhibitor treatment enhances photodynamic therapy-mediated tumor response, Cancer Res., 2002, 62, 3956.

    CAS  PubMed  Google Scholar 

  53. M. Korbelik, I. Cecic, Complement activation cascade and its regulation: relevance for the response of solid tumors to photodynamic therapy, J. Photochem. Photobiol., B, 2008, 93, 53.

    Article  CAS  Google Scholar 

  54. I. Cecic, K. Serrano, M. Gyongyossy-Issa, M. Korbelik, Characteristics of complement activation in mice bearing Lewis lung carcinomas treated by photodynamic therapy, Cancer Lett., 2005, 225, 215.

    Article  CAS  PubMed  Google Scholar 

  55. I. Cecic, M. Korbelik, Deposition of complement proteins on cells treated by photodynamic therapy in vitro, J. Environ. Pathol. Toxicol. Oncol., 2006, 25, 189.

    Article  CAS  PubMed  Google Scholar 

  56. B. Stott, M. Korbelik, Activation of complement C3, C5, and C9 genes in tumors treated by photodynamic therapy, Cancer Immunol. Immunother., 2007, 56, 649.

    Article  CAS  PubMed  Google Scholar 

  57. H. K. Koon, K. W. Lo, K. N. Leung, M. L. Lung, C. C. Chang, R. N. Wong, W. N. Leung, N. K. Mak, Photodynamic therapy-mediated modulation of inflammatory cytokine production by Epstein-Barr virus-infected nasopharyngeal carcinoma cells, Cell. Mol. Immunol., 2010, 7, 323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. V. H. Fingar, T. J. Wieman, K. W. Doak, Role of thromboxane and prostacyclin release on photodynamic therapy-induced tumor destruction, Cancer Res., 1990, 50, 2599.

    CAS  PubMed  Google Scholar 

  59. B. W. Henderson, S. O. Gollnick, J. W. Snyder, T. M. Busch, P. C. Kousis, R. T. Cheney, J. Morgan, Choice of oxygen-conserving treatment regimen determines the inflammatory response and outcome of photodynamic therapy of tumors, Cancer Res., 2004, 64, 2120.

    Article  CAS  PubMed  Google Scholar 

  60. T. Kajita, T. E. Hugli, C5a-induced neutrophilia. A primary humoral mechanism for recruitment of neutrophils, Am. J. Pathol., 1990, 137, 467.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. G. Kick, G. Messer, A. Goetz, G. Plewig, P. Kind, Photodynamic therapy induces expression of interleukin 6 by activation of AP-1 but not NF-kappa B DNA binding, Cancer Res., 1995, 55, 2373.

    CAS  PubMed  Google Scholar 

  62. T. Hirano, K. Yasukawa, H. Harada, T. Taga, Y. Watanabe, T. Matsuda, S. Kashiwamura, K. Nakajima, K. Koyama, A. Iwamatsu, et al., Complementary DNA for a novel human interleukin (BSF-2) that induces B lymphocytes to produce immunoglobulin, Nature, 1986, 324, 73.

    Article  CAS  PubMed  Google Scholar 

  63. S. Akira, T. Hirano, T. Taga, T. Kishimoto, Biology of multifunctional cytokines: IL 6 and related molecules (IL 1 and TNF), FASEB J., 1990, 4, 2860.

    Article  CAS  PubMed  Google Scholar 

  64. J. Van Snick, Interleukin-6: an overview, Annu. Rev. Immunol., 1990, 8, 253.

    Article  PubMed  Google Scholar 

  65. E. Fattori, M. Cappelletti, P. Costa, C. Sellitto, L. Cantoni, M. Carelli, R. Faggioni, G. Fantuzzi, P. Ghezzi, V. Poli, Defective inflammatory response in interleukin 6-deficient mice, J. Exp. Med., 1994, 180, 1243.

    Article  CAS  PubMed  Google Scholar 

  66. S. A. Jones, Directing transition from innate to acquired immunity: defining a role for IL-6, J. Immunol., 2005, 175, 3463.

    Article  CAS  PubMed  Google Scholar 

  67. T. A. Luger, J. Krutmann, R. Kirnbauer, A. Urbanski, T. Schwarz, G. Klappacher, A. Kock, M. Micksche, J. Malejczyk, E. Schauer, et al., IFN-beta 2/IL-6 augments the activity of human natural killer cells, J. Immunol., 1989, 143, 1206.

    CAS  PubMed  Google Scholar 

  68. G. Gallagher, W. H. Stimson, J. Findlay, F. al-Azzawi, Interleukin-6 enhances the induction of human lymphokine-activated killer cells, Cancer Immunol. Immunother., 1990, 31, 49.

    Article  CAS  PubMed  Google Scholar 

  69. M. J. Smyth, J. R. Ortaldo, Comparison of the effect of IL-2 and IL-6 on the lytic activity of purified human peripheral blood large granular lymphocytes, J. Immunol., 1991, 146, 1380.

    CAS  PubMed  Google Scholar 

  70. H. Rabinowich, P. Sedlmayr, R. B. Herberman, T. L. Whiteside, Response of human NK cells to IL-6 alterations of the cell surface phenotype, adhesion to fibronectin and laminin, and tumor necrosis factor-alpha/beta secretion, J. Immunol., 1993, 150, 4844.

    CAS  PubMed  Google Scholar 

  71. S. O. Gollnick, X. Liu, B. Owczarczak, D. A. Musser, B. W. Henderson, Altered expression of interleukin 6 and interleukin 10 as a result of photodynamic therapy in vivo, Cancer Res., 1997, 57, 3904.

    CAS  PubMed  Google Scholar 

  72. T. Ara, Y. A. Declerck, Interleukin-6 in bone metastasis and cancer progression, Eur. J. Cancer, 2010, 46, 1223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. S. H. Jee, S. C. Shen, H. C. Chiu, W. L. Tsai, M. L. Kuo, Overexpression of interleukin-6 in human basal cell carcinoma cell lines increases anti-apoptotic activity and tumorigenic potency, Oncogene, 2001, 20, 198.

    Article  CAS  PubMed  Google Scholar 

  74. J. Usuda, T. Okunaka, K. Furukawa, T. Tsuchida, Y. Kuroiwa, Y. Ohe, N. Saijo, K. Nishio, C. Konaka, H. Kato, Increased cytotoxic effects of photodynamic therapy in IL-6 gene transfected cells via enhanced apoptosis, Int. J. Cancer, 2001, 93, 475.

    Article  CAS  PubMed  Google Scholar 

  75. N. Hendrickx, C. Volanti, U. Moens, O. M. Seternes, P. de Witte, J. R. Vandenheede, J. Piette, P. Agostinis, Up-regulation of cyclooxygenase-2 and apoptosis resistance by p38 MAPK in hypericin-mediated photodynamic therapy of human cancer cells, J. Biol. Chem., 2003, 278, 52231.

    Article  CAS  PubMed  Google Scholar 

  76. A. Yuan, J. J. Chen, P. L. Yao, P. C. Yang, The role of interleukin-8 in cancer cells and microenvironment interaction, Front. Biosci., 2005, 10, 853.

    Article  CAS  PubMed  Google Scholar 

  77. D. J. Waugh, C. Wilson, The interleukin-8 pathway in cancer, Clin. Cancer Res., 2008, 14, 6735.

    Article  CAS  PubMed  Google Scholar 

  78. S. Coutier, L. N. Bezdetnaya, T. H. Foster, R. M. Parache, F. Guillemin, Effect of irradiation fluence rate on the efficacy of photodynamic therapy and tumor oxygenation in meta-tetra (hydroxyphenyl) chlorin (mTHPC)-sensitized HT29 xenografts in nude mice, Radiat. Res., 2002, 158, 339.

    Article  CAS  PubMed  Google Scholar 

  79. T. H. Foster, R. S. Murant, R. G. Bryant, R. S. Knox, S. L. Gibson, R. Hilf, Oxygen consumption and diffusion effects in photodynamic therapy, Radiat. Res., 1991, 126, 296.

    Article  CAS  PubMed  Google Scholar 

  80. W. Sluiter, W. J. de Vree, A. Pietersma, J. F. Koster, Prevention of late lumen loss after coronary angioplasty by photodynamic therapy: role of activated neutrophils, Mol. Cell. Biochem., 1996, 157, 233.

    Article  CAS  PubMed  Google Scholar 

  81. E. Reginato, P. Wolf, M. R. Hamblin, Immune response after photodynamic therapy increases anti-cancer and anti-bacterial effects, World J. Immunol., 2014, 4, 1.

    Article  PubMed  PubMed Central  Google Scholar 

  82. S. O. Gollnick, C. M. Brackett, Enhancement of anti-tumor immunity by photodynamic therapy, Immunol. Res., 2010, 46, 216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. P. Mroz, J. T. Hashmi, Y. Y. Huang, N. Lange, M. R. Hamblin, Stimulation of anti-tumor immunity by photodynamic therapy, Expert Rev. Clin. Immunol., 2011, 7, 75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. M. Ankathatti Munegowda, Y. Deng, S. J. Mulligan, J. Xiang, Th17 and Th17-stimulated CD8(+) T cells play a distinct role in Th17-induced preventive and therapeutic antitumor immunity, Cancer Immunol. Immunother., 2011, 60, 1473.

    Article  PubMed  CAS  Google Scholar 

  85. M. Zemelka-Wiacek, M. Majewska-Szczepanik, W. Pyrczak, M. Szczepanik, Complementary methods for contact hypersensitivity (CHS) evaluation in mice, J. Immunol. Methods, 2013, 387, 270.

    Article  CAS  PubMed  Google Scholar 

  86. R. Pavlos, S. Mallal, D. Ostrov, S. Buus, I. Metushi, B. Peters, E. Phillips, T Cell-Mediated Hypersensitivity Reactions to Drugs, Annu. Rev. Med., 2015, 66, 439.

    Article  CAS  PubMed  Google Scholar 

  87. D. A. Musser, R. J. Fiel, Cutaneous photosensitizing and immunosuppressive effects of a series of tumor localizing porphyrins, Photochem. Photobiol., 1991, 53, 119.

    Article  CAS  PubMed  Google Scholar 

  88. G. O. Simkin, D. E. King, J. G. Levy, A. H. Chan, D. W. Hunt, Inhibition of contact hypersensitivity with different analogs of benzoporphyrin derivative, Immunopharmacology, 1997, 37, 221.

    Article  CAS  PubMed  Google Scholar 

  89. J. C. Reddan, C. Y. Anderson, H. Xu, S. Hrabovsky, K. Freye, R. Fairchild, K. A. Tubesing, C. A. Elmets, Immunosuppressive effects of silicon phthalocyanine photodynamic therapy, Photochem. Photobiol., 1999, 70, 72.

    Article  CAS  PubMed  Google Scholar 

  90. D. A. Musser, S. H. Camacho, P. A. Manderscheid, A. R. Oseroff, The anatomic site of photodynamic therapy is a determinant for immunosuppression in a murine model, Photochem. Photobiol., 1999, 69, 222.

    Article  CAS  PubMed  Google Scholar 

  91. G. Canti, D. Lattuada, A. Nicolin, P. Taroni, G. Valentini, R. Cubeddu, Antitumor immunity induced by photodynamic therapy with aluminum disulfonated phthalocyanines and laser light, Anti-Cancer Drugs, 1994, 5, 443.

    Article  CAS  PubMed  Google Scholar 

  92. M. Korbelik, G. Krosl, J. Krosl, G. J. Dougherty, The role of host lymphoid populations in the response of mouse EMT6 tumor to photodynamic therapy, Cancer Res., 1996, 56, 5647.

    CAS  PubMed  Google Scholar 

  93. H. Saji, W. Song, K. Furumoto, H. Kato, E. G. Engleman, Systemic antitumor effect of intratumoral injection of dendritic cells in combination with local photodynamic therapy, Clin. Cancer Res., 2006, 12, 2568.

    Article  CAS  PubMed  Google Scholar 

  94. M. Ahmad, R. C. Rees, S. A. Ali, Escape from immunotherapy: possible mechanisms that influence tumor regression/progression, Cancer Immunol. Immunother., 2004, 53, 844.

    Article  PubMed  Google Scholar 

  95. W. Zou, Immunosuppressive networks in the tumour environment and their therapeutic relevance, Nat. Rev. Cancer, 2005, 5, 263.

    Article  CAS  PubMed  Google Scholar 

  96. M. Korbelik, J. Sun, J. J. Posakony, Interaction between photodynamic therapy and BCG immunotherapy responsible for the reduced recurrence of treated mouse tumors, Photochem. Photobiol., 2001, 73, 403.

    Article  CAS  PubMed  Google Scholar 

  97. A. Jalili, M. Makowski, T. Switaj, D. Nowis, G. M. Wilczynski, E. Wilczek, M. Chorazy-Massalska, A. Radzikowska, W. Maslinski, L. Bialy, J. Sienko, A. Sieron, M. Adamek, G. Basak, P. Mroz, I. W. Krasnodebski, M. Jakobisiak, J. Golab, Effective photoimmunotherapy of murine colon carcinoma induced by the combination of photodynamic therapy and dendritic cells, Clin. Cancer Res., 2004, 10, 4498.

    Article  CAS  PubMed  Google Scholar 

  98. S. O. Gollnick, L. Vaughan, B. W. Henderson, Generation of effective antitumor vaccines using photodynamic therapy, Cancer Res., 2002, 62, 1604.

    CAS  PubMed  Google Scholar 

  99. M. Korbelik, J. Sun, Photodynamic therapy-generated vaccine for cancer therapy, Cancer Immunol. Immunother., 2006, 55, 900.

    Article  CAS  PubMed  Google Scholar 

  100. D. Laheru, E. M. Jaffee, Immunotherapy for pancreatic cancer - science driving clinical progress, Nat. Rev. Cancer, 2005, 5, 459.

    Article  CAS  PubMed  Google Scholar 

  101. J. L. Marshall, J. L. Gulley, P. M. Arlen, P. K. Beetham, K. Y. Tsang, R. Slack, J. W. Hodge, S. Doren, D. W. Grosenbach, J. Hwang, E. Fox, L. Odogwu, S. Park, D. Panicali, J. Schlom, Phase I study of sequential vaccinations with fowlpox-CEA(6D)-TRICOM alone and sequentially with vaccinia-CEA(6D)-TRICOM, with and without granulocyte-macrophage colony-stimulating factor, in patients with carcinoembryonic antigen-expressing carcinomas, J. Clin. Oncol., 2005, 23, 720.

    Article  CAS  PubMed  Google Scholar 

  102. P. F. Robbins, M. El-Gamil, Y. F. Li, Y. Kawakami, D. Loftus, E. Appella, S. A. Rosenberg, A mutated beta-catenin gene encodes a melanoma-specific antigen recognized by tumor infiltrating lymphocytes, J. Exp. Med., 1996, 183, 1185.

    Article  CAS  PubMed  Google Scholar 

  103. T. Boon, L. J. Old, Cancer Tumor antigens, Curr. Opin. Immunol., 1997, 9, 681.

    Article  CAS  PubMed  Google Scholar 

  104. D. Brandle, J. Bilsborough, T. Rulicke, C. Uyttenhove, T. Boon, B. J. Van den Eynde, The shared tumor-specific antigen encoded by mouse gene P1A is a target not only for cytolytic T lymphocytes but also for tumor rejection, Eur. J. Immunol., 1998, 28, 4010.

    Article  CAS  PubMed  Google Scholar 

  105. E. Gilboa, The makings of a tumor rejection antigen, Immunity, 1999, 11, 263.

    Article  CAS  PubMed  Google Scholar 

  106. D. Golgher, E. Jones, F. Powrie, T. Elliott, A. Gallimore, Depletion of CD25+ regulatory cells uncovers immune responses to shared murine tumor rejection antigens, Eur. J. Immunol., 2002, 32, 3267.

    Article  CAS  PubMed  Google Scholar 

  107. B. J. Van den Eynde, P. van der Bruggen, T cell defined tumor antigens, Curr. Opin. Immunol., 1997, 9, 684.

    Article  PubMed  Google Scholar 

  108. H. A. Smith, D. G. McNeel, The SSX family of cancer-testis antigens as target proteins for tumor therapy, Clin. Dev. Immunol., 2010, 2010, 150591.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Y. Hirohashi, T. Torigoe, S. Inoda, J. Kobayasi, M. Nakatsugawa, T. Mori, I. Hara, N. Sato, The functioning antigens: beyond just as the immunological targets, Cancer Sci., 2009, 100, 798.

    Article  CAS  PubMed  Google Scholar 

  110. A. Sharma, B. Bode, R. H. Wenger, K. Lehmann, A. A. Sartori, H. Moch, A. Knuth, L. Boehmer, M. Broek, gamma-Radiation promotes immunological recognition of cancer cells through increased expression of cancer-testis antigens in vitro and in vivo, PLoS One, 2011, 6, e28217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. V. Brichard, A. Van Pel, T. Wolfel, C. Wolfel, E. De Plaen, B. Lethe, P. Coulie, T. Boon, The tyrosinase gene codes for an antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas, J. Exp. Med., 1993, 178, 489.

    Article  CAS  PubMed  Google Scholar 

  112. P. G. Coulie, V. Brichard, A. Van Pel, T. Wolfel, J. Schneider, C. Traversari, S. Mattei, E. De Plaen, C. Lurquin, J. P. Szikora, J. C. Renauld, T. Boon, A new gene coding for a differentiation antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas, J. Exp. Med., 1994, 180, 35.

    Article  CAS  PubMed  Google Scholar 

  113. A. B. Bakker, M. W. Schreurs, A. J. de Boer, Y. Kawakami, S. A. Rosenberg, G. J. Adema, C. G. Figdor, Melanocyte lineage-specific antigen gp100 is recognized by melanoma-derived tumor-infiltrating lymphocytes, J. Exp. Med., 1994, 179, 1005.

    Article  CAS  PubMed  Google Scholar 

  114. O. Mandelboim, G. Berke, M. Fridkin, M. Feldman, M. Eisenstein, L. Eisenbach, CTL induction by a tumour-associated antigen octapeptide derived from a murine lung carcinoma, Nature, 1994, 369, 67.

    Article  CAS  PubMed  Google Scholar 

  115. P. A. Monach, S. C. Meredith, C. T. Siegel, H. Schreiber, A unique tumor antigen produced by a single amino acid substitution, Immunity, 1995, 2, 45.

    Article  CAS  PubMed  Google Scholar 

  116. P. Dubey, R. C. Hendrickson, S. C. Meredith, C. T. Siegel, J. Shabanowitz, J. C. Skipper, V. H. Engelhard, D. F. Hunt, H. Schreiber, The immunodominant antigen of an ultraviolet-induced regressor tumor is generated by a somatic point mutation in the DEAD box helicase p68, J. Exp. Med., 1997, 185, 695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. C. Yee, J. A. Thompson, D. Byrd, S. R. Riddell, P. Roche, E. Celis, P. D. Greenberg, Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells, Proc. Natl. Acad. Sci. U. S. A., 2002, 99, 16168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. P. van der Bruggen, B. J. Van den Eynde, Processing and presentation of tumor antigens and vaccination strategies, Curr. Opin. Immunol., 2006, 18, 98.

    Article  PubMed  CAS  Google Scholar 

  119. A. D. Garg, D. V. Krysko, T. Verfaillie, A. Kaczmarek, G. B. Ferreira, T. Marysael, N. Rubio, M. Firczuk, C. Mathieu, A. J. Roebroek, W. Annaert, J. Golab, P. de Witte, P. Vandenabeele, P. Agostinis, A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death, EMBO J., 2012, 31, 1062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. T. J. Curiel, G. Coukos, L. Zou, X. Alvarez, P. Cheng, P. Mottram, M. Evdemon-Hogan, J. R. Conejo-Garcia, L. Zhang, M. Burow, Y. Zhu, S. Wei, I. Kryczek, B. Daniel, A. Gordon, L. Myers, A. Lackner, M. L. Disis, K. L. Knutson, L. Chen, W. Zou, Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival, Nat. Med., 2004, 10, 942.

    Article  CAS  PubMed  Google Scholar 

  121. E. Reginato, P. Mroz, H. Chung, M. Kawakubo, P. Wolf, M. R. Hamblin, Photodynamic therapy plus regulatory T-cell depletion produces immunity against a mouse tumour that expresses a self-antigen, Br. J. Cancer, 2013, 109, 2167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. M. Håkerud, P. K. Selbo, Y. Waeckerle-Men, E. Contassot, P. Dziunycz, T. M. Kundig, A. Hogset, P. Johansen, Photosensitisation facilitates cross-priming of adjuvant-free protein vaccines and stimulation of tumour-suppressing CD8T cells, J. Controlled Release, 2015, 198, 10.

    Article  CAS  Google Scholar 

  123. M. Håkerud, Y. Waeckerle-Men, P. K. Selbo, T. M. Kundig, A. Hogset, P. Johansen, Intradermal photosensitisation facilitates stimulation of MHC class-I restricted CD8 T-cell responses of co-administered antigen, J. Controlled Release, 2014, 174, 143.

    Article  CAS  Google Scholar 

  124. T. Kalantari, E. Kamali-Sarvestani, G. X. Zhang, F. Safavi, E. Lauretti, M. E. Khedmati, A. Rostami, Generation of large numbers of highly purified dendritic cells from bone marrow progenitor cells after co-culture with syngeneic murine splenocytes, Exp. Mol. Pathol., 2013, 94, 336.

    Article  CAS  PubMed  Google Scholar 

  125. F. Sallusto, M. Cella, C. Danieli, A. Lanzavecchia, Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products, J. Exp. Med., 1995, 182, 389.

    Article  CAS  PubMed  Google Scholar 

  126. M. Gouwy, S. Struyf, L. Leutenez, N. Portner, S. Sozzani, J. Van Damme, Chemokines and other GPCR ligands synergize in receptor-mediated migration of monocyte-derived immature and mature dendritic cells, Immunobiology, 2014, 219, 218.

    Article  CAS  PubMed  Google Scholar 

  127. E. L. Pearce, Metabolism in T cell activation and differentiation, Curr. Opin. Immunol., 2010, 22, 314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. S. O. Gollnick, B. Owczarczak, P. Maier, Photodynamic therapy and anti-tumor immunity, Lasers Surg. Med., 2006, 38, 509.

    Article  PubMed  Google Scholar 

  129. A. D. Garg, D. Nowis, J. Golab, P. Vandenabeele, D. V. Krysko, P. Agostinis, Immunogenic cell death, DAMPs and anticancer therapeutics: an emerging amalgamation, Biochim. Biophys. Acta, 2010, 1805, 53.

    CAS  PubMed  Google Scholar 

  130. D. V. Krysko, A. D. Garg, A. Kaczmarek, O. Krysko, P. Agostinis, P. Vandenabeele, Immunogenic cell death and DAMPs in cancer therapy, Nat. Rev. Cancer, 2012, 12, 860.

    Article  CAS  PubMed  Google Scholar 

  131. M. A. Yenari, J. Liu, Z. Zheng, Z. S. Vexler, J. E. Lee, R. G. Giffard, Antiapoptotic and anti-inflammatory mechanisms of heat-shock protein protection, Ann. N. Y. Acad. Sci., 2005, 1053, 74.

    Article  CAS  PubMed  Google Scholar 

  132. R. Spisek, A. Charalambous, A. Mazumder, D. H. Vesole, S. Jagannath, M. V. Dhodapkar, Bortezomib enhances dendritic cell (DC)-mediated induction of immunity to human myeloma via exposure of cell surface heat shock protein 90 on dying tumor cells: therapeutic implications, Blood, 2007, 109, 4839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. O. Kepp, A. Tesniere, L. Zitvogel, G. Kroemer, The immunogenicity of tumor cell death, Curr. Opin. Oncol., 2009, 21, 71.

    Article  CAS  PubMed  Google Scholar 

  134. M. Obeid, A. Tesniere, F. Ghiringhelli, G. M. Fimia, L. Apetoh, J. L. Perfettini, M. Castedo, G. Mignot, T. Panaretakis, N. Casares, D. Metivier, N. Larochette, P. van Endert, F. Ciccosanti, M. Piacentini, L. Zitvogel, G. Kroemer, Calreticulin exposure dictates the immunogenicity of cancer cell death, Nat. Med., 2007, 13, 54.

    Article  CAS  PubMed  Google Scholar 

  135. A. D. Garg, D. V. Krysko, P. Vandenabeele, P. Agostinis, Hypericin-based photodynamic therapy induces surface exposure of damage-associated molecular patterns like HSP70 and calreticulin, Cancer Immunol. Immunother., 2012, 61, 215.

    Article  CAS  PubMed  Google Scholar 

  136. F. Ghiringhelli, L. Apetoh, A. Tesniere, L. Aymeric, Y. Ma, C. Ortiz, K. Vermaelen, T. Panaretakis, G. Mignot, E. Ullrich, J. L. Perfettini, F. Schlemmer, E. Tasdemir, M. Uhl, P. Genin, A. Civas, B. Ryffel, J. Kanellopoulos, J. Tschopp, F. Andre, R. Lidereau, N. M. McLaughlin, N. M. Haynes, M. J. Smyth, G. Kroemer, L. Zitvogel, Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors, Nat. Med., 2009, 15, 1170.

    Article  CAS  PubMed  Google Scholar 

  137. S. J. Martin, C. P. Reutelingsperger, A. J. McGahon, J. A. Rader, R. C. van Schie, D. M. LaFace, D. R. Green, Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl, J. Exp. Med., 1995, 182, 1545.

    Article  CAS  PubMed  Google Scholar 

  138. M. Michaud, I. Martins, A. Q. Sukkurwala, S. Adjemian, Y. Ma, P. Pellegatti, S. Shen, O. Kepp, M. Scoazec, G. Mignot, S. Rello-Varona, M. Tailler, L. Menger, E. Vacchelli, L. Galluzzi, F. Ghiringhelli, F. di Virgilio, L. Zitvogel, G. Kroemer, Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice, Science, 2011, 334, 1573.

    Article  CAS  PubMed  Google Scholar 

  139. A. D. Garg, D. V. Krysko, P. Vandenabeele, P. Agostinis, DAMPs and PDT-mediated photo-oxidative stress: exploring the unknown, Photochem. Photobiol. Sci., 2011, 10, 670.

    Article  CAS  PubMed  Google Scholar 

  140. A. D. Garg, M. Bose, M. I. Ahmed, W. A. Bonass, S. R. Wood, In vitro studies on erythrosine-based photodynamic therapy of malignant and pre-malignant oral epithelial cells, PLoS One, 2012, 7, e34475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. L. Apetoh, F. Ghiringhelli, A. Tesniere, M. Obeid, C. Ortiz, A. Criollo, G. Mignot, M. C. Maiuri, E. Ullrich, P. Saulnier, H. Yang, S. Amigorena, B. Ryffel, F. J. Barrat, P. Saftig, F. Levi, R. Lidereau, C. Nogues, J. P. Mira, A. Chompret, V. Joulin, F. Clavel-Chapelon, J. Bourhis, F. Andre, S. Delaloge, T. Tursz, G. Kroemer, L. Zitvogel, Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy, Nat. Med., 2007, 13, 1050.

    Article  CAS  PubMed  Google Scholar 

  142. O. Myklebost, K. Arheden, S. Rogne, A. Geurts van Kessel, N. Mandahl, J. Herz, K. Stanley, S. Heim, F. Mitelman, The gene for the human putative apoE receptor is on chromosome 12 in the segment q13–14, Genomics, 1989, 5, 65.

    Article  CAS  PubMed  Google Scholar 

  143. E. A. Clark, A Short History of the B-Cell-Associated Surface Molecule CD40, Front Immunol., 2014, 5, 472.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. S. M. Mangsbo, S. Broos, E. Fletcher, N. Veitonmaki, C. Furebring, E. Dahlen, P. Norlen, M. Lindstedt, T. H. Totterman, P. Ellmark, The human agonistic CD40 antibody ADC-1013 eradicates bladder tumors and generates T cell dependent tumor immunity, Clin. Cancer Res., 2014, 215, 1115.

    Article  PubMed  CAS  Google Scholar 

  145. A. D. Garg, S. Martin, J. Golab, P. Agostinis, Danger signalling during cancer cell death: origins, plasticity and regulation, Cell Death Differ., 2014, 21, 26.

    Article  CAS  PubMed  Google Scholar 

  146. A. M. Dudek, A. D. Garg, D. V. Krysko, D. De Ruysscher, P. Agostinis, Inducers of immunogenic cancer cell death, Cytokine Growth Factor Rev., 2013, 24, 319.

    Article  CAS  PubMed  Google Scholar 

  147. T. Kushibiki, T. Tajiri, Y. Tomioka, K. Awazu, Photodynamic therapy induces interleukin secretion from dendritic cells, Int. J. Clin. Exp. Med., 2010, 3, 110.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. D. S. Wheeler, M. A. Chase, A. P. Senft, S. E. Poynter, H. R. Wong, K. Page, Extracellular Hsp72, an endogenous DAMP, is released by virally infected airway epithelial cells and activates neutrophils via Toll-like receptor (TLR)-4, Respir. Res., 2009, 10, 31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. L. V. Ly, M. Sluijter, M. Versluis, G. P. Luyten, M. J. van Stipdonk, S. H. van der Burg, C. J. Melief, M. J. Jager, T. van Hall, Peptide vaccination after T-cell transfer causes massive clonal expansion, tumor eradication, and manageable cytokine storm, Cancer Res., 2010, 70, 8339.

    Article  CAS  PubMed  Google Scholar 

  150. N. Casares, M. O. Pequignot, A. Tesniere, F. Ghiringhelli, S. Roux, N. Chaput, E. Schmitt, A. Hamai, S. Hervas-Stubbs, M. Obeid, F. Coutant, D. Metivier, E. Pichard, P. Aucouturier, G. Pierron, C. Garrido, L. Zitvogel, G. Kroemer, Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death, J. Exp. Med., 2005, 202, 1691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. A. Szokalska, M. Makowski, D. Nowis, G. M. Wilczynski, M. Kujawa, C. Wojcik, I. Mlynarczuk-Bialy, P. Salwa, J. Bil, S. Janowska, P. Agostinis, T. Verfaillie, M. Bugajski, J. Gietka, T. Issat, E. Glodkowska, P. Mrowka, T. Stoklosa, M. R. Hamblin, P. Mroz, M. Jakobisiak, J. Golab, Proteasome inhibition potentiates antitumor effects of photodynamic therapy in mice through induction of endoplasmic reticulum stress and unfolded protein response, Cancer Res., 2009, 69, 4235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. A. D. Garg, A. M. Dudek, G. B. Ferreira, T. Verfaillie, P. Vandenabeele, D. V. Krysko, C. Mathieu, P. Agostinis, ROS-induced autophagy in cancer cells assists in evasion from determinants of immunogenic cell death, Autophagy, 2013, 9, 1292.

    Article  CAS  PubMed  Google Scholar 

  153. R. Broady, J. Yu, M. K. Levings, Pro-tolerogenic effects of photodynamic therapy with TH9402 on dendritic cells, J. Clin. Apher., 2008, 23, 82.

    Article  PubMed  Google Scholar 

  154. J. E. Ohm, D. P. Carbone, VEGF as a mediator of tumor-associated immunodeficiency, Immunol. Res., 2001, 23, 263.

    Article  CAS  PubMed  Google Scholar 

  155. N. Solban, P. K. Selbo, A. K. Sinha, S. K. Chang, T. Hasan, Mechanistic investigation and implications of photodynamic therapy induction of vascular endothelial growth factor in prostate cancer, Cancer Res., 2006, 66, 5633.

    Article  CAS  PubMed  Google Scholar 

  156. S. Laxmanan, S. W. Robertson, E. Wang, J. S. Lau, D. M. Briscoe, D. Mukhopadhyay, Vascular endothelial growth factor impairs the functional ability of dendritic cells through Id pathways, Biochem. Biophys. Res. Commun., 2005, 334, 193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. B. F. Johnson, T. M. Clay, A. C. Hobeika, H. K. Lyerly, M. A. Morse, Vascular endothelial growth factor and immunosuppression in cancer: current knowledge and potential for new therapy, Expert Opin. Biol. Ther., 2007, 7, 449.

    Article  CAS  PubMed  Google Scholar 

  158. J. E. Ohm, D. I. Gabrilovich, G. D. Sempowski, E. Kisseleva, K. S. Parman, S. Nadaf, D. P. Carbone, VEGF inhibits T-cell development and may contribute to tumor-induced immune suppression, Blood, 2003, 101, 4878.

    Article  CAS  PubMed  Google Scholar 

  159. Y. Xia, G. K. Gupta, A. P. Castano, P. Mroz, P. Avci, M. R. Hamblin, CpG oligodeoxynucleotide as immune adjuvant enhances photodynamic therapy response in murine metastatic breast cancer, J. Biophotonics, 2014, 7, 897.

    Article  CAS  PubMed  Google Scholar 

  160. S. Marrache, J. H. Choi, S. Tundup, D. Zaver, D. A. Harn, S. Dhar, Immune stimulating photoactive hybrid nanoparticles for metastatic breast cancer, Integr. Biol., 2013, 5, 215.

    Article  CAS  Google Scholar 

  161. S. Sakaguchi, N. Sakaguchi, J. Shimizu, S. Yamazaki, T. Sakihama, M. Itoh, Y. Kuniyasu, T. Nomura, M. Toda, T. Takahashi, Immunologic tolerance maintained by CD25+ CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance, Immunol. Rev., 2001, 182, 18.

    Article  CAS  PubMed  Google Scholar 

  162. K. J. Maloy, F. Powrie, Regulatory T cells in the control of immune pathology, Nat. Immunol., 2001, 2, 816.

    Article  CAS  PubMed  Google Scholar 

  163. E. M. Shevach, Regulatory T cells in autoimmmunity*, Annu. Rev. Immunol., 2000, 18, 423.

    Article  CAS  PubMed  Google Scholar 

  164. E. Y. Woo, C. S. Chu, T. J. Goletz, K. Schlienger, H. Yeh, G. Coukos, S. C. Rubin, L. R. Kaiser, C. H. June, Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer, Cancer Res., 2001, 61, 4766.

    CAS  PubMed  Google Scholar 

  165. S. Sakaguchi, T. Yamaguchi, T. Nomura, M. Ono, Regulatory T cells and immune tolerance, Cell, 2008, 133, 775.

    Article  CAS  PubMed  Google Scholar 

  166. C. A. Piccirillo, E. M. Shevach, Cutting edge: control of CD8+ T cell activation by CD4+CD25+ immunoregulatory cells, J. Immunol., 2001, 167, 1137.

    Article  CAS  PubMed  Google Scholar 

  167. S. Read, V. Malmstrom, F. Powrie, Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation, J. Exp. Med., 2000, 192, 295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. B. Salomon, D. J. Lenschow, L. Rhee, N. Ashourian, B. Singh, A. Sharpe, J. A. Bluestone, B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes, Immunity, 2000, 12, 431.

    Article  CAS  PubMed  Google Scholar 

  169. F. Lepault, M. C. Gagnerault, Characterization of peripheral regulatory CD4+ T cells that prevent diabetes onset in nonobese diabetic mice, J. Immunol., 2000, 164, 240.

    Article  CAS  PubMed  Google Scholar 

  170. A. F. Ochsenbein, S. Sierro, B. Odermatt, M. Pericin, U. Karrer, J. Hermans, S. Hemmi, H. Hengartner, R. M. Zinkernagel, Roles of tumour localization, second signals and cross priming in cytotoxic T-cell induction, Nature, 2001, 411, 1058.

    Article  CAS  PubMed  Google Scholar 

  171. S. Onizuka, I. Tawara, J. Shimizu, S. Sakaguchi, T. Fujita, E. Nakayama, Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor alpha) monoclonal antibody, Cancer Res., 1999, 59, 3128.

    CAS  PubMed  Google Scholar 

  172. P. Yu, Y. Lee, W. Liu, T. Krausz, A. Chong, H. Schreiber, Y. X. Fu, Intratumor depletion of CD4+ cells unmasks tumor immunogenicity leading to the rejection of late-stage tumors, J. Exp. Med., 2005, 201, 779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. J. Shimizu, S. Yamazaki, S. Sakaguchi, Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity, J. Immunol., 1999, 163, 5211.

    CAS  PubMed  Google Scholar 

  174. R. P. Sutmuller, L. M. van Duivenvoorde, A. van Elsas, T. N. Schumacher, M. E. Wildenberg, J. P. Allison, R. E. Toes, R. Offringa, C. J. Melief, Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25(+) regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses, J. Exp. Med., 2001, 194, 823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. H. Tanaka, J. Tanaka, J. Kjaergaard, S. Shu, Depletion of CD4+ CD25+ regulatory cells augments the generation of specific immune T cells in tumor-draining lymph nodes, J. Immunother., 2002, 25, 207.

    Article  CAS  PubMed  Google Scholar 

  176. S. J. Prasad, K. J. Farrand, S. A. Matthews, J. H. Chang, R. S. McHugh, F. Ronchese, Dendritic cells loaded with stressed tumor cells elicit long-lasting protective tumor immunity in mice depleted of CD4+CD25+ regulatory T cells, J. Immunol., 2005, 174, 90.

    Article  CAS  PubMed  Google Scholar 

  177. E. Reginato, J. Lindenmann, C. Langner, N. Schweintzger, I. Bambach, F. Smolle-Juttner, P. Wolf, Photodynamic therapy downregulates the function of regulatory T cells in patients with esophageal squamous cell carcinoma, Photochem. Photobiol. Sci., 2014, 13, 1281.

    Article  CAS  PubMed  Google Scholar 

  178. S. Fu, N. Zhang, A. C. Yopp, D. Chen, M. Mao, H. Zhang, Y. Ding, J. S. Bromberg, TGF-beta induces Foxp3+ T-regulatory cells from CD4 + CD25 - precursors, Am. J. Transplant., 2004, 4, 1614.

    Article  CAS  PubMed  Google Scholar 

  179. S. M. Wahl, J. Swisher, N. McCartney-Francis, W. Chen, TGF-beta: the perpetrator of immune suppression by regulatory T cells and suicidal T cells, J. Leukocyte Biol., 2004, 76, 15.

    Article  CAS  PubMed  Google Scholar 

  180. P. W. Laird, L. Jackson-Grusby, A. Fazeli, S. L. Dickinson, W. E. Jung, E. Li, R. A. Weinberg, R. Jaenisch, Suppression of intestinal neoplasia by DNA hypomethylation, Cell, 1995, 81, 197.

    Article  CAS  PubMed  Google Scholar 

  181. P. A. Jones, S. B. Baylin, The fundamental role of epigenetic events in cancer, Nat. Rev. Genet., 2002, 3, 415.

    Article  CAS  PubMed  Google Scholar 

  182. J. C. Chuang, P. A. Jones, Epigenetics and microRNAs, Pediatr. Res., 2007, 61, 24R.

    Article  CAS  PubMed  Google Scholar 

  183. N. J. Raynal, J. Si, R. F. Taby, V. Gharibyan, S. Ahmed, J. Jelinek, M. R. Estecio, J. P. Issa, DNA methylation does not stably lock gene expression but instead serves as a molecular mark for gene silencing memory, Cancer Res., 2012, 72, 1170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. E. A. Griffiths, S. D. Gore, Epigenetic therapies in MDS and AML, Adv. Exp. Med. Biol., 2013, 754, 253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. I. Shats, M. L. Gatza, J. T. Chang, S. Mori, J. Wang, J. Rich, J. R. Nevins, Using a stem cell-based signature to guide therapeutic selection in cancer, Cancer Res., 2011, 71, 1772.

    Article  CAS  PubMed  Google Scholar 

  186. G. V. Glinsky, O. Berezovska, A. B. Glinskii, Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer, J. Clin. Invest., 2005, 115, 1503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. M. Wachowska, M. Gabrysiak, J. Golab, Epigenetic remodeling combined with photodynamic therapy elicits anticancer immune responses, Oncoimmunology, 2014, 3, e28837.

    Article  PubMed  PubMed Central  Google Scholar 

  188. E. S. Abdel-Hady, P. Martin-Hirsch, M. Duggan-Keen, P. L. Stern, J. V. Moore, G. Corbitt, H. C. Kitchener, I. N. Hampson, Immunological and viral factors associated with the response of vulval intraepithelial neoplasia to photodynamic therapy, Cancer Res., 2001, 61, 192.

    CAS  PubMed  Google Scholar 

  189. Z. S. Guo, J. A. Hong, K. R. Irvine, G. A. Chen, P. J. Spiess, Y. Liu, G. Zeng, J. R. Wunderlich, D. M. Nguyen, N. P. Restifo, D. S. Schrump, De novo induction of a cancer/testis antigen by 5-aza-2′-deoxycytidine augments adoptive immunotherapy in a murine tumor model, Cancer Res., 2006, 66, 1105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. S. V. Demyanenko, A. B. Uzdensky, S. A. Sharifulina, T. O. Lapteva, L. P. Polyakova, PDT-induced epigenetic changes in the mouse cerebral cortex: a protein microarray study, Biochim. Biophys. Acta, 2014, 1840, 262.

    Article  CAS  PubMed  Google Scholar 

  191. S. D. Gore, Combination therapy with DNA methyltransferase inhibitors in hematologic malignancies, Nat. Clin. Pract. Oncol., 2005, 2Suppl 1, S30.

    Article  CAS  PubMed  Google Scholar 

  192. M. Lubbert, S. Suciu, L. Baila, B. H. Ruter, U. Platzbecker, A. Giagounidis, D. Selleslag, B. Labar, U. Germing, H. R. Salih, F. Beeldens, P. Muus, K. H. Pfluger, C. Coens, A. Hagemeijer, H. Eckart Schaefer, A. Ganser, C. Aul, T. de Witte, P. W. Wijermans, Low-dose decitabine versus best supportive care in elderly patients with intermediate- or high-risk myelodysplastic syndrome (MDS) ineligible for intensive chemotherapy: final results of the randomized phase III study of the European Organisation for Research and Treatment of Cancer Leukemia Group and the German MDS Study Group, J. Clin. Oncol., 2011, 29, 1987.

    Article  PubMed  CAS  Google Scholar 

  193. H. C. Tsai, H. Li, L. Van Neste, Y. Cai, C. Robert, F. V. Rassool, J. J. Shin, K. M. Harbom, R. Beaty, E. Pappou, J. Harris, R. W. Yen, N. Ahuja, M. V. Brock, V. Stearns, D. Feller-Kopman, L. B. Yarmus, Y. C. Lin, A. L. Welm, J. P. Issa, I. Minn, W. Matsui, Y. Y. Jang, S. J. Sharkis, S. B. Baylin, C. A. Zahnow, Transient low doses of DNA-demethylating agents exert durable antitumor effects on hematological and epithelial tumor cells, Cancer Cell., 2012, 21, 430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. C. Gong, S. Qu, X. B. Lv, B. Liu, W. Tan, Y. Nie, F. Su, Q. Liu, H. Yao, E. Song, BRMS1L suppresses breast cancer metastasis by inducing epigenetic silence of FZD10, Nat. Commun., 2014, 5, 5406.

    Article  PubMed  Google Scholar 

  195. A. Hascher, A. K. Haase, K. Hebestreit, C. Rohde, H. U. Klein, M. Rius, D. Jungen, A. Witten, M. Stoll, I. Schulze, S. Ogawa, R. Wiewrodt, L. Tickenbrock, W. E. Berdel, M. Dugas, N. H. Thoennissen, C. Muller-Tidow, DNA methyltransferase inhibition reverses epigenetically embedded phenotypes in lung cancer preferentially affecting polycomb target genes, Clin. Cancer Res., 2014, 20, 814.

    Article  CAS  PubMed  Google Scholar 

  196. M. Sideridou, R. Zakopoulou, K. Evangelou, M. Liontos, A. Kotsinas, E. Rampakakis, S. Gagos, K. Kahata, K. Grabusic, K. Gkouskou, I. P. Trougakos, E. Kolettas, A. G. Georgakilas, S. Volarevic, A. G. Eliopoulos, M. Zannis-Hadjopoulos, A. Moustakas, V. G. Gorgoulis, Cdc6 expression represses E-cadherin transcription and activates adjacent replication origins, J. Cell Biol., 2011, 195, 1123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. N. Nausch, A. Cerwenka, NKG2D ligands in tumor immunity, Oncogene, 2008, 27, 5944.

    Article  CAS  PubMed  Google Scholar 

  198. D. E. King, H. Jiang, G. O. Simkin, M. O. Obochi, J. G. Levy, D. W. Hunt, Photodynamic alteration of the surface receptor expression pattern of murine splenic dendritic cells, Scand. J. Immunol., 1999, 49, 184.

    Article  CAS  PubMed  Google Scholar 

  199. K. Kozar, R. Kaminski, T. Switaj, T. Oldak, E. Machaj, P. J. Wysocki, A. Mackiewicz, W. Lasek, M. Jakobisiak, J. Golab, Interleukin 12-based immunotherapy improves the antitumor effectiveness of a low-dose 5-Aza-2′-deoxycitidine treatment in L1210 leukemia and B16F10 melanoma models in mice, Clin. Cancer Res., 2003, 9, 3124.

    CAS  PubMed  Google Scholar 

  200. T. B. Tomasi, W. J. Magner, A. N. Khan, Epigenetic regulation of immune escape genes in cancer, Cancer Immunol. Immunother., 2006, 55, 1159.

    Article  PubMed  Google Scholar 

  201. E. Kabingu, A. R. Oseroff, G. E. Wilding, S. O. Gollnick, Enhanced systemic immune reactivity to a Basal cell carcinoma associated antigen following photodynamic therapy, Clin. Cancer Res., 2009, 15, 4460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. P. S. Thong, M. Olivo, K. W. Kho, R. Bhuvaneswari, W. W. Chin, K. W. Ong, K. C. Soo, Immune response against angiosarcoma following lower fluence rate clinical photodynamic therapy, J. Environ. Pathol. Toxicol. Oncol., 2008, 27, 35.

    Article  CAS  PubMed  Google Scholar 

  203. P. S. Thong, K. W. Ong, N. S. Goh, K. W. Kho, V. Manivasager, R. Bhuvaneswari, M. Olivo, K. C. Soo, Photodynamic-therapy-activated immune response against distant untreated tumours in recurrent angiosarcoma, Lancet Oncol., 2007, 8, 950.

    Article  CAS  PubMed  Google Scholar 

  204. A. Ribas, Tumor immunotherapy directed at PD-1, N. Engl. J. Med., 2012, 366, 2517.

    Article  CAS  PubMed  Google Scholar 

  205. O. Hamid, C. Robert, A. Daud, F. S. Hodi, W. J. Hwu, R. Kefford, J. D. Wolchok, P. Hersey, R. W. Joseph, J. S. Weber, R. Dronca, T. C. Gangadhar, A. Patnaik, H. Zarour, A. M. Joshua, K. Gergich, J. Elassaiss-Schaap, A. Algazi, C. Mateus, P. Boasberg, P. C. Tumeh, B. Chmielowski, S. W. Ebbinghaus, X. N. Li, S. P. Kang, A. Ribas, Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma, N. Engl. J. Med., 2013, 369, 134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Y. Ishida, Y. Agata, K. Shibahara, T. Honjo, Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death, EMBO J., 1992, 11, 3887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. C. Blank, A. Mackensen, Contribution of the PD-L1/PD-1 pathway to T-cell exhaustion: an update on implications for chronic infections and tumor evasion, Cancer Immunol. Immunother., 2007, 56, 739.

    Article  PubMed  Google Scholar 

  208. Y. Agata, A. Kawasaki, H. Nishimura, Y. Ishida, T. Tsubata, H. Yagita, T. Honjo, Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes, Int. Immunol., 1996, 8, 765.

    Article  CAS  PubMed  Google Scholar 

  209. G. J. Freeman, A. J. Long, Y. Iwai, K. Bourque, T. Chernova, H. Nishimura, L. J. Fitz, N. Malenkovich, T. Okazaki, M. C. Byrne, H. F. Horton, L. Fouser, L. Carter, V. Ling, M. R. Bowman, B. M. Carreno, M. Collins, C. R. Wood, T. Honjo, Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation, J. Exp. Med., 2000, 192, 1027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Hamblin.

Additional information

The first two authors made equal contributions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anzengruber, F., Avci, P., de Freitas, L.F. et al. T-cell mediated anti-tumor immunity after photodynamic therapy: why does it not always work and how can we improve it?. Photochem Photobiol Sci 14, 1492–1509 (2015). https://doi.org/10.1039/c4pp00455h

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c4pp00455h

Navigation