Skip to main content
Top
Published in: Cellular Oncology 4/2016

01-08-2016 | Review

Non-coding RNAs in pancreatic cancer: challenges and opportunities for clinical application

Authors: V. Taucher, H. Mangge, J. Haybaeck

Published in: Cellular Oncology | Issue 4/2016

Login to get access

Abstract

Background

Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with a dismal prognosis for which new therapeutic strategies are desperately needed. Non-coding RNAs (ncRNAs), especially microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), may yield new therapeutic concepts for the treatment of PDAC. A vast number of miRNAs, including the well-studied miR-21, miR-155 and miR-34, has been shown to regulate PDAC growth, invasion and metastasis in vitro and in vivo by targeting members of key signaling pathways. In addition, other miRNAs and lncRNAs, such as HOTTIP and MALAT-1, have been shown to influence the malignant behavior of PDAC cells.

Methods

Here, we discuss several ncRNAs that may be used either as new therapeutic agents or as targets of new therapeutic agents. Furthermore, we discuss the problem of proper delivery of nucleotide-based agents and novel methods that may be used to circumvent this problem.

Conclusions

Although the number of reports addressing the role of ncRNAs in PDAC virtually grows by the day, there are still many steps to be taken before the application of ncRNA-based therapies will become reality in clinical practice.
Literature
1.
go back to reference M. Malvezzi, P. Bertuccio, F. Levi, C. La Vecchia, E. Negri, European cancer mortality predictions for the year 2014. Ann. Oncol. 25, 1650–1656 (2014)PubMedCrossRef M. Malvezzi, P. Bertuccio, F. Levi, C. La Vecchia, E. Negri, European cancer mortality predictions for the year 2014. Ann. Oncol. 25, 1650–1656 (2014)PubMedCrossRef
2.
go back to reference D.P. Ryan, T.S. Hong, N. Bardeesy, Pancreatic adenocarcinoma. N. Engl. J. Med. 371, 1039–1049 (2014)PubMedCrossRef D.P. Ryan, T.S. Hong, N. Bardeesy, Pancreatic adenocarcinoma. N. Engl. J. Med. 371, 1039–1049 (2014)PubMedCrossRef
3.
go back to reference T. Furukawa, R. Fujisaki, Y. Yoshida, N. Kanai, M. Sunamura, T. Abe, K. Takeda, S. Matsuno, A. Horii, Distinct progression pathways involving the dysfunction of DUSP6/MKP-3 in pancreatic intraepithelial neoplasia and intraductal papillary-mucinous neoplasms of the pancreas. Mod. Pathol. 18, 1034–1042 (2005)PubMedCrossRef T. Furukawa, R. Fujisaki, Y. Yoshida, N. Kanai, M. Sunamura, T. Abe, K. Takeda, S. Matsuno, A. Horii, Distinct progression pathways involving the dysfunction of DUSP6/MKP-3 in pancreatic intraepithelial neoplasia and intraductal papillary-mucinous neoplasms of the pancreas. Mod. Pathol. 18, 1034–1042 (2005)PubMedCrossRef
4.
go back to reference S.A. Hahn, A.T. Hoque, C.A. Moskaluk, L.T. da Costa, M. Schutte, E. Rozenblum, A.B. Seymour, C.L. Weinstein, C.J. Yeo, R.H. Hruban, S.E. Kern, Homozygous deletion map at 18q21.1 in pancreatic cancer. Cancer Res. 56, 490–494 (1996)PubMed S.A. Hahn, A.T. Hoque, C.A. Moskaluk, L.T. da Costa, M. Schutte, E. Rozenblum, A.B. Seymour, C.L. Weinstein, C.J. Yeo, R.H. Hruban, S.E. Kern, Homozygous deletion map at 18q21.1 in pancreatic cancer. Cancer Res. 56, 490–494 (1996)PubMed
5.
go back to reference J.M. Bailey, A.M. Hendley, K.J. Lafaro, M.A. Pruski, N.C. Jones, J. Alsina, M. Younes, A. Maitra, F. McAllister, C.A. Iacobuzio-Donahue, S.D. Leach, p53 mutations cooperate with oncogenic Kras to promote adenocarcinoma from pancreatic ductal cells. Oncogene (2015). doi:10.1038/onc.2015.441 J.M. Bailey, A.M. Hendley, K.J. Lafaro, M.A. Pruski, N.C. Jones, J. Alsina, M. Younes, A. Maitra, F. McAllister, C.A. Iacobuzio-Donahue, S.D. Leach, p53 mutations cooperate with oncogenic Kras to promote adenocarcinoma from pancreatic ductal cells. Oncogene (2015). doi:10.​1038/​onc.​2015.​441
6.
go back to reference E.G. Chiorean, A.L. Coveler, Pancreatic cancer: optimizing treatment options, new, and emerging targeted therapies. Drug Des. Devel. Ther. 9, 3529–3545 (2015)PubMedPubMedCentralCrossRef E.G. Chiorean, A.L. Coveler, Pancreatic cancer: optimizing treatment options, new, and emerging targeted therapies. Drug Des. Devel. Ther. 9, 3529–3545 (2015)PubMedPubMedCentralCrossRef
7.
go back to reference C.P. Christov, T.J. Gardiner, D. Szuts, T. Krude, Functional requirement of noncoding Y RNAs for human chromosomal DNA replication. Mol. Cell. Biol. 26, 6993–7004 (2006)PubMedPubMedCentralCrossRef C.P. Christov, T.J. Gardiner, D. Szuts, T. Krude, Functional requirement of noncoding Y RNAs for human chromosomal DNA replication. Mol. Cell. Biol. 26, 6993–7004 (2006)PubMedPubMedCentralCrossRef
8.
go back to reference S. Kishore, S. Stamm, Regulation of alternative splicing by snoRNAs. Cold Spring Harb. Symp. Quant. Biol. 71, 329–334 (2006)PubMedCrossRef S. Kishore, S. Stamm, Regulation of alternative splicing by snoRNAs. Cold Spring Harb. Symp. Quant. Biol. 71, 329–334 (2006)PubMedCrossRef
9.
go back to reference A.T. Zhang, A.R. Langley, C.P. Christov, E. Kheir, T. Shafee, T.J. Gardiner, T. Krude, Dynamic interaction of Y RNAs with chromatin and initiation proteins during human DNA replication. J. Cell Sci. 124, 2058–2069 (2011)PubMedPubMedCentralCrossRef A.T. Zhang, A.R. Langley, C.P. Christov, E. Kheir, T. Shafee, T.J. Gardiner, T. Krude, Dynamic interaction of Y RNAs with chromatin and initiation proteins during human DNA replication. J. Cell Sci. 124, 2058–2069 (2011)PubMedPubMedCentralCrossRef
10.
go back to reference Y. Zhu, V. Stribinskis, K.S. Ramos, Y. Li, Sequence analysis of RNase MRP RNA reveals its origination from eukaryotic RNase P RNA. RNA 12, 699–706 (2006)PubMedPubMedCentralCrossRef Y. Zhu, V. Stribinskis, K.S. Ramos, Y. Li, Sequence analysis of RNase MRP RNA reveals its origination from eukaryotic RNase P RNA. RNA 12, 699–706 (2006)PubMedPubMedCentralCrossRef
11.
go back to reference A. Huttenhofer, P. Schattner, N. Polacek, Non-coding RNAs: hope or hype? Trends Genet. 21, 289–297 (2005)PubMedCrossRef A. Huttenhofer, P. Schattner, N. Polacek, Non-coding RNAs: hope or hype? Trends Genet. 21, 289–297 (2005)PubMedCrossRef
12.
go back to reference P. Kapranov, J. Cheng, S. Dike, D.A. Nix, R. Duttagupta, A.T. Willingham, P.F. Stadler, J. Hertel, J. Hackermuller, I.L. Hofacker, I. Bell, E. Cheung, J. Drenkow, E. Dumais, S. Patel, G. Helt, M. Ganesh, S. Ghosh, A. Piccolboni, V. Sementchenko, H. Tammana, T.R. Gingeras, RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316, 1484–1488 (2007)PubMedCrossRef P. Kapranov, J. Cheng, S. Dike, D.A. Nix, R. Duttagupta, A.T. Willingham, P.F. Stadler, J. Hertel, J. Hackermuller, I.L. Hofacker, I. Bell, E. Cheung, J. Drenkow, E. Dumais, S. Patel, G. Helt, M. Ganesh, S. Ghosh, A. Piccolboni, V. Sementchenko, H. Tammana, T.R. Gingeras, RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316, 1484–1488 (2007)PubMedCrossRef
13.
go back to reference R.J. Taft, K.C. Pang, T.R. Mercer, M. Dinger, J.S. Mattick, Non-coding RNAs: regulators of disease. J. Pathol. 220, 126–139 (2010)PubMedCrossRef R.J. Taft, K.C. Pang, T.R. Mercer, M. Dinger, J.S. Mattick, Non-coding RNAs: regulators of disease. J. Pathol. 220, 126–139 (2010)PubMedCrossRef
14.
go back to reference R. Tanaka, M. Tomosugi, M. Horinaka, Y. Sowa, T. Sakai, Metformin causes G1-phase arrest via down-regulation of MiR-221 and enhances TRAIL sensitivity through DR5 up-regulation in pancreatic cancer cells. PLoS One 10, e0125779 (2015)PubMedPubMedCentralCrossRef R. Tanaka, M. Tomosugi, M. Horinaka, Y. Sowa, T. Sakai, Metformin causes G1-phase arrest via down-regulation of MiR-221 and enhances TRAIL sensitivity through DR5 up-regulation in pancreatic cancer cells. PLoS One 10, e0125779 (2015)PubMedPubMedCentralCrossRef
15.
go back to reference D. Nalls, S.N. Tang, M. Rodova, R.K. Srivastava, S. Shankar, Targeting epigenetic regulation of miR-34a for treatment of pancreatic cancer by inhibition of pancreatic cancer stem cells. PLoS One 6, e24099 (2011)PubMedPubMedCentralCrossRef D. Nalls, S.N. Tang, M. Rodova, R.K. Srivastava, S. Shankar, Targeting epigenetic regulation of miR-34a for treatment of pancreatic cancer by inhibition of pancreatic cancer stem cells. PLoS One 6, e24099 (2011)PubMedPubMedCentralCrossRef
16.
go back to reference L. Buscail, B. Bournet, F. Vernejoul, G. Cambois, H. Lulka, N. Hanoun, M. Dufresne, A. Meulle, A. Vignolle-Vidoni, L. Ligat, N. Saint-Laurent, F. Pont, S. Dejean, M. Gayral, F. Martins, J. Torrisani, O. Barbey, F. Gross, R. Guimbaud, P. Otal, F. Lopez, G. Tiraby, P. Cordelier, First-in-man phase I clinical trial of gene therapy for advanced pancreatic cancer: safety, biodistribution and preliminary clinical findings. Mol. Ther. 23, 202–214 (2015) L. Buscail, B. Bournet, F. Vernejoul, G. Cambois, H. Lulka, N. Hanoun, M. Dufresne, A. Meulle, A. Vignolle-Vidoni, L. Ligat, N. Saint-Laurent, F. Pont, S. Dejean, M. Gayral, F. Martins, J. Torrisani, O. Barbey, F. Gross, R. Guimbaud, P. Otal, F. Lopez, G. Tiraby, P. Cordelier, First-in-man phase I clinical trial of gene therapy for advanced pancreatic cancer: safety, biodistribution and preliminary clinical findings. Mol. Ther. 23, 202–214 (2015)
18.
19.
go back to reference K. Chen, N. Rajewsky, The evolution of gene regulation by transcription factors and microRNAs. Nat. Rev. Genet. 8, 93–103 (2007)PubMedCrossRef K. Chen, N. Rajewsky, The evolution of gene regulation by transcription factors and microRNAs. Nat. Rev. Genet. 8, 93–103 (2007)PubMedCrossRef
20.
go back to reference A. Tanzer, P.F. Stadler, Molecular evolution of a microRNA cluster. J. Mol. Biol. 339, 327–335 (2004)PubMedCrossRef A. Tanzer, P.F. Stadler, Molecular evolution of a microRNA cluster. J. Mol. Biol. 339, 327–335 (2004)PubMedCrossRef
22.
23.
go back to reference I. Fkih M’hamed, M. Privat, F. Ponelle, F. Penault-Llorca, A. Kenani, Y.J. Bignon, Identification of miR-10b, miR-26a, miR-146a and miR-153 as potential triple-negative breast cancer biomarkers. Cell. Oncol. 38, 433–442 (2015)CrossRef I. Fkih M’hamed, M. Privat, F. Ponelle, F. Penault-Llorca, A. Kenani, Y.J. Bignon, Identification of miR-10b, miR-26a, miR-146a and miR-153 as potential triple-negative breast cancer biomarkers. Cell. Oncol. 38, 433–442 (2015)CrossRef
24.
go back to reference E. Yiannakopoulou, Targeting epigenetic mechanisms and microRNAs by aspirin and other non steroidal anti-inflammatory agents--implications for cancer treatment and chemoprevention. Cell. Oncol. 37, 167–178 (2014)CrossRef E. Yiannakopoulou, Targeting epigenetic mechanisms and microRNAs by aspirin and other non steroidal anti-inflammatory agents--implications for cancer treatment and chemoprevention. Cell. Oncol. 37, 167–178 (2014)CrossRef
25.
go back to reference C. Salazar, R. Nagadia, P. Pandit, J. Cooper-White, N. Banerjee, N. Dimitrova, W.B. Coman, C. Punyadeera, A novel saliva-based microRNA biomarker panel to detect head and neck cancers. Cell. Oncol. 37, 331–338 (2014)CrossRef C. Salazar, R. Nagadia, P. Pandit, J. Cooper-White, N. Banerjee, N. Dimitrova, W.B. Coman, C. Punyadeera, A novel saliva-based microRNA biomarker panel to detect head and neck cancers. Cell. Oncol. 37, 331–338 (2014)CrossRef
26.
go back to reference K.J. Peterson, M.R. Dietrich, M.A. McPeek, MicroRNAs and metazoan macroevolution: insights into canalization, complexity, and the Cambrian explosion. Bioessays 31, 736–747 (2009)PubMedCrossRef K.J. Peterson, M.R. Dietrich, M.A. McPeek, MicroRNAs and metazoan macroevolution: insights into canalization, complexity, and the Cambrian explosion. Bioessays 31, 736–747 (2009)PubMedCrossRef
27.
28.
go back to reference R.I. Gregory, T.P. Chendrimada, R. Shiekhattar, MicroRNA biogenesis: isolation and characterization of the microprocessor complex. Methods Mol. Biol. 342, 33–47 (2006)PubMed R.I. Gregory, T.P. Chendrimada, R. Shiekhattar, MicroRNA biogenesis: isolation and characterization of the microprocessor complex. Methods Mol. Biol. 342, 33–47 (2006)PubMed
29.
go back to reference E. Lund, J.E. Dahlberg, Substrate selectivity of exportin 5 and Dicer in the biogenesis of microRNAs. Cold Spring Harb. Symp. Quant. Biol. 71, 59–66 (2006)PubMedCrossRef E. Lund, J.E. Dahlberg, Substrate selectivity of exportin 5 and Dicer in the biogenesis of microRNAs. Cold Spring Harb. Symp. Quant. Biol. 71, 59–66 (2006)PubMedCrossRef
30.
go back to reference E. Prodromaki, A. Korpetinou, E. Giannopoulou, E. Vlotinou, M. Chatziathanasiadou, N.I. Papachristou, C.D. Scopa, H. Papadaki, H.P. Kalofonos, D.J. Papachristou, Expression of the microRNA regulators Drosha, Dicer and Ago2 in non-small cell lung carcinomas. Cell. Oncol. 38, 307–317 (2015)CrossRef E. Prodromaki, A. Korpetinou, E. Giannopoulou, E. Vlotinou, M. Chatziathanasiadou, N.I. Papachristou, C.D. Scopa, H. Papadaki, H.P. Kalofonos, D.J. Papachristou, Expression of the microRNA regulators Drosha, Dicer and Ago2 in non-small cell lung carcinomas. Cell. Oncol. 38, 307–317 (2015)CrossRef
31.
go back to reference X.J. Wang, J.L. Reyes, N.H. Chua, T. Gaasterland, Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biol. 5, R65 (2004)PubMedPubMedCentralCrossRef X.J. Wang, J.L. Reyes, N.H. Chua, T. Gaasterland, Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biol. 5, R65 (2004)PubMedPubMedCentralCrossRef
32.
go back to reference A. Eulalio, E. Huntzinger, T. Nishihara, J. Rehwinkel, M. Fauser, E. Izaurralde, Deadenylation is a widespread effect of miRNA regulation. RNA 15, 21–32 (2009)PubMedPubMedCentralCrossRef A. Eulalio, E. Huntzinger, T. Nishihara, J. Rehwinkel, M. Fauser, E. Izaurralde, Deadenylation is a widespread effect of miRNA regulation. RNA 15, 21–32 (2009)PubMedPubMedCentralCrossRef
33.
go back to reference A.A. Bazzini, M.T. Lee, A.J. Giraldez, Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish. Science 336, 233–237 (2012)PubMedPubMedCentralCrossRef A.A. Bazzini, M.T. Lee, A.J. Giraldez, Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish. Science 336, 233–237 (2012)PubMedPubMedCentralCrossRef
34.
go back to reference B.P. Lewis, I.H. Shih, M.W. Jones-Rhoades, D.P. Bartel, C.B. Burge, Prediction of mammalian microRNA targets. Cell 115, 787–798 (2003)PubMedCrossRef B.P. Lewis, I.H. Shih, M.W. Jones-Rhoades, D.P. Bartel, C.B. Burge, Prediction of mammalian microRNA targets. Cell 115, 787–798 (2003)PubMedCrossRef
35.
go back to reference W.G. Zhao, S.N. Yu, Z.H. Lu, Y.H. Ma, Y.M. Gu, J. Chen, The miR-217 microRNA functions as a potential tumor suppressor in pancreatic ductal adenocarcinoma by targeting KRAS. Carcinogenesis 31, 1726–1733 (2010)PubMedCrossRef W.G. Zhao, S.N. Yu, Z.H. Lu, Y.H. Ma, Y.M. Gu, J. Chen, The miR-217 microRNA functions as a potential tumor suppressor in pancreatic ductal adenocarcinoma by targeting KRAS. Carcinogenesis 31, 1726–1733 (2010)PubMedCrossRef
36.
go back to reference M.C. du Rieu, J. Torrisani, J. Selves, T. Al Saati, A. Souque, M. Dufresne, G.J. Tsongalis, A.A. Suriawinata, N. Carrere, L. Buscail, P. Cordelier, MicroRNA-21 is induced early in pancreatic ductal adenocarcinoma precursor lesions. Clin. Chem. 56, 603–612 (2010)PubMedCrossRef M.C. du Rieu, J. Torrisani, J. Selves, T. Al Saati, A. Souque, M. Dufresne, G.J. Tsongalis, A.A. Suriawinata, N. Carrere, L. Buscail, P. Cordelier, MicroRNA-21 is induced early in pancreatic ductal adenocarcinoma precursor lesions. Clin. Chem. 56, 603–612 (2010)PubMedCrossRef
37.
go back to reference S. Ye, L. Yang, X. Zhao, W. Song, W. Wang, S. Zheng, Bioinformatics method to predict two regulation mechanism: TF-miRNA-mRNA and lncRNA-miRNA-mRNA in pancreatic cancer. Cell Biochem. Biophys. 70, 1849–1858 (2014)PubMedCrossRef S. Ye, L. Yang, X. Zhao, W. Song, W. Wang, S. Zheng, Bioinformatics method to predict two regulation mechanism: TF-miRNA-mRNA and lncRNA-miRNA-mRNA in pancreatic cancer. Cell Biochem. Biophys. 70, 1849–1858 (2014)PubMedCrossRef
38.
go back to reference N. Habbe, J.B. Koorstra, J.T. Mendell, G.J. Offerhaus, J.K. Ryu, G. Feldmann, M.E. Mullendore, M.G. Goggins, S.M. Hong, A. Maitra, MicroRNA miR-155 is a biomarker of early pancreatic neoplasia. Cancer Biol. Ther. 8, 340–346 (2009)PubMedPubMedCentralCrossRef N. Habbe, J.B. Koorstra, J.T. Mendell, G.J. Offerhaus, J.K. Ryu, G. Feldmann, M.E. Mullendore, M.G. Goggins, S.M. Hong, A. Maitra, MicroRNA miR-155 is a biomarker of early pancreatic neoplasia. Cancer Biol. Ther. 8, 340–346 (2009)PubMedPubMedCentralCrossRef
39.
go back to reference J.K. Ryu, S.M. Hong, C.A. Karikari, R.H. Hruban, M.G. Goggins, A. Maitra, Aberrant MicroRNA-155 expression is an early event in the multistep progression of pancreatic adenocarcinoma. Pancreatology 10, 66–73 (2010)PubMedPubMedCentralCrossRef J.K. Ryu, S.M. Hong, C.A. Karikari, R.H. Hruban, M.G. Goggins, A. Maitra, Aberrant MicroRNA-155 expression is an early event in the multistep progression of pancreatic adenocarcinoma. Pancreatology 10, 66–73 (2010)PubMedPubMedCentralCrossRef
40.
go back to reference C. Yu, M. Wang, Z. Li, J. Xiao, F. Peng, X. Guo, Y. Deng, J. Jiang, C. Sun, MicroRNA-138-5p regulates pancreatic cancer cell growth through targeting FOXC1. Cell. Oncol. 38, 173–181 (2015) C. Yu, M. Wang, Z. Li, J. Xiao, F. Peng, X. Guo, Y. Deng, J. Jiang, C. Sun, MicroRNA-138-5p regulates pancreatic cancer cell growth through targeting FOXC1. Cell. Oncol. 38, 173–181 (2015)
41.
go back to reference J.A. Goodrich, J.F. Kugel, Non-coding-RNA regulators of RNA polymerase II transcription. Nat. Rev. Mol. Cell Biol. 7, 612–616 (2006)PubMedCrossRef J.A. Goodrich, J.F. Kugel, Non-coding-RNA regulators of RNA polymerase II transcription. Nat. Rev. Mol. Cell Biol. 7, 612–616 (2006)PubMedCrossRef
42.
go back to reference M. Beltran, I. Puig, C. Pena, J.M. Garcia, A.B. Alvarez, R. Pena, F. Bonilla, A.G. de Herreros, A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial-mesenchymal transition. Genes Dev. 22, 756–769 (2008)PubMedPubMedCentralCrossRef M. Beltran, I. Puig, C. Pena, J.M. Garcia, A.B. Alvarez, R. Pena, F. Bonilla, A.G. de Herreros, A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial-mesenchymal transition. Genes Dev. 22, 756–769 (2008)PubMedPubMedCentralCrossRef
43.
go back to reference A. Mazo, J.W. Hodgson, S. Petruk, Y. Sedkov, H.W. Brock, Transcriptional interference: an unexpected layer of complexity in gene regulation. J. Cell Sci. 120, 2755–2761 (2007)PubMedCrossRef A. Mazo, J.W. Hodgson, S. Petruk, Y. Sedkov, H.W. Brock, Transcriptional interference: an unexpected layer of complexity in gene regulation. J. Cell Sci. 120, 2755–2761 (2007)PubMedCrossRef
44.
go back to reference J.H. Yoon, J. Kim, M. Gorospe, Long noncoding RNA turnover. Biochimie 1859, 209–221 (2015) J.H. Yoon, J. Kim, M. Gorospe, Long noncoding RNA turnover. Biochimie 1859, 209–221 (2015)
47.
go back to reference A. Wutz, T.P. Rasmussen, R. Jaenisch, Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nat. Genet. 30, 167–174 (2002)PubMedCrossRef A. Wutz, T.P. Rasmussen, R. Jaenisch, Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nat. Genet. 30, 167–174 (2002)PubMedCrossRef
48.
go back to reference M. Mourtada-Maarabouni, A.M. Hasan, F. Farzaneh, G.T. Williams, Inhibition of human T-cell proliferation by mammalian target of rapamycin (mTOR) antagonists requires noncoding RNA growth-arrest-specific transcript 5 (GAS5). Mol. Pharmacol. 78, 19–28 (2010)PubMedPubMedCentralCrossRef M. Mourtada-Maarabouni, A.M. Hasan, F. Farzaneh, G.T. Williams, Inhibition of human T-cell proliferation by mammalian target of rapamycin (mTOR) antagonists requires noncoding RNA growth-arrest-specific transcript 5 (GAS5). Mol. Pharmacol. 78, 19–28 (2010)PubMedPubMedCentralCrossRef
49.
go back to reference K. Kim, I. Jutooru, G. Chadalapaka, G. Johnson, J. Frank, R. Burghardt, S. Kim, S. Safe, HOTAIR is a negative prognostic factor and exhibits pro-oncogenic activity in pancreatic cancer. Oncogene 32, 1616–1625 (2013)PubMedCrossRef K. Kim, I. Jutooru, G. Chadalapaka, G. Johnson, J. Frank, R. Burghardt, S. Kim, S. Safe, HOTAIR is a negative prognostic factor and exhibits pro-oncogenic activity in pancreatic cancer. Oncogene 32, 1616–1625 (2013)PubMedCrossRef
51.
go back to reference S. Uchida, S. Dimmeler, Long noncoding RNAs in cardiovascular diseases. Circ. Res. 116, 737–750 (2015)PubMedCrossRef S. Uchida, S. Dimmeler, Long noncoding RNAs in cardiovascular diseases. Circ. Res. 116, 737–750 (2015)PubMedCrossRef
55.
go back to reference J. Torrisani, B. Bournet, M.C. du Rieu, M. Bouisson, A. Souque, J. Escourrou, L. Buscail, P. Cordelier, let-7 MicroRNA transfer in pancreatic cancer-derived cells inhibits in vitro cell proliferation but fails to alter tumor progression. Hum.Gene Ther. 20, 831–844 (2009)PubMedCrossRef J. Torrisani, B. Bournet, M.C. du Rieu, M. Bouisson, A. Souque, J. Escourrou, L. Buscail, P. Cordelier, let-7 MicroRNA transfer in pancreatic cancer-derived cells inhibits in vitro cell proliferation but fails to alter tumor progression. Hum.Gene Ther. 20, 831–844 (2009)PubMedCrossRef
56.
go back to reference P.J. White, F. Anastasopoulos, C.W. Pouton, B.J. Boyd, Overcoming biological barriers to in vivo efficacy of antisense oligonucleotides. Expert Rev. Mol. Med. 11, e10 (2009)PubMedCrossRef P.J. White, F. Anastasopoulos, C.W. Pouton, B.J. Boyd, Overcoming biological barriers to in vivo efficacy of antisense oligonucleotides. Expert Rev. Mol. Med. 11, e10 (2009)PubMedCrossRef
57.
go back to reference X. Zong, L. Huang, V. Tripathi, R. Peralta, S.M. Freier, S. Guo, K.V. Prasanth, Knockdown of nuclear-retained long noncoding RNAs using modified DNA antisense oligonucleotides. Methods Mol. Biol. 1262, 321–331 (2015)PubMedCrossRef X. Zong, L. Huang, V. Tripathi, R. Peralta, S.M. Freier, S. Guo, K.V. Prasanth, Knockdown of nuclear-retained long noncoding RNAs using modified DNA antisense oligonucleotides. Methods Mol. Biol. 1262, 321–331 (2015)PubMedCrossRef
58.
go back to reference N. Hanna, P. Ohana, F.M. Konikoff, G. Leichtmann, A. Hubert, L. Appelbaum, Y. Kopelman, A. Czerniak, A. Hochberg, Phase 1/2a, dose-escalation, safety, pharmacokinetic and preliminary efficacy study of intratumoral administration of BC-819 in patients with unresectable pancreatic cancer. Cancer Gene Ther. 19, 374–381 (2012)PubMedCrossRef N. Hanna, P. Ohana, F.M. Konikoff, G. Leichtmann, A. Hubert, L. Appelbaum, Y. Kopelman, A. Czerniak, A. Hochberg, Phase 1/2a, dose-escalation, safety, pharmacokinetic and preliminary efficacy study of intratumoral administration of BC-819 in patients with unresectable pancreatic cancer. Cancer Gene Ther. 19, 374–381 (2012)PubMedCrossRef
59.
go back to reference M. Lohr, P. Maisonneuve, A.B. Lowenfels, K-Ras mutations and benign pancreatic disease. Int. J. Pancreatol. 27, 93–103 (2000)PubMedCrossRef M. Lohr, P. Maisonneuve, A.B. Lowenfels, K-Ras mutations and benign pancreatic disease. Int. J. Pancreatol. 27, 93–103 (2000)PubMedCrossRef
61.
go back to reference O.A. Kent, R.R. Chivukula, M. Mullendore, E.A. Wentzel, G. Feldmann, K.H. Lee, S. Liu, S.D. Leach, A. Maitra, J.T. Mendell, Repression of the miR-143/145 cluster by oncogenic Ras initiates a tumor-promoting feed-forward pathway. Genes Dev. 24, 2754–2759 (2010)PubMedPubMedCentralCrossRef O.A. Kent, R.R. Chivukula, M. Mullendore, E.A. Wentzel, G. Feldmann, K.H. Lee, S. Liu, S.D. Leach, A. Maitra, J.T. Mendell, Repression of the miR-143/145 cluster by oncogenic Ras initiates a tumor-promoting feed-forward pathway. Genes Dev. 24, 2754–2759 (2010)PubMedPubMedCentralCrossRef
62.
go back to reference I. Keklikoglou, K. Hosaka, C. Bender, A. Bott, C. Koerner, D. Mitra, R. Will, A. Woerner, E. Muenstermann, H. Wilhelm, Y. Cao, S. Wiemann, MicroRNA-206 functions as a pleiotropic modulator of cell proliferation, invasion and lymphangiogenesis in pancreatic adenocarcinoma by targeting ANXA2 and KRAS genes. Oncogene 34, 4867–4878 (2014) I. Keklikoglou, K. Hosaka, C. Bender, A. Bott, C. Koerner, D. Mitra, R. Will, A. Woerner, E. Muenstermann, H. Wilhelm, Y. Cao, S. Wiemann, MicroRNA-206 functions as a pleiotropic modulator of cell proliferation, invasion and lymphangiogenesis in pancreatic adenocarcinoma by targeting ANXA2 and KRAS genes. Oncogene 34, 4867–4878 (2014)
63.
go back to reference X. Yan, X. Chen, H. Liang, T. Deng, W. Chen, S. Zhang, M. Liu, X. Gao, Y. Liu, C. Zhao, X. Wang, N. Wang, J. Li, R. Liu, K. Zen, C.Y. Zhang, B. Liu, Y. Ba, miR-143 and miR-145 synergistically regulate ERBB3 to suppress cell proliferation and invasion in breast cancer. Mol. Cancer. 13, 220 (2014). doi:10.1186/1476-4598-13-220 PubMedPubMedCentralCrossRef X. Yan, X. Chen, H. Liang, T. Deng, W. Chen, S. Zhang, M. Liu, X. Gao, Y. Liu, C. Zhao, X. Wang, N. Wang, J. Li, R. Liu, K. Zen, C.Y. Zhang, B. Liu, Y. Ba, miR-143 and miR-145 synergistically regulate ERBB3 to suppress cell proliferation and invasion in breast cancer. Mol. Cancer. 13, 220 (2014). doi:10.​1186/​1476-4598-13-220 PubMedPubMedCentralCrossRef
64.
65.
go back to reference J. Su, H. Liang, W. Yao, N. Wang, S. Zhang, X. Yan, H. Feng, W. Pang, Y. Wang, X. Wang, Z. Fu, Y. Liu, C. Zhao, J. Zhang, C.Y. Zhang, K. Zen, X. Chen, Y. Wang, MiR-143 and MiR-145 regulate IGF1R to suppress cell proliferation in colorectal cancer. PLoS One 9, e114420 (2014)PubMedPubMedCentralCrossRef J. Su, H. Liang, W. Yao, N. Wang, S. Zhang, X. Yan, H. Feng, W. Pang, Y. Wang, X. Wang, Z. Fu, Y. Liu, C. Zhao, J. Zhang, C.Y. Zhang, K. Zen, X. Chen, Y. Wang, MiR-143 and MiR-145 regulate IGF1R to suppress cell proliferation in colorectal cancer. PLoS One 9, e114420 (2014)PubMedPubMedCentralCrossRef
66.
go back to reference X. Chen, X. Guo, H. Zhang, Y. Xiang, J. Chen, Y. Yin, X. Cai, K. Wang, G. Wang, Y. Ba, L. Zhu, J. Wang, R. Yang, Y. Zhang, Z. Ren, K. Zen, J. Zhang, C.Y. Zhang, Role of miR-143 targeting KRAS in colorectal tumorigenesis. Oncogene 28, 1385–1392 (2009)PubMedCrossRef X. Chen, X. Guo, H. Zhang, Y. Xiang, J. Chen, Y. Yin, X. Cai, K. Wang, G. Wang, Y. Ba, L. Zhu, J. Wang, R. Yang, Y. Zhang, Z. Ren, K. Zen, J. Zhang, C.Y. Zhang, Role of miR-143 targeting KRAS in colorectal tumorigenesis. Oncogene 28, 1385–1392 (2009)PubMedCrossRef
67.
go back to reference C. Clape, V. Fritz, C. Henriquet, F. Apparailly, P.L. Fernandez, F. Iborra, C. Avances, M. Villalba, S. Culine, L. Fajas, miR-143 interferes with ERK5 signaling, and abrogates prostate cancer progression in mice. PLoS One 4, e7542 (2009)PubMedPubMedCentralCrossRef C. Clape, V. Fritz, C. Henriquet, F. Apparailly, P.L. Fernandez, F. Iborra, C. Avances, M. Villalba, S. Culine, L. Fajas, miR-143 interferes with ERK5 signaling, and abrogates prostate cancer progression in mice. PLoS One 4, e7542 (2009)PubMedPubMedCentralCrossRef
68.
go back to reference M. Sachdeva, S. Zhu, F. Wu, H. Wu, V. Walia, S. Kumar, R. Elble, K. Watabe, Y.Y. Mo, p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc. Natl. Acad. Sci. U. S. A. 106, 3207–3212 (2009)PubMedPubMedCentralCrossRef M. Sachdeva, S. Zhu, F. Wu, H. Wu, V. Walia, S. Kumar, R. Elble, K. Watabe, Y.Y. Mo, p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc. Natl. Acad. Sci. U. S. A. 106, 3207–3212 (2009)PubMedPubMedCentralCrossRef
69.
go back to reference P. Wang, C.F. Zhu, M.Z. Ma, G. Chen, M. Song, Z.L. Zeng, W.H. Lu, J. Yang, S. Wen, P.J. Chiao, Y. Hu, P. Huang, Micro-RNA-155 is induced by K-Ras oncogenic signal and promotes ROS stress in pancreatic cancer. Oncotarget 6, 21148–21158 (2015) P. Wang, C.F. Zhu, M.Z. Ma, G. Chen, M. Song, Z.L. Zeng, W.H. Lu, J. Yang, S. Wen, P.J. Chiao, Y. Hu, P. Huang, Micro-RNA-155 is induced by K-Ras oncogenic signal and promotes ROS stress in pancreatic cancer. Oncotarget 6, 21148–21158 (2015)
70.
go back to reference T. Greither, L.F. Grochola, A. Udelnow, C. Lautenschlager, P. Wurl, H. Taubert, Elevated expression of microRNAs 155, 203, 210 and 222 in pancreatic tumors is associated with poorer survival. Int. J. Cancer 126, 73–80 (2010)PubMedCrossRef T. Greither, L.F. Grochola, A. Udelnow, C. Lautenschlager, P. Wurl, H. Taubert, Elevated expression of microRNAs 155, 203, 210 and 222 in pancreatic tumors is associated with poorer survival. Int. J. Cancer 126, 73–80 (2010)PubMedCrossRef
71.
go back to reference M. Gironella, M. Seux, M.J. Xie, C. Cano, R. Tomasini, J. Gommeaux, S. Garcia, J. Nowak, M.L. Yeung, K.T. Jeang, A. Chaix, L. Fazli, Y. Motoo, Q. Wang, P. Rocchi, A. Russo, M. Gleave, J.C. Dagorn, J.L. Iovanna, A. Carrier, M.J. Pebusque, N.J. Dusetti, Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development. Proc. Natl. Acad. Sci. U. S. A. 104, 16170–16175 (2007)PubMedPubMedCentralCrossRef M. Gironella, M. Seux, M.J. Xie, C. Cano, R. Tomasini, J. Gommeaux, S. Garcia, J. Nowak, M.L. Yeung, K.T. Jeang, A. Chaix, L. Fazli, Y. Motoo, Q. Wang, P. Rocchi, A. Russo, M. Gleave, J.C. Dagorn, J.L. Iovanna, A. Carrier, M.J. Pebusque, N.J. Dusetti, Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development. Proc. Natl. Acad. Sci. U. S. A. 104, 16170–16175 (2007)PubMedPubMedCentralCrossRef
72.
go back to reference W. Pang, J. Su, Y. Wang, H. Feng, X. Dai, Y. Yuan, X. Chen, W. Yao, Pancreatic cancer-secreted miR-155 implicates in the Conversion from Normal Fibroblasts to Cancer-Associated Fibroblasts. Cancer. Sci. 106, 1362–1369 (2015) W. Pang, J. Su, Y. Wang, H. Feng, X. Dai, Y. Yuan, X. Chen, W. Yao, Pancreatic cancer-secreted miR-155 implicates in the Conversion from Normal Fibroblasts to Cancer-Associated Fibroblasts. Cancer. Sci. 106, 1362–1369 (2015)
73.
go back to reference C. Huang, H. Li, W. Wu, T. Jiang, Z. Qiu, Regulation of miR-155 affects pancreatic cancer cell invasiveness and migration by modulating the STAT3 signaling pathway through SOCS1. Oncol. Rep. 30, 1223–1230 (2013)PubMed C. Huang, H. Li, W. Wu, T. Jiang, Z. Qiu, Regulation of miR-155 affects pancreatic cancer cell invasiveness and migration by modulating the STAT3 signaling pathway through SOCS1. Oncol. Rep. 30, 1223–1230 (2013)PubMed
74.
go back to reference C. Huang, G. Yang, T. Jiang, G. Zhu, H. Li, Z. Qiu, The effects and mechanisms of blockage of STAT3 signaling pathway on IL-6 inducing EMT in human pancreatic cancer cells in vitro. Neoplasma 58, 396–405 (2011)PubMedCrossRef C. Huang, G. Yang, T. Jiang, G. Zhu, H. Li, Z. Qiu, The effects and mechanisms of blockage of STAT3 signaling pathway on IL-6 inducing EMT in human pancreatic cancer cells in vitro. Neoplasma 58, 396–405 (2011)PubMedCrossRef
75.
go back to reference I.A. Asangani, S.A. Rasheed, D.A. Nikolova, J.H. Leupold, N.H. Colburn, S. Post, H. Allgayer, MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27, 2128–2136 (2008)PubMedCrossRef I.A. Asangani, S.A. Rasheed, D.A. Nikolova, J.H. Leupold, N.H. Colburn, S. Post, H. Allgayer, MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27, 2128–2136 (2008)PubMedCrossRef
76.
go back to reference J.A. Chan, A.M. Krichevsky, K.S. Kosik, MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 65, 6029–6033 (2005)PubMedCrossRef J.A. Chan, A.M. Krichevsky, K.S. Kosik, MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 65, 6029–6033 (2005)PubMedCrossRef
77.
go back to reference D.L. Vaux, S. Cory, J.M. Adams, Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 335, 440–442 (1988)PubMedCrossRef D.L. Vaux, S. Cory, J.M. Adams, Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 335, 440–442 (1988)PubMedCrossRef
78.
go back to reference M. Dillhoff, J. Liu, W. Frankel, C. Croce, M. Bloomston, MicroRNA-21 is overexpressed in pancreatic cancer and a potential predictor of survival. J. Gastrointest. Surg. 12, 2171–2176 (2008)PubMedPubMedCentralCrossRef M. Dillhoff, J. Liu, W. Frankel, C. Croce, M. Bloomston, MicroRNA-21 is overexpressed in pancreatic cancer and a potential predictor of survival. J. Gastrointest. Surg. 12, 2171–2176 (2008)PubMedPubMedCentralCrossRef
79.
go back to reference W.F. Song, L. Wang, W.Y. Huang, X. Cai, J.J. Cui, L.W. Wang, MiR-21 upregulation induced by promoter zone histone acetylation is associated with chemoresistance to gemcitabine and enhanced malignancy of pancreatic cancer cells. Asian Pac. J. Cancer Prev. 14, 7529–7536 (2013)PubMedCrossRef W.F. Song, L. Wang, W.Y. Huang, X. Cai, J.J. Cui, L.W. Wang, MiR-21 upregulation induced by promoter zone histone acetylation is associated with chemoresistance to gemcitabine and enhanced malignancy of pancreatic cancer cells. Asian Pac. J. Cancer Prev. 14, 7529–7536 (2013)PubMedCrossRef
80.
go back to reference P. Wang, L. Zhuang, J. Zhang, J. Fan, J. Luo, H. Chen, K. Wang, L. Liu, Z. Chen, Z. Meng, The serum miR-21 level serves as a predictor for the chemosensitivity of advanced pancreatic cancer, and miR-21 expression confers chemoresistance by targeting FasL. Mol. Oncol. 7, 334–345 (2013)PubMedCrossRef P. Wang, L. Zhuang, J. Zhang, J. Fan, J. Luo, H. Chen, K. Wang, L. Liu, Z. Chen, Z. Meng, The serum miR-21 level serves as a predictor for the chemosensitivity of advanced pancreatic cancer, and miR-21 expression confers chemoresistance by targeting FasL. Mol. Oncol. 7, 334–345 (2013)PubMedCrossRef
81.
go back to reference J.H. Hwang, J. Voortman, E. Giovannetti, S.M. Steinberg, L.G. Leon, Y.T. Kim, N. Funel, J.K. Park, M.A. Kim, G.H. Kang, S.W. Kim, M. Del Chiaro, G.J. Peters, G. Giaccone, Identification of microRNA-21 as a biomarker for chemoresistance and clinical outcome following adjuvant therapy in resectable pancreatic cancer. PLoS One 5, e10630 (2010)PubMedPubMedCentralCrossRef J.H. Hwang, J. Voortman, E. Giovannetti, S.M. Steinberg, L.G. Leon, Y.T. Kim, N. Funel, J.K. Park, M.A. Kim, G.H. Kang, S.W. Kim, M. Del Chiaro, G.J. Peters, G. Giaccone, Identification of microRNA-21 as a biomarker for chemoresistance and clinical outcome following adjuvant therapy in resectable pancreatic cancer. PLoS One 5, e10630 (2010)PubMedPubMedCentralCrossRef
82.
go back to reference P. Liu, H. Liang, Q. Xia, P. Li, H. Kong, P. Lei, S. Wang, Z. Tu, Resveratrol induces apoptosis of pancreatic cancers cells by inhibiting miR-21 regulation of BCL-2 expression. Clin. Transl. Oncol. 15, 741–746 (2013)PubMedCrossRef P. Liu, H. Liang, Q. Xia, P. Li, H. Kong, P. Lei, S. Wang, Z. Tu, Resveratrol induces apoptosis of pancreatic cancers cells by inhibiting miR-21 regulation of BCL-2 expression. Clin. Transl. Oncol. 15, 741–746 (2013)PubMedCrossRef
83.
go back to reference J.K. Park, E.J. Lee, C. Esau, T.D. Schmittgen, Antisense inhibition of microRNA-21 or -221 arrests cell cycle, induces apoptosis, and sensitizes the effects of gemcitabine in pancreatic adenocarcinoma. Pancreas 38, e190–e199 (2009)PubMedCrossRef J.K. Park, E.J. Lee, C. Esau, T.D. Schmittgen, Antisense inhibition of microRNA-21 or -221 arrests cell cycle, induces apoptosis, and sensitizes the effects of gemcitabine in pancreatic adenocarcinoma. Pancreas 38, e190–e199 (2009)PubMedCrossRef
84.
go back to reference P.A. Toste, L. Li, B.E. Kadera, A.H. Nguyen, L.M. Tran, N. Wu, D.L. Madnick, S.G. Patel, D.W. Dawson, T.R. Donahue, p85alpha is a microRNA target and affects chemosensitivity in pancreatic cancer. J. Surg. Res. 196, 285–293 (2015)PubMedPubMedCentralCrossRef P.A. Toste, L. Li, B.E. Kadera, A.H. Nguyen, L.M. Tran, N. Wu, D.L. Madnick, S.G. Patel, D.W. Dawson, T.R. Donahue, p85alpha is a microRNA target and affects chemosensitivity in pancreatic cancer. J. Surg. Res. 196, 285–293 (2015)PubMedPubMedCentralCrossRef
85.
go back to reference W.H. Paik, H.R. Kim, J.K. Park, B.J. Song, S.H. Lee, J.H. Hwang, Chemosensitivity induced by down-regulation of microRNA-21 in gemcitabine-resistant pancreatic cancer cells by indole-3-carbinol. Anticancer Res. 33, 1473–1481 (2013)PubMed W.H. Paik, H.R. Kim, J.K. Park, B.J. Song, S.H. Lee, J.H. Hwang, Chemosensitivity induced by down-regulation of microRNA-21 in gemcitabine-resistant pancreatic cancer cells by indole-3-carbinol. Anticancer Res. 33, 1473–1481 (2013)PubMed
86.
go back to reference T.A. Mace, A.L. Collins, S.E. Wojcik, C.M. Croce, G.B. Lesinski, M. Bloomston, Hypoxia induces the overexpression of microRNA-21 in pancreatic cancer cells. J. Surg. Res. 184, 855–860 (2013)PubMedPubMedCentralCrossRef T.A. Mace, A.L. Collins, S.E. Wojcik, C.M. Croce, G.B. Lesinski, M. Bloomston, Hypoxia induces the overexpression of microRNA-21 in pancreatic cancer cells. J. Surg. Res. 184, 855–860 (2013)PubMedPubMedCentralCrossRef
87.
go back to reference H. Ying, K.G. Elpek, A. Vinjamoori, S.M. Zimmerman, G.C. Chu, H. Yan, E. Fletcher-Sananikone, H. Zhang, Y. Liu, W. Wang, X. Ren, H. Zheng, A.C. Kimmelman, J.H. Paik, C. Lim, S.R. Perry, S. Jiang, B. Malinn, A. Protopopov, S. Colla, Y. Xiao, A.F. Hezel, N. Bardeesy, S.J. Turley, Y.A. Wang, L. Chin, S.P. Thayer, R.A. DePinho, PTEN is a major tumor suppressor in pancreatic ductal adenocarcinoma and regulates an NF-kappaB-cytokine network. Cancer Discov. 1, 158–169 (2011)PubMedPubMedCentralCrossRef H. Ying, K.G. Elpek, A. Vinjamoori, S.M. Zimmerman, G.C. Chu, H. Yan, E. Fletcher-Sananikone, H. Zhang, Y. Liu, W. Wang, X. Ren, H. Zheng, A.C. Kimmelman, J.H. Paik, C. Lim, S.R. Perry, S. Jiang, B. Malinn, A. Protopopov, S. Colla, Y. Xiao, A.F. Hezel, N. Bardeesy, S.J. Turley, Y.A. Wang, L. Chin, S.P. Thayer, R.A. DePinho, PTEN is a major tumor suppressor in pancreatic ductal adenocarcinoma and regulates an NF-kappaB-cytokine network. Cancer Discov. 1, 158–169 (2011)PubMedPubMedCentralCrossRef
88.
go back to reference B.E. Kadera, L. Li, P.A. Toste, N. Wu, C. Adams, D.W. Dawson, T.R. Donahue, MicroRNA-21 in pancreatic ductal adenocarcinoma tumor-associated fibroblasts promotes metastasis. PLoS One 8, e71978 (2013) B.E. Kadera, L. Li, P.A. Toste, N. Wu, C. Adams, D.W. Dawson, T.R. Donahue, MicroRNA-21 in pancreatic ductal adenocarcinoma tumor-associated fibroblasts promotes metastasis. PLoS One 8, e71978 (2013)
89.
90.
go back to reference M. Passadouro, M.C. Pedroso de Lima, H. Faneca, MicroRNA modulation combined with sunitinib as a novel therapeutic strategy for pancreatic cancer. Int. J. Nanomedicine 9, 3203–3217 (2014)PubMedPubMedCentral M. Passadouro, M.C. Pedroso de Lima, H. Faneca, MicroRNA modulation combined with sunitinib as a novel therapeutic strategy for pancreatic cancer. Int. J. Nanomedicine 9, 3203–3217 (2014)PubMedPubMedCentral
91.
go back to reference Y. Zhang, M. Li, H. Wang, W.E. Fisher, P.H. Lin, Q. Yao, C. Chen, Profiling of 95 microRNAs in pancreatic cancer cell lines and surgical specimens by real-time PCR analysis. World J. Surg. 33, 698–709 (2009)PubMedPubMedCentralCrossRef Y. Zhang, M. Li, H. Wang, W.E. Fisher, P.H. Lin, Q. Yao, C. Chen, Profiling of 95 microRNAs in pancreatic cancer cell lines and surgical specimens by real-time PCR analysis. World J. Surg. 33, 698–709 (2009)PubMedPubMedCentralCrossRef
92.
93.
go back to reference J. Xia, Q. Duan, A. Ahmad, B. Bao, S. Banerjee, Y. Shi, J. Ma, J. Geng, Z. Chen, K. Rahman, L. Miele, F. Sarkar, Z. Wang, Genistein inhibits cell growth and induces apoptosis through up-regulation of miR-34a in pancreatic cancer cells. 13, 1750–1756 (2012) J. Xia, Q. Duan, A. Ahmad, B. Bao, S. Banerjee, Y. Shi, J. Ma, J. Geng, Z. Chen, K. Rahman, L. Miele, F. Sarkar, Z. Wang, Genistein inhibits cell growth and induces apoptosis through up-regulation of miR-34a in pancreatic cancer cells. 13, 1750–1756 (2012)
94.
go back to reference Q. Ji, X. Hao, M. Zhang, W. Tang, M. Yang, L. Li, D. Xiang, J.T. Desano, G.T. Bommer, D. Fan, E.R. Fearon, T.S. Lawrence, L. Xu, MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS One 4, e6816 (2009)PubMedPubMedCentralCrossRef Q. Ji, X. Hao, M. Zhang, W. Tang, M. Yang, L. Li, D. Xiang, J.T. Desano, G.T. Bommer, D. Fan, E.R. Fearon, T.S. Lawrence, L. Xu, MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS One 4, e6816 (2009)PubMedPubMedCentralCrossRef
95.
go back to reference C. Liu, H. Cheng, S. Shi, X. Cui, J. Yang, L. Chen, P. Cen, X. Cai, Y. Lu, C. Wu, W. Yao, Y. Qin, L. Liu, J. Long, J. Xu, M. Li, X. Yu, MicroRNA-34b inhibits pancreatic cancer metastasis through repressing Smad3. Curr. Mol. Med. 13, 467–478 (2013)PubMedCrossRef C. Liu, H. Cheng, S. Shi, X. Cui, J. Yang, L. Chen, P. Cen, X. Cai, Y. Lu, C. Wu, W. Yao, Y. Qin, L. Liu, J. Long, J. Xu, M. Li, X. Yu, MicroRNA-34b inhibits pancreatic cancer metastasis through repressing Smad3. Curr. Mol. Med. 13, 467–478 (2013)PubMedCrossRef
96.
go back to reference T.C. Chang, E.A. Wentzel, O.A. Kent, K. Ramachandran, M. Mullendore, K.H. Lee, G. Feldmann, M. Yamakuchi, M. Ferlito, C.J. Lowenstein, D.E. Arking, M.A. Beer, A. Maitra, J.T. Mendell, Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol. Cell 26, 745–752 (2007)PubMedPubMedCentralCrossRef T.C. Chang, E.A. Wentzel, O.A. Kent, K. Ramachandran, M. Mullendore, K.H. Lee, G. Feldmann, M. Yamakuchi, M. Ferlito, C.J. Lowenstein, D.E. Arking, M.A. Beer, A. Maitra, J.T. Mendell, Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol. Cell 26, 745–752 (2007)PubMedPubMedCentralCrossRef
98.
go back to reference D.A. Deming, J. Ninan, H.H. Bailey, J.M. Kolesar, J. Eickhoff, J.M. Reid, M.M. Ames, R.M. McGovern, D. Alberti, R. Marnocha, I. Espinoza-Delgado, J. Wright, G. Wilding, W.R. Schelman, A Phase I study of intermittently dosed vorinostat in combination with bortezomib in patients with advanced solid tumors. Invest. New Drugs 32, 323–329 (2014)PubMedCrossRef D.A. Deming, J. Ninan, H.H. Bailey, J.M. Kolesar, J. Eickhoff, J.M. Reid, M.M. Ames, R.M. McGovern, D. Alberti, R. Marnocha, I. Espinoza-Delgado, J. Wright, G. Wilding, W.R. Schelman, A Phase I study of intermittently dosed vorinostat in combination with bortezomib in patients with advanced solid tumors. Invest. New Drugs 32, 323–329 (2014)PubMedCrossRef
99.
go back to reference J.H. Mitchell, E. Cawood, D. Kinniburgh, A. Provan, A.R. Collins, D.S. Irvine, Effect of a phytoestrogen food supplement on reproductive health in normal males. Clin. Sci. (Lond.) 100, 613–618 (2001)CrossRef J.H. Mitchell, E. Cawood, D. Kinniburgh, A. Provan, A.R. Collins, D.S. Irvine, Effect of a phytoestrogen food supplement on reproductive health in normal males. Clin. Sci. (Lond.) 100, 613–618 (2001)CrossRef
100.
go back to reference S. Babashah, M. Sadeghizadeh, M.R. Tavirani, S. Farivar, M. Soleimani, Aberrant microRNA expression and its implications in the pathogenesis of leukemias. Cell. Oncol. 35, 317–334 (2012)CrossRef S. Babashah, M. Sadeghizadeh, M.R. Tavirani, S. Farivar, M. Soleimani, Aberrant microRNA expression and its implications in the pathogenesis of leukemias. Cell. Oncol. 35, 317–334 (2012)CrossRef
101.
go back to reference J. Haybaeck, N. Zeller, M. Heikenwalder, The parallel universe: microRNAs and their role in chronic hepatitis, liver tissue damage and hepatocarcinogenesis. Swiss Med. Wkly. 141, w13287 (2011)PubMed J. Haybaeck, N. Zeller, M. Heikenwalder, The parallel universe: microRNAs and their role in chronic hepatitis, liver tissue damage and hepatocarcinogenesis. Swiss Med. Wkly. 141, w13287 (2011)PubMed
102.
go back to reference ClinicalTrials.gov [Internet] Identifier: NCT01829971, A multicenter phase I study of MRX34, MicroRNA miR-RX34 liposomal injection, 2016 (2015) ClinicalTrials.gov [Internet] Identifier: NCT01829971, A multicenter phase I study of MRX34, MicroRNA miR-RX34 liposomal injection, 2016 (2015)
103.
go back to reference R. Zhang, M. Li, W. Zang, X. Chen, Y. Wang, P. Li, Y. Du, G. Zhao, L. Li, MiR-148a regulates the growth and apoptosis in pancreatic cancer by targeting CCKBR and Bcl-2. Tumour Biol. 35, 837–844 (2014)PubMedCrossRef R. Zhang, M. Li, W. Zang, X. Chen, Y. Wang, P. Li, Y. Du, G. Zhao, L. Li, MiR-148a regulates the growth and apoptosis in pancreatic cancer by targeting CCKBR and Bcl-2. Tumour Biol. 35, 837–844 (2014)PubMedCrossRef
104.
go back to reference S.K. Srivastava, A. Bhardwaj, S. Arora, N. Tyagi, S. Singh, J. Andrews, S. McClellan, B. Wang, A.P. Singh, MicroRNA-345 induces apoptosis in pancreatic cancer cells through potentiation of caspase-dependent and -independent pathways. Br. J. Cancer 113, 660–668 (2015)PubMedCrossRef S.K. Srivastava, A. Bhardwaj, S. Arora, N. Tyagi, S. Singh, J. Andrews, S. McClellan, B. Wang, A.P. Singh, MicroRNA-345 induces apoptosis in pancreatic cancer cells through potentiation of caspase-dependent and -independent pathways. Br. J. Cancer 113, 660–668 (2015)PubMedCrossRef
105.
go back to reference J. Hao, S. Zhang, Y. Zhou, X. Hu, C. Shao, MicroRNA 483-3p suppresses the expression of DPC4/Smad4 in pancreatic cancer. FEBS Lett. 585, 207–213 (2011)PubMedCrossRef J. Hao, S. Zhang, Y. Zhou, X. Hu, C. Shao, MicroRNA 483-3p suppresses the expression of DPC4/Smad4 in pancreatic cancer. FEBS Lett. 585, 207–213 (2011)PubMedCrossRef
106.
go back to reference P. Singh, J.D. Wig, R. Srinivasan, B.D. Radotra, A comprehensive examination of Smad4, Smad6 and Smad7 mRNA expression in pancreatic ductal adenocarcinoma. Indian J. Cancer 48, 170–174 (2011)PubMedCrossRef P. Singh, J.D. Wig, R. Srinivasan, B.D. Radotra, A comprehensive examination of Smad4, Smad6 and Smad7 mRNA expression in pancreatic ductal adenocarcinoma. Indian J. Cancer 48, 170–174 (2011)PubMedCrossRef
107.
go back to reference Z. Zhu, Y. Xu, J. Zhao, Q. Liu, W. Feng, J. Fan, P. Wang, miR-367 promotes epithelial-to-mesenchymal transition and invasion of pancreatic ductal adenocarcinoma cells by targeting the Smad7-TGF-beta signalling pathway. Br. J. Cancer 112, 1367–1375 (2015)PubMedPubMedCentralCrossRef Z. Zhu, Y. Xu, J. Zhao, Q. Liu, W. Feng, J. Fan, P. Wang, miR-367 promotes epithelial-to-mesenchymal transition and invasion of pancreatic ductal adenocarcinoma cells by targeting the Smad7-TGF-beta signalling pathway. Br. J. Cancer 112, 1367–1375 (2015)PubMedPubMedCentralCrossRef
108.
go back to reference X. Zhi, J. Tao, K. Xie, Y. Zhu, Z. Li, J. Tang, W. Wang, H. Xu, J. Zhang, Z. Xu, MUC4-induced nuclear translocation of beta-catenin: a novel mechanism for growth, metastasis and angiogenesis in pancreatic cancer. Cancer Lett. 346, 104–113 (2014)PubMedCrossRef X. Zhi, J. Tao, K. Xie, Y. Zhu, Z. Li, J. Tang, W. Wang, H. Xu, J. Zhang, Z. Xu, MUC4-induced nuclear translocation of beta-catenin: a novel mechanism for growth, metastasis and angiogenesis in pancreatic cancer. Cancer Lett. 346, 104–113 (2014)PubMedCrossRef
109.
go back to reference Y. Zhu, J.J. Zhang, W.B. Liang, R. Zhu, B. Wang, Y. Miao, Z.K. Xu, Pancreatic cancer counterattack: MUC4 mediates Fas-independent apoptosis of antigen-specific cytotoxic T lymphocyte. Oncol. Rep. 31, 1768–1776 (2014)PubMed Y. Zhu, J.J. Zhang, W.B. Liang, R. Zhu, B. Wang, Y. Miao, Z.K. Xu, Pancreatic cancer counterattack: MUC4 mediates Fas-independent apoptosis of antigen-specific cytotoxic T lymphocyte. Oncol. Rep. 31, 1768–1776 (2014)PubMed
110.
go back to reference D. Ansari, C. Urey, K.S. Hilmersson, M.P. Bauden, F. Ek, R. Olsson, R. Andersson, Apicidin sensitizes pancreatic cancer cells to gemcitabine by epigenetically regulating MUC4 expression. Anticancer Res. 34, 5269–5276 (2014)PubMed D. Ansari, C. Urey, K.S. Hilmersson, M.P. Bauden, F. Ek, R. Olsson, R. Andersson, Apicidin sensitizes pancreatic cancer cells to gemcitabine by epigenetically regulating MUC4 expression. Anticancer Res. 34, 5269–5276 (2014)PubMed
111.
go back to reference S.K. Srivastava, A. Bhardwaj, S. Singh, S. Arora, B. Wang, W.E. Grizzle, A.P. Singh, MicroRNA-150 directly targets MUC4 and suppresses growth and malignant behavior of pancreatic cancer cells. Carcinogenesis 32, 1832–1839 (2011)PubMedPubMedCentralCrossRef S.K. Srivastava, A. Bhardwaj, S. Singh, S. Arora, B. Wang, W.E. Grizzle, A.P. Singh, MicroRNA-150 directly targets MUC4 and suppresses growth and malignant behavior of pancreatic cancer cells. Carcinogenesis 32, 1832–1839 (2011)PubMedPubMedCentralCrossRef
112.
go back to reference P. Chaturvedi, A.P. Singh, S. Chakraborty, S.C. Chauhan, S. Bafna, J.L. Meza, P.K. Singh, M.A. Hollingsworth, P.P. Mehta, S.K. Batra, MUC4 mucin interacts with and stabilizes the HER2 oncoprotein in human pancreatic cancer cells. Cancer Res. 68, 2065–2070 (2008)PubMedPubMedCentralCrossRef P. Chaturvedi, A.P. Singh, S. Chakraborty, S.C. Chauhan, S. Bafna, J.L. Meza, P.K. Singh, M.A. Hollingsworth, P.P. Mehta, S.K. Batra, MUC4 mucin interacts with and stabilizes the HER2 oncoprotein in human pancreatic cancer cells. Cancer Res. 68, 2065–2070 (2008)PubMedPubMedCentralCrossRef
113.
go back to reference F. Lahdaoui, Y. Delpu, A. Vincent, F. Renaud, M. Messager, B. Duchene, E. Leteurtre, C. Mariette, J. Torrisani, N. Jonckheere, I. Van, Seuningen, miR-219-1-3p is a negative regulator of the mucin MUC4 expression and is a tumor suppressor in pancreatic cancer. Oncogene 34, 780–788 (2015)PubMedCrossRef F. Lahdaoui, Y. Delpu, A. Vincent, F. Renaud, M. Messager, B. Duchene, E. Leteurtre, C. Mariette, J. Torrisani, N. Jonckheere, I. Van, Seuningen, miR-219-1-3p is a negative regulator of the mucin MUC4 expression and is a tumor suppressor in pancreatic cancer. Oncogene 34, 780–788 (2015)PubMedCrossRef
114.
go back to reference D. Chen, Y. Zhang, J. Wang, J. Chen, C. Yang, K. Cai, X. Wang, F. Shi, J. Dou, MicroRNA-200c overexpression inhibits tumorigenicity and metastasis of CD117+CD44+ ovarian cancer stem cells by regulating epithelial-mesenchymal transition. J. Ovarian Res. 6, 50 (2013). doi:10.1186/1757-2215-6-50 PubMedPubMedCentralCrossRef D. Chen, Y. Zhang, J. Wang, J. Chen, C. Yang, K. Cai, X. Wang, F. Shi, J. Dou, MicroRNA-200c overexpression inhibits tumorigenicity and metastasis of CD117+CD44+ ovarian cancer stem cells by regulating epithelial-mesenchymal transition. J. Ovarian Res. 6, 50 (2013). doi:10.​1186/​1757-2215-6-50 PubMedPubMedCentralCrossRef
115.
go back to reference J. Dou, X.F. He, W.H. Cao, F.S. Zhao, X.Y. Wang, Y.R. Liu, J. Wang, Overexpression of microRna-200c in CD44+CD133+ CSCS inhibits the cellular migratory and invasion as well as tumorigenicity in mice. Cell. Mol. Biol. Suppl 59, OL1861-8 (2013) J. Dou, X.F. He, W.H. Cao, F.S. Zhao, X.Y. Wang, Y.R. Liu, J. Wang, Overexpression of microRna-200c in CD44+CD133+ CSCS inhibits the cellular migratory and invasion as well as tumorigenicity in mice. Cell. Mol. Biol. Suppl 59, OL1861-8 (2013)
116.
go back to reference F.F. Ibrahim, R. Jamal, S.E. Syafruddin, N.S. Ab Mutalib, S. Saidin, R.R. MdZin, M.M. Hossain Mollah, N.M. Mokhtar, MicroRNA-200c and microRNA-31 regulate proliferation, colony formation, migration and invasion in serous ovarian cancer. J. Ovarian Res. 8, 56 (2015). doi:10.1186/s13048-015-0186-7 PubMedPubMedCentralCrossRef F.F. Ibrahim, R. Jamal, S.E. Syafruddin, N.S. Ab Mutalib, S. Saidin, R.R. MdZin, M.M. Hossain Mollah, N.M. Mokhtar, MicroRNA-200c and microRNA-31 regulate proliferation, colony formation, migration and invasion in serous ovarian cancer. J. Ovarian Res. 8, 56 (2015). doi:10.​1186/​s13048-015-0186-7 PubMedPubMedCentralCrossRef
117.
go back to reference J. Lu, G. Getz, E.A. Miska, E. Alvarez-Saavedra, J. Lamb, D. Peck, A. Sweet-Cordero, B.L. Ebert, R.H. Mak, A.A. Ferrando, J.R. Downing, T. Jacks, H.R. Horvitz, T.R. Golub, MicroRNA expression profiles classify human cancers. Nature 435, 834–838 (2005)PubMedCrossRef J. Lu, G. Getz, E.A. Miska, E. Alvarez-Saavedra, J. Lamb, D. Peck, A. Sweet-Cordero, B.L. Ebert, R.H. Mak, A.A. Ferrando, J.R. Downing, T. Jacks, H.R. Horvitz, T.R. Golub, MicroRNA expression profiles classify human cancers. Nature 435, 834–838 (2005)PubMedCrossRef
120.
go back to reference C. Ma, T. Huang, Y.C. Ding, W. Yu, Q. Wang, B. Meng, S.X. Luo, microRNA-200c overexpression inhibits chemoresistance, invasion and colony formation of human pancreatic cancer stem cells. Int. J. Clin. Exp. Pathol. 8, 6533–6539 (2015)PubMedPubMedCentral C. Ma, T. Huang, Y.C. Ding, W. Yu, Q. Wang, B. Meng, S.X. Luo, microRNA-200c overexpression inhibits chemoresistance, invasion and colony formation of human pancreatic cancer stem cells. Int. J. Clin. Exp. Pathol. 8, 6533–6539 (2015)PubMedPubMedCentral
121.
go back to reference Y. Imanaka, S. Tsuchiya, F. Sato, Y. Shimada, K. Shimizu, G. Tsujimoto, MicroRNA-141 confers resistance to cisplatin-induced apoptosis by targeting YAP1 in human esophageal squamous cell carcinoma. J. Hum. Genet. 56, 270–276 (2011)PubMedCrossRef Y. Imanaka, S. Tsuchiya, F. Sato, Y. Shimada, K. Shimizu, G. Tsujimoto, MicroRNA-141 confers resistance to cisplatin-induced apoptosis by targeting YAP1 in human esophageal squamous cell carcinoma. J. Hum. Genet. 56, 270–276 (2011)PubMedCrossRef
122.
go back to reference L. Xu, Q. Li, D. Xu, Q. Wang, Y. An, Q. Du, J. Zhang, Y. Zhu, Y. Miao, hsa-miR-141 downregulates TM4SF1 to inhibit pancreatic cancer cell invasion and migration. Int. J. Oncol. 44, 459–466 (2014)PubMed L. Xu, Q. Li, D. Xu, Q. Wang, Y. An, Q. Du, J. Zhang, Y. Zhu, Y. Miao, hsa-miR-141 downregulates TM4SF1 to inhibit pancreatic cancer cell invasion and migration. Int. J. Oncol. 44, 459–466 (2014)PubMed
123.
go back to reference G. Zhao, B. Wang, Y. Liu, J.G. Zhang, S.C. Deng, Q. Qin, K. Tian, X. Li, S. Zhu, Y. Niu, Q. Gong, C.Y. Wang, miRNA-141, downregulated in pancreatic cancer, inhibits cell proliferation and invasion by directly targeting MAP4K4. Mol. Cancer. Ther. 12, 2569–2580 (2013)PubMedCrossRef G. Zhao, B. Wang, Y. Liu, J.G. Zhang, S.C. Deng, Q. Qin, K. Tian, X. Li, S. Zhu, Y. Niu, Q. Gong, C.Y. Wang, miRNA-141, downregulated in pancreatic cancer, inhibits cell proliferation and invasion by directly targeting MAP4K4. Mol. Cancer. Ther. 12, 2569–2580 (2013)PubMedCrossRef
124.
go back to reference Z.M. Zhu, Y.F. Xu, Q.J. Su, J.D. Du, X.L. Tan, Y.L. Tu, J.W. Tan, H.B. Jiao, Prognostic significance of microRNA-141 expression and its tumor suppressor function in human pancreatic ductal adenocarcinoma. Mol. Cell. Biochem. 388, 39–49 (2014)PubMedCrossRef Z.M. Zhu, Y.F. Xu, Q.J. Su, J.D. Du, X.L. Tan, Y.L. Tu, J.W. Tan, H.B. Jiao, Prognostic significance of microRNA-141 expression and its tumor suppressor function in human pancreatic ductal adenocarcinoma. Mol. Cell. Biochem. 388, 39–49 (2014)PubMedCrossRef
125.
go back to reference T. Avnit-Sagi, L. Kantorovich, S. Kredo-Russo, E. Hornstein, M.D. Walker, The promoter of the pri-miR-375 gene directs expression selectively to the endocrine pancreas. PLoS One 4, e5033 (2009)PubMedPubMedCentralCrossRef T. Avnit-Sagi, L. Kantorovich, S. Kredo-Russo, E. Hornstein, M.D. Walker, The promoter of the pri-miR-375 gene directs expression selectively to the endocrine pancreas. PLoS One 4, e5033 (2009)PubMedPubMedCentralCrossRef
126.
go back to reference M.N. Poy, L. Eliasson, J. Krutzfeldt, S. Kuwajima, X. Ma, P.E. Macdonald, S. Pfeffer, T. Tuschl, N. Rajewsky, P. Rorsman, M. Stoffel, A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432, 226–230 (2004)PubMedCrossRef M.N. Poy, L. Eliasson, J. Krutzfeldt, S. Kuwajima, X. Ma, P.E. Macdonald, S. Pfeffer, T. Tuschl, N. Rajewsky, P. Rorsman, M. Stoffel, A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432, 226–230 (2004)PubMedCrossRef
127.
go back to reference A. Basu, H. Alder, A. Khiyami, P. Leahy, C.M. Croce, S. Haldar, MicroRNA-375 and MicroRNA-221: potential noncoding RNAs associated with antiproliferative activity of benzyl isothiocyanate in pancreatic cancer. Genes Cancer 2, 108–119 (2011)PubMedPubMedCentralCrossRef A. Basu, H. Alder, A. Khiyami, P. Leahy, C.M. Croce, S. Haldar, MicroRNA-375 and MicroRNA-221: potential noncoding RNAs associated with antiproliferative activity of benzyl isothiocyanate in pancreatic cancer. Genes Cancer 2, 108–119 (2011)PubMedPubMedCentralCrossRef
128.
go back to reference J. Zhou, S. Song, S. He, X. Zhu, Y. Zhang, B. Yi, B. Zhang, G. Qin, D. Li, MicroRNA-375 targets PDK1 in pancreatic carcinoma and suppresses cell growth through the Akt signaling pathway. Int. J. Mol. Med. 33, 950–956 (2014)PubMed J. Zhou, S. Song, S. He, X. Zhu, Y. Zhang, B. Yi, B. Zhang, G. Qin, D. Li, MicroRNA-375 targets PDK1 in pancreatic carcinoma and suppresses cell growth through the Akt signaling pathway. Int. J. Mol. Med. 33, 950–956 (2014)PubMed
129.
go back to reference J. Zhou, S. Song, J. Cen, D. Zhu, D. Li, Z. Zhang, MicroRNA-375 is downregulated in pancreatic cancer and inhibits cell proliferation in vitro. Oncol. Res. 20, 197–203 (2012)PubMedCrossRef J. Zhou, S. Song, J. Cen, D. Zhu, D. Li, Z. Zhang, MicroRNA-375 is downregulated in pancreatic cancer and inhibits cell proliferation in vitro. Oncol. Res. 20, 197–203 (2012)PubMedCrossRef
130.
go back to reference S.D. Song, J. Zhou, J. Zhou, H. Zhao, J.N. Cen, D.C. Li, MicroRNA-375 targets the 3-phosphoinositide-dependent protein kinase-1 gene in pancreatic carcinoma. Oncol. Lett. 6, 953–959 (2013)PubMedPubMedCentral S.D. Song, J. Zhou, J. Zhou, H. Zhao, J.N. Cen, D.C. Li, MicroRNA-375 targets the 3-phosphoinositide-dependent protein kinase-1 gene in pancreatic carcinoma. Oncol. Lett. 6, 953–959 (2013)PubMedPubMedCentral
131.
go back to reference J. Li, Y. Wang, W. Yu, J. Chen, J. Luo, Expression of serum miR-221 in human hepatocellular carcinoma and its prognostic significance. Biochem. Biophys. Res. Commun. 406, 70–73 (2011)PubMedCrossRef J. Li, Y. Wang, W. Yu, J. Chen, J. Luo, Expression of serum miR-221 in human hepatocellular carcinoma and its prognostic significance. Biochem. Biophys. Res. Commun. 406, 70–73 (2011)PubMedCrossRef
132.
go back to reference M. Bloomston, W.L. Frankel, F. Petrocca, S. Volinia, H. Alder, J.P. Hagan, C.G. Liu, D. Bhatt, C. Taccioli, C.M. Croce, MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA 297, 1901–1908 (2007)PubMedCrossRef M. Bloomston, W.L. Frankel, F. Petrocca, S. Volinia, H. Alder, J.P. Hagan, C.G. Liu, D. Bhatt, C. Taccioli, C.M. Croce, MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA 297, 1901–1908 (2007)PubMedCrossRef
133.
go back to reference Q. Xu, P. Li, X. Chen, L. Zong, Z. Jiang, L. Nan, J. Lei, W. Duan, D. Zhang, X. Li, H. Sha, Z. Wu, Q. Ma, Z. Wang, miR-221/222 induces pancreatic cancer progression through the regulation of matrix metalloproteinases. Oncotarget 6, 14153–14164 (2015) Q. Xu, P. Li, X. Chen, L. Zong, Z. Jiang, L. Nan, J. Lei, W. Duan, D. Zhang, X. Li, H. Sha, Z. Wu, Q. Ma, Z. Wang, miR-221/222 induces pancreatic cancer progression through the regulation of matrix metalloproteinases. Oncotarget 6, 14153–14164 (2015)
134.
go back to reference S. Sarkar, H. Dubaybo, S. Ali, P. Goncalves, S.L. Kollepara, S. Sethi, P.A. Philip, Y. Li, Down-regulation of miR-221 inhibits proliferation of pancreatic cancer cells through up-regulation of PTEN, p27(kip1), p57(kip2), and PUMA. Am. J. Cancer. Res. 3, 465–477 (2013)PubMedPubMedCentral S. Sarkar, H. Dubaybo, S. Ali, P. Goncalves, S.L. Kollepara, S. Sethi, P.A. Philip, Y. Li, Down-regulation of miR-221 inhibits proliferation of pancreatic cancer cells through up-regulation of PTEN, p27(kip1), p57(kip2), and PUMA. Am. J. Cancer. Res. 3, 465–477 (2013)PubMedPubMedCentral
135.
go back to reference Y. Li, T.G. VandenBoom 2nd, D. Kong, Z. Wang, S. Ali, P.A. Philip, F.H. Sarkar, Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res. 69, 6704–6712 (2009)PubMedPubMedCentralCrossRef Y. Li, T.G. VandenBoom 2nd, D. Kong, Z. Wang, S. Ali, P.A. Philip, F.H. Sarkar, Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res. 69, 6704–6712 (2009)PubMedPubMedCentralCrossRef
136.
go back to reference K. Patel, A. Kollory, A. Takashima, S. Sarkar, D.V. Faller, S.K. Ghosh, MicroRNA let-7 downregulates STAT3 phosphorylation in pancreatic cancer cells by increasing SOCS3 expression. Cancer Lett. 347, 54–64 (2014)PubMedPubMedCentralCrossRef K. Patel, A. Kollory, A. Takashima, S. Sarkar, D.V. Faller, S.K. Ghosh, MicroRNA let-7 downregulates STAT3 phosphorylation in pancreatic cancer cells by increasing SOCS3 expression. Cancer Lett. 347, 54–64 (2014)PubMedPubMedCentralCrossRef
137.
go back to reference Y.D. Bhutia, S.W. Hung, M. Krentz, D. Patel, D. Lovin, R. Manoharan, J.M. Thomson, R. Govindarajan, Differential processing of let-7a precursors influences RRM2 expression and chemosensitivity in pancreatic cancer: role of LIN-28 and SET oncoprotein. PLoS One 8, e53436 (2013)PubMedPubMedCentralCrossRef Y.D. Bhutia, S.W. Hung, M. Krentz, D. Patel, D. Lovin, R. Manoharan, J.M. Thomson, R. Govindarajan, Differential processing of let-7a precursors influences RRM2 expression and chemosensitivity in pancreatic cancer: role of LIN-28 and SET oncoprotein. PLoS One 8, e53436 (2013)PubMedPubMedCentralCrossRef
138.
go back to reference S. Watanabe, Y. Ueda, S. Akaboshi, Y. Hino, Y. Sekita, M. Nakao, HMGA2 maintains oncogenic RAS-induced epithelial-mesenchymal transition in human pancreatic cancer cells. Am. J. Pathol. 174, 854–868 (2009)PubMedPubMedCentralCrossRef S. Watanabe, Y. Ueda, S. Akaboshi, Y. Hino, Y. Sekita, M. Nakao, HMGA2 maintains oncogenic RAS-induced epithelial-mesenchymal transition in human pancreatic cancer cells. Am. J. Pathol. 174, 854–868 (2009)PubMedPubMedCentralCrossRef
139.
go back to reference A. Druz, Y.C. Chen, R. Guha, M. Betenbaugh, S.E. Martin, J. Shiloach, Large-scale screening identifies a novel microRNA, miR-15a-3p, which induces apoptosis in human cancer cell lines. RNA Biol. 10, 287–300 (2013)PubMedPubMedCentralCrossRef A. Druz, Y.C. Chen, R. Guha, M. Betenbaugh, S.E. Martin, J. Shiloach, Large-scale screening identifies a novel microRNA, miR-15a-3p, which induces apoptosis in human cancer cell lines. RNA Biol. 10, 287–300 (2013)PubMedPubMedCentralCrossRef
140.
go back to reference S. Guo, X. Xu, Y. Tang, C. Zhang, J. Li, Y. Ouyang, J. Ju, P. Bie, H. Wang, miR-15a inhibits cell proliferation and epithelial to mesenchymal transition in pancreatic ductal adenocarcinoma by down-regulating Bmi-1 expression. Cancer Lett. 344, 40–46 (2014)PubMedCrossRef S. Guo, X. Xu, Y. Tang, C. Zhang, J. Li, Y. Ouyang, J. Ju, P. Bie, H. Wang, miR-15a inhibits cell proliferation and epithelial to mesenchymal transition in pancreatic ductal adenocarcinoma by down-regulating Bmi-1 expression. Cancer Lett. 344, 40–46 (2014)PubMedCrossRef
141.
go back to reference F. Wang, X. Xue, J. Wei, Y. An, J. Yao, H. Cai, J. Wu, C. Dai, Z. Qian, Z. Xu, Y. Miao, hsa-miR-520h downregulates ABCG2 in pancreatic cancer cells to inhibit migration, invasion, and side populations. Br. J. Cancer 103, 567–574 (2010)PubMedPubMedCentralCrossRef F. Wang, X. Xue, J. Wei, Y. An, J. Yao, H. Cai, J. Wu, C. Dai, Z. Qian, Z. Xu, Y. Miao, hsa-miR-520h downregulates ABCG2 in pancreatic cancer cells to inhibit migