Skip to main content
Top
Published in: Dermatology and Therapy 1/2019

Open Access 01-03-2019 | Actinic Keratosis | Review

New Vision in Photoprotection and Photorepair

Authors: Marie-Therese Leccia, Celeste Lebbe, Jean-Paul Claudel, Mridvika Narda, Nicole Basset-Seguin

Published in: Dermatology and Therapy | Issue 1/2019

Login to get access

Abstract

Chronic exposure to solar radiation is associated with an increased incidence of skin cancer worldwide and more specifically with non-melanoma skin cancers and actinic keratosis. At the cellular level DNA damage is the main event following ultraviolet (UV) exposure. The kind of lesions produced depends on the wavelength and the energy profile of the radiation, with different photoproducts being formed as a result. Although endogenous DNA repair mechanisms are somewhat effective in repairing DNA, some DNA damage persists and can accumulate with chronic exposure. UV protection strategies, such as sunscreen use, are important in limiting further DNA damage. Several published studies have demonstrated the protective effect that regular use of sunscreen can have against the development of skin cancers. Newer options that aim to help repair damaged DNA may have an important role in reducing the incidence of chronic sun exposure-related photoaging and non-melanoma skin cancers. Photolyase, which is capable of repairing cyclobutane dimers formed as a result of DNA irradiation, is one such novel ingredient. In the first part of this paper we review the rationale for a combined treatment approach of photoprotection and photorepair with photolyase. In the second part we evaluate several published clinical studies, which suggest a beneficial effect in preventing new skin lesions in photodamaged skin. A strategy of photoprotection plus photorepair appears to be relevant for all persons with a high level of solar exposure and those at a higher risk for developing skin cancers.
Literature
3.
go back to reference Cakir BÖ, Adamson P, Cingi C. Epidemiology and economic burden of nonmelanoma skin cancer. Facial Plast Surg Clin North Am. 2012;20(4):419–22.PubMedCrossRef Cakir BÖ, Adamson P, Cingi C. Epidemiology and economic burden of nonmelanoma skin cancer. Facial Plast Surg Clin North Am. 2012;20(4):419–22.PubMedCrossRef
4.
go back to reference Cadet J, Douki T, Ravanat JL. Oxidatively generated damage to cellular DNA by UVB and UVA radiation. Photochem Photobiol. 2015;91:140–55.PubMedCrossRef Cadet J, Douki T, Ravanat JL. Oxidatively generated damage to cellular DNA by UVB and UVA radiation. Photochem Photobiol. 2015;91:140–55.PubMedCrossRef
5.
go back to reference Cadet J, Sage E, Douki T. Ultraviolet radiation-mediated damage to cellular DNA. Mutat Res. 2005;571:3–17.PubMedCrossRef Cadet J, Sage E, Douki T. Ultraviolet radiation-mediated damage to cellular DNA. Mutat Res. 2005;571:3–17.PubMedCrossRef
6.
go back to reference Pfeifer GP, Besaratinia A. UV wavelength-dependent DNA damage and human non-melanoma and melanoma skin cancer. Photochem Photobiol Sci. 2012;11(1):90–7.PubMedCrossRef Pfeifer GP, Besaratinia A. UV wavelength-dependent DNA damage and human non-melanoma and melanoma skin cancer. Photochem Photobiol Sci. 2012;11(1):90–7.PubMedCrossRef
7.
go back to reference de Gruijl FR, Rebel H. Early events in UV carcinogenesis—DNA damage, target cells and mutant p53 foci. Photochem Photobiol. 2008;84(2):382–7.PubMedCrossRef de Gruijl FR, Rebel H. Early events in UV carcinogenesis—DNA damage, target cells and mutant p53 foci. Photochem Photobiol. 2008;84(2):382–7.PubMedCrossRef
8.
go back to reference Beani JC. Ultraviolet A-induced DNA damage: role in skin cancer. Bull Acad Natl Med. 2014;198(2):273–95.PubMed Beani JC. Ultraviolet A-induced DNA damage: role in skin cancer. Bull Acad Natl Med. 2014;198(2):273–95.PubMed
9.
go back to reference Mouret S, Baudouin C, Charveron M, Favier A, Cadet J, Douki T. Cyclobutane pyrimidine dimers are predominant DNA lesions in whole human skin exposed to UVA radiation. Proc Natl Acad Sci USA. 2006;103(37):13765–70.PubMedCrossRef Mouret S, Baudouin C, Charveron M, Favier A, Cadet J, Douki T. Cyclobutane pyrimidine dimers are predominant DNA lesions in whole human skin exposed to UVA radiation. Proc Natl Acad Sci USA. 2006;103(37):13765–70.PubMedCrossRef
10.
go back to reference Mouret S, Leccia MT, Bourrain JL, Douki T, Beani JC. Individual photosensitivity of human skin and UVA induced pyrimidine dimers in DNA. J Invest Dermatol. 2011;131(7):1539–46.PubMedCrossRef Mouret S, Leccia MT, Bourrain JL, Douki T, Beani JC. Individual photosensitivity of human skin and UVA induced pyrimidine dimers in DNA. J Invest Dermatol. 2011;131(7):1539–46.PubMedCrossRef
11.
go back to reference Martincorena I, Campbell PJ. Somatic mutation in cancer and normal cells. Science. 2015;349(6255):1483–9.PubMedCrossRef Martincorena I, Campbell PJ. Somatic mutation in cancer and normal cells. Science. 2015;349(6255):1483–9.PubMedCrossRef
12.
go back to reference Hussein MR, Al-Badaiwy ZH, Guirguis MN. Analysis of p53 and bcl-2 protein expression in the nontumorigenic, pretumorigenic, and tumorigenic keratinocytic hyperproliferative lesions. J Cutan Pathol. 2004;31:643–51.PubMedCrossRef Hussein MR, Al-Badaiwy ZH, Guirguis MN. Analysis of p53 and bcl-2 protein expression in the nontumorigenic, pretumorigenic, and tumorigenic keratinocytic hyperproliferative lesions. J Cutan Pathol. 2004;31:643–51.PubMedCrossRef
13.
go back to reference Lomas A, Leonardi-Bee J, Bath-Hextall F. A systematic review of worldwide incidence of nonmelanoma skin cancer. Br J Dermatol. 2012;166(5):1069–80.PubMedCrossRef Lomas A, Leonardi-Bee J, Bath-Hextall F. A systematic review of worldwide incidence of nonmelanoma skin cancer. Br J Dermatol. 2012;166(5):1069–80.PubMedCrossRef
14.
go back to reference Bernard P, Dupuy A, Sasco A, et al. Basal cell carcinomas and actinic keratoses seen in dermatological practice in France: a cross-sectional survey. Dermatology. 2008;216(3):194–9.PubMedCrossRef Bernard P, Dupuy A, Sasco A, et al. Basal cell carcinomas and actinic keratoses seen in dermatological practice in France: a cross-sectional survey. Dermatology. 2008;216(3):194–9.PubMedCrossRef
15.
go back to reference Marks R. The epidemiology of non-melanoma skin cancer: who, why and what can we do about it. J Dermatol. 1995;22(11):853–7.PubMedCrossRef Marks R. The epidemiology of non-melanoma skin cancer: who, why and what can we do about it. J Dermatol. 1995;22(11):853–7.PubMedCrossRef
16.
go back to reference Anwar J, Wrone DA, Kimyai-Asadi A, Alam M. The development of AK into invasive SCC: evidence and evolving classification schemes. Clin Dermatol. 2004;22(3):189–96.PubMedCrossRef Anwar J, Wrone DA, Kimyai-Asadi A, Alam M. The development of AK into invasive SCC: evidence and evolving classification schemes. Clin Dermatol. 2004;22(3):189–96.PubMedCrossRef
17.
go back to reference Traianou A, Ulrich M, Apalla Z, et al. Risk factors for actinic keratosis in eight European centres: a case-control study. Br J Dermatol. 2012;167[Suppl 2]:36–42.PubMedCrossRef Traianou A, Ulrich M, Apalla Z, et al. Risk factors for actinic keratosis in eight European centres: a case-control study. Br J Dermatol. 2012;167[Suppl 2]:36–42.PubMedCrossRef
18.
go back to reference Lee CS, Bhaduri A, Mah A, et al. Recurrent point mutations in the kinetochore gene KNSTRN in cutaneous squamous cell carcinoma. Nat Genet. 2014;46(10):1060–2.PubMedPubMedCentralCrossRef Lee CS, Bhaduri A, Mah A, et al. Recurrent point mutations in the kinetochore gene KNSTRN in cutaneous squamous cell carcinoma. Nat Genet. 2014;46(10):1060–2.PubMedPubMedCentralCrossRef
19.
go back to reference Chitsazzadeh V, Coarfa C, Drummond JA, et al. Cross-species identification of genomic drivers of squamous cell carcinoma development across preneoplastic intermediates. Nat Commun. 2016;7:12601.PubMedPubMedCentralCrossRef Chitsazzadeh V, Coarfa C, Drummond JA, et al. Cross-species identification of genomic drivers of squamous cell carcinoma development across preneoplastic intermediates. Nat Commun. 2016;7:12601.PubMedPubMedCentralCrossRef
20.
21.
go back to reference Sekulic A, Migden MR, Lewis K, et al. Pivotal ERIVANCE basal cell carcinoma (BCC) study: 12-month update of efficacy and safety of vismodegib in advanced BCC. J Am Acad Dermatol. 2015;72(6):1021–6.PubMedCrossRef Sekulic A, Migden MR, Lewis K, et al. Pivotal ERIVANCE basal cell carcinoma (BCC) study: 12-month update of efficacy and safety of vismodegib in advanced BCC. J Am Acad Dermatol. 2015;72(6):1021–6.PubMedCrossRef
22.
go back to reference Harwood CA, Proby CM, Inman GJ, Leigh IM. The promise of genomics and the development of targeted therapies for cutaneous squamous cell carcinoma. Acta Derm Venereol. 2016;96(1):3–16.PubMedCrossRef Harwood CA, Proby CM, Inman GJ, Leigh IM. The promise of genomics and the development of targeted therapies for cutaneous squamous cell carcinoma. Acta Derm Venereol. 2016;96(1):3–16.PubMedCrossRef
23.
go back to reference Watt SA, Purdie KJ, den Breems NY, et al. Novel CARD11 mutations in human cutaneous squamous cell carcinoma lead to aberrant NF-κB Regulation. Am J Pathol. 2015;185(9):2354–63.PubMedPubMedCentralCrossRef Watt SA, Purdie KJ, den Breems NY, et al. Novel CARD11 mutations in human cutaneous squamous cell carcinoma lead to aberrant NF-κB Regulation. Am J Pathol. 2015;185(9):2354–63.PubMedPubMedCentralCrossRef
24.
go back to reference Ganesan P, Ali SM, Wang K, et al. Epidermal growth factor receptor P753S Mutation in cutaneous squamous cell carcinoma responsive to cetuximab-based therapy. J Clin Oncol. 2016;34(5):34–7.CrossRef Ganesan P, Ali SM, Wang K, et al. Epidermal growth factor receptor P753S Mutation in cutaneous squamous cell carcinoma responsive to cetuximab-based therapy. J Clin Oncol. 2016;34(5):34–7.CrossRef
25.
go back to reference Bonilla X, Parmentier L, King B, et al. Genomic analysis identifies new drivers and progression pathways in skin basal cell carcinoma. Nat Genet. 2016;48(4):398–406.PubMedCrossRef Bonilla X, Parmentier L, King B, et al. Genomic analysis identifies new drivers and progression pathways in skin basal cell carcinoma. Nat Genet. 2016;48(4):398–406.PubMedCrossRef
26.
27.
go back to reference Atwood SX, Sarin KY, Whitson RJ, et al. Smoothened variants explain the majority of drug resistance in basal cell carcinoma. Cancer Cell. 2015;27(3):342–53.PubMedPubMedCentralCrossRef Atwood SX, Sarin KY, Whitson RJ, et al. Smoothened variants explain the majority of drug resistance in basal cell carcinoma. Cancer Cell. 2015;27(3):342–53.PubMedPubMedCentralCrossRef
28.
29.
go back to reference Pricl S, Cortelazzi B, Dal Col V, et al. Smoothened (SMO) receptor mutations dictate resistance to vismodegib in basal cell carcinoma. Mol Oncol. 2015;9(2):389–97.PubMedCrossRef Pricl S, Cortelazzi B, Dal Col V, et al. Smoothened (SMO) receptor mutations dictate resistance to vismodegib in basal cell carcinoma. Mol Oncol. 2015;9(2):389–97.PubMedCrossRef
30.
go back to reference Housman TS, Feldman SR, Williford PM, et al. Skin cancer is among the most costly of all cancers to treat for the medicare population. J Am Acad Dermatol. 2003;48(3):425–9.PubMedCrossRef Housman TS, Feldman SR, Williford PM, et al. Skin cancer is among the most costly of all cancers to treat for the medicare population. J Am Acad Dermatol. 2003;48(3):425–9.PubMedCrossRef
31.
go back to reference Flohil SC, van der Leest RJ, Hofman Dowlatshahi EA. Prevalence of actinic keratosis and its risk factors in the general population the Rotterdam Study. J Invest Dermatol. 2013;133(8):1971–8.PubMedCrossRef Flohil SC, van der Leest RJ, Hofman Dowlatshahi EA. Prevalence of actinic keratosis and its risk factors in the general population the Rotterdam Study. J Invest Dermatol. 2013;133(8):1971–8.PubMedCrossRef
32.
go back to reference John SM, Trakatelli M, Ulrich C. Non-melanoma skin cancer by solar UV: the neglected occupational threat. J Eur Acad Dermatol Venereol. 2016;30:3–4.PubMedCrossRef John SM, Trakatelli M, Ulrich C. Non-melanoma skin cancer by solar UV: the neglected occupational threat. J Eur Acad Dermatol Venereol. 2016;30:3–4.PubMedCrossRef
33.
go back to reference Trakatelli M, Barkitzi K, Apap C, Majewski S, De Vries E. Skin cancer risk in outdoor workers: a European multicenter case-control study. J Eur Acad Dermatol Venereol. 2016;30(3):5–11.PubMedCrossRef Trakatelli M, Barkitzi K, Apap C, Majewski S, De Vries E. Skin cancer risk in outdoor workers: a European multicenter case-control study. J Eur Acad Dermatol Venereol. 2016;30(3):5–11.PubMedCrossRef
34.
go back to reference Skotarczak K, Osmola-Mankowska A, Lodyga M, Polanska A, Mazur M, Adamski Z. Photoprotection: facts and controversies. Eur Rev Med Pharmacol. 2015;19(1):98–112. Skotarczak K, Osmola-Mankowska A, Lodyga M, Polanska A, Mazur M, Adamski Z. Photoprotection: facts and controversies. Eur Rev Med Pharmacol. 2015;19(1):98–112.
35.
go back to reference Thompson SC, Jolley D, Marks R. Reduction of solar keratoses by regular sunscreen use. N England J Med. 1993;329(16):1147–51.CrossRef Thompson SC, Jolley D, Marks R. Reduction of solar keratoses by regular sunscreen use. N England J Med. 1993;329(16):1147–51.CrossRef
36.
go back to reference Naylor MF, Boyd A, Smith DW, Cameron GS, Hubbard D, Neldner K. High Sun protection factor sunscreens in the suppression of actinic neoplasia. Arch Dermatol. 1995;131(2):170–5.PubMedCrossRef Naylor MF, Boyd A, Smith DW, Cameron GS, Hubbard D, Neldner K. High Sun protection factor sunscreens in the suppression of actinic neoplasia. Arch Dermatol. 1995;131(2):170–5.PubMedCrossRef
37.
go back to reference Green A, Williams G, Neale R, et al. Daily sunscreen application and betacarotene supplementation in prevention of basal-cell and squamous-cell carcinomas of the skin: a randomised controlled trial. Lancet. 1999;354(9180):723–9.PubMedCrossRef Green A, Williams G, Neale R, et al. Daily sunscreen application and betacarotene supplementation in prevention of basal-cell and squamous-cell carcinomas of the skin: a randomised controlled trial. Lancet. 1999;354(9180):723–9.PubMedCrossRef
38.
go back to reference Darlington S, Williams G, Neale R, Frost C, Green A. A randomized controlled trial to assess sunscreen application and beta carotene supplementation in the prevention of solar keratoses. Arch Dermatol. 2003;139(4):451–5.PubMedCrossRef Darlington S, Williams G, Neale R, Frost C, Green A. A randomized controlled trial to assess sunscreen application and beta carotene supplementation in the prevention of solar keratoses. Arch Dermatol. 2003;139(4):451–5.PubMedCrossRef
39.
go back to reference Ulrich JS, Jurgensen A, et al. Prevention of non-melanoma skin cancer in organ transplant patients by regular use of a sunscreen: a 24 months, prospective, case-control study. Br J Dermatol. 2009;161(3):78–84.PubMedCrossRef Ulrich JS, Jurgensen A, et al. Prevention of non-melanoma skin cancer in organ transplant patients by regular use of a sunscreen: a 24 months, prospective, case-control study. Br J Dermatol. 2009;161(3):78–84.PubMedCrossRef
41.
go back to reference Radice M, Manfredini S, Ziosi P, et al. Herbal extracts, lichens and biomolecules as natural photo-protection alternatives to synthetic UV filters. A systematic review. Fitoterapia. 2016;114:144–62.PubMedCrossRef Radice M, Manfredini S, Ziosi P, et al. Herbal extracts, lichens and biomolecules as natural photo-protection alternatives to synthetic UV filters. A systematic review. Fitoterapia. 2016;114:144–62.PubMedCrossRef
42.
go back to reference Sancar A. Mechanisms of DNA repair by photolyase and excision nuclease (Nobel Lecture). Angew Chem Int Ed Engl. 2016;55(30):8502–27.PubMedCrossRef Sancar A. Mechanisms of DNA repair by photolyase and excision nuclease (Nobel Lecture). Angew Chem Int Ed Engl. 2016;55(30):8502–27.PubMedCrossRef
43.
go back to reference Sancar A. Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. Chem Rev. 2003;103:2203–37.PubMedCrossRef Sancar A. Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. Chem Rev. 2003;103:2203–37.PubMedCrossRef
44.
go back to reference Dulbecco R. Reactivation of ultra-violet-inactivated bacteriophage by visible light. Nature. 1949;163(4155):949.PubMedCrossRef Dulbecco R. Reactivation of ultra-violet-inactivated bacteriophage by visible light. Nature. 1949;163(4155):949.PubMedCrossRef
45.
go back to reference Husain I, Carrier WL, Regan JD, Sancar A. Photoreactivation of killing in E. coli K-12 phr− cells is not caused by pyrimidine dimer reversal. Photochem Photobiol. 1988;48(2):233–4.PubMedCrossRef Husain I, Carrier WL, Regan JD, Sancar A. Photoreactivation of killing in E. coli K-12 phr− cells is not caused by pyrimidine dimer reversal. Photochem Photobiol. 1988;48(2):233–4.PubMedCrossRef
46.
go back to reference Todo T, Takemori H, Ryo H, et al. A new photoreactivating enzyme that specifically repairs ultraviolet light-induced (6-4)photoproducts. Nature. 1993;361(6410):371–4.PubMedCrossRef Todo T, Takemori H, Ryo H, et al. A new photoreactivating enzyme that specifically repairs ultraviolet light-induced (6-4)photoproducts. Nature. 1993;361(6410):371–4.PubMedCrossRef
47.
go back to reference Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer. Nature. 2001;411(6835):366–74.CrossRefPubMed Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer. Nature. 2001;411(6835):366–74.CrossRefPubMed
48.
go back to reference Bohr VA, Smith CA, Okumoto DS, Hanawalt PC. DNA repair in an active gene: removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall. Cell. 1985;40:359–69.CrossRefPubMed Bohr VA, Smith CA, Okumoto DS, Hanawalt PC. DNA repair in an active gene: removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall. Cell. 1985;40:359–69.CrossRefPubMed
49.
go back to reference Mitchell DL. The relative cytotoxicity of (6-4) photoproducts and cyclobutane dimers in mammalian cells. Photochem Photobiol. 1988;48(1):51–7.PubMedCrossRef Mitchell DL. The relative cytotoxicity of (6-4) photoproducts and cyclobutane dimers in mammalian cells. Photochem Photobiol. 1988;48(1):51–7.PubMedCrossRef
50.
go back to reference de Laat WL, Jaspers NGJ, Hoeijmakers JHJ. Molecular mechanism of nucleotide excision repair. Genes Dev. 1999;13(7):768–85.PubMedCrossRef de Laat WL, Jaspers NGJ, Hoeijmakers JHJ. Molecular mechanism of nucleotide excision repair. Genes Dev. 1999;13(7):768–85.PubMedCrossRef
51.
go back to reference Yarosh D, Alas LG, Yee V, et al. Pyrimidine dimer removal enhanced by DNA repair liposomes reduces the incidence of UV skin cancer in mice. Cancer Res. 1992;52(15):4227–31.PubMed Yarosh D, Alas LG, Yee V, et al. Pyrimidine dimer removal enhanced by DNA repair liposomes reduces the incidence of UV skin cancer in mice. Cancer Res. 1992;52(15):4227–31.PubMed
52.
go back to reference Stege H, Roza L, Vink AA, et al. Enzyme plus light therapy to repair DNA damage in ultraviolet-B-irradiated human skin. Proc Natl Acad Sci USA. 2000;97(4):1790–5.PubMedCrossRef Stege H, Roza L, Vink AA, et al. Enzyme plus light therapy to repair DNA damage in ultraviolet-B-irradiated human skin. Proc Natl Acad Sci USA. 2000;97(4):1790–5.PubMedCrossRef
53.
go back to reference Stege H. Effect of xenogenic repair enzymes on photoimmunology and photocarcinogenesis. J Photochem Photobiol B. 2001;65(2–3):105–8.PubMedCrossRef Stege H. Effect of xenogenic repair enzymes on photoimmunology and photocarcinogenesis. J Photochem Photobiol B. 2001;65(2–3):105–8.PubMedCrossRef
54.
go back to reference Yarosh D, Klein J, Kibitel J, et al. Enzyme therapy of xeroderma pigmentosum: safety and efficacy testing of T4N5 liposome lotion containing a prokaryotic DNA repair enzyme. Photodermatol Photoimmunol Photomed. 1996;12(3):122–30.PubMedCrossRef Yarosh D, Klein J, Kibitel J, et al. Enzyme therapy of xeroderma pigmentosum: safety and efficacy testing of T4N5 liposome lotion containing a prokaryotic DNA repair enzyme. Photodermatol Photoimmunol Photomed. 1996;12(3):122–30.PubMedCrossRef
55.
go back to reference Yarosh D, Klein J, O’Connor A, Hawk J, Wolf Rafal E. Effect of topically applied T4 endonuclease V in liposomes on skin cancer in xeroderma pigmentosum: a randomised study. Xeroderma Pigmentosum Study Group. Lancet. 2001;357(9260):926–9.PubMedCrossRef Yarosh D, Klein J, O’Connor A, Hawk J, Wolf Rafal E. Effect of topically applied T4 endonuclease V in liposomes on skin cancer in xeroderma pigmentosum: a randomised study. Xeroderma Pigmentosum Study Group. Lancet. 2001;357(9260):926–9.PubMedCrossRef
56.
go back to reference Puviani M, Barcella A, Milani M. Efficacy of a photolyase-based device in the treatment of cancerization field in patients with actinic keratosis and non-melanoma skin cancer. G Ital Dermatol Venereol. 2013;148(6):693–8.PubMed Puviani M, Barcella A, Milani M. Efficacy of a photolyase-based device in the treatment of cancerization field in patients with actinic keratosis and non-melanoma skin cancer. G Ital Dermatol Venereol. 2013;148(6):693–8.PubMed
57.
go back to reference Giustini S, Miraglia E, Berardesca E, Milani M, Calvieri S. Preventive long-term effects of a topical film-forming medical device with ultra-high UV protection filters and DNA repair enzyme in xeroderma pigmentosum. Case Rep Dermatol. 2014;6(3):222–6.PubMedPubMedCentralCrossRef Giustini S, Miraglia E, Berardesca E, Milani M, Calvieri S. Preventive long-term effects of a topical film-forming medical device with ultra-high UV protection filters and DNA repair enzyme in xeroderma pigmentosum. Case Rep Dermatol. 2014;6(3):222–6.PubMedPubMedCentralCrossRef
58.
go back to reference Rstom SA, Martinez ZAB, Rezze GG, Paschoal FM. Evaluation of the effects of a cream containing liposome encapsulated photolyase and SPF 100 sunscreen on facial actinic keratosis: clinical, dermoscopic, and confocal microscopy based analysis. Surg Cosmet Dermatol. 2014;6(3):22631. Rstom SA, Martinez ZAB, Rezze GG, Paschoal FM. Evaluation of the effects of a cream containing liposome encapsulated photolyase and SPF 100 sunscreen on facial actinic keratosis: clinical, dermoscopic, and confocal microscopy based analysis. Surg Cosmet Dermatol. 2014;6(3):22631.
59.
go back to reference Puig S, Puig-Butillé JA, Díaz MA, Trullas C, Malvehy J, et al. Field cancerisation improvement with topical application of a filmforming medical device containing photolyase and UV filters in patients with actinic keratosis, a pilot study. J Clin Exp Dermatol Res. 2014;5:220–7. Puig S, Puig-Butillé JA, Díaz MA, Trullas C, Malvehy J, et al. Field cancerisation improvement with topical application of a filmforming medical device containing photolyase and UV filters in patients with actinic keratosis, a pilot study. J Clin Exp Dermatol Res. 2014;5:220–7.
60.
go back to reference Laino L, Elia F, Desiderio F, et al. The efficacy of a photolyase-based device on the cancerization field: a clinical and thermographic study. J Exp Clin Cancer Res. 2015;19(34):84.CrossRef Laino L, Elia F, Desiderio F, et al. The efficacy of a photolyase-based device on the cancerization field: a clinical and thermographic study. J Exp Clin Cancer Res. 2015;19(34):84.CrossRef
61.
go back to reference Eibenshutz L, Silipo V, De Simone P, et al. A 9-month, randomized, assessor-blinded, parallel-group study to evaluate clinical effects of film-forming medical devices containing photolyase and sun filters in the treatment of field cancerization compared with sunscreen in patients after successful photodynamic therapy for actinic keratosis. Br J Dermatol. 2016;175(6):1391–3.CrossRef Eibenshutz L, Silipo V, De Simone P, et al. A 9-month, randomized, assessor-blinded, parallel-group study to evaluate clinical effects of film-forming medical devices containing photolyase and sun filters in the treatment of field cancerization compared with sunscreen in patients after successful photodynamic therapy for actinic keratosis. Br J Dermatol. 2016;175(6):1391–3.CrossRef
62.
go back to reference Vaño-Galván S, Jiménez N, Grillo E, Ballestar A. An observational study on the effectiveness and safety of the combination of a topical product containing photolyase and cryotherapy in patients with actinic keratoses in clinical practice (article in Spanish). Piel. 2016;31(8):532–6.CrossRef Vaño-Galván S, Jiménez N, Grillo E, Ballestar A. An observational study on the effectiveness and safety of the combination of a topical product containing photolyase and cryotherapy in patients with actinic keratoses in clinical practice (article in Spanish). Piel. 2016;31(8):532–6.CrossRef
63.
go back to reference Navarrete-Dechent C, Molgó M. The use of a sunscreen containing DNA-photolyase in the treatment of patients with field cancerization and multiple actinic keratoses: a case-series. Dermatol Online J. 2017;15:23. Navarrete-Dechent C, Molgó M. The use of a sunscreen containing DNA-photolyase in the treatment of patients with field cancerization and multiple actinic keratoses: a case-series. Dermatol Online J. 2017;15:23.
64.
go back to reference Moscarella E, Argenziano G, Longo C, Aladren S. Management of cancerization field with a medical device containing photolyase: a randomized, double-blind, parallel-group pilot study. J Eur Acad Dermatol Venereol. 2017;31(9):e401–3.PubMedCrossRef Moscarella E, Argenziano G, Longo C, Aladren S. Management of cancerization field with a medical device containing photolyase: a randomized, double-blind, parallel-group pilot study. J Eur Acad Dermatol Venereol. 2017;31(9):e401–3.PubMedCrossRef
65.
go back to reference Krutmann J, Berking C, Berneburg M, Diepgen TL, Dirschka T, Szeimies M. New strategies in the prevention of actinic keratosis: a critical review. Skin Pharmacol Physiol. 2015;28(6):281–9.PubMedCrossRef Krutmann J, Berking C, Berneburg M, Diepgen TL, Dirschka T, Szeimies M. New strategies in the prevention of actinic keratosis: a critical review. Skin Pharmacol Physiol. 2015;28(6):281–9.PubMedCrossRef
66.
go back to reference Wang SQ, Virmani P, Lim HW. Consumer acceptability and compliance: the next frontier in sunscreen innovation. Photodermatol Photoimmunol Photomed. 2016;32(1):55–6.PubMedCrossRef Wang SQ, Virmani P, Lim HW. Consumer acceptability and compliance: the next frontier in sunscreen innovation. Photodermatol Photoimmunol Photomed. 2016;32(1):55–6.PubMedCrossRef
Metadata
Title
New Vision in Photoprotection and Photorepair
Authors
Marie-Therese Leccia
Celeste Lebbe
Jean-Paul Claudel
Mridvika Narda
Nicole Basset-Seguin
Publication date
01-03-2019
Publisher
Springer Healthcare
Published in
Dermatology and Therapy / Issue 1/2019
Print ISSN: 2193-8210
Electronic ISSN: 2190-9172
DOI
https://doi.org/10.1007/s13555-019-0282-5

Other articles of this Issue 1/2019

Dermatology and Therapy 1/2019 Go to the issue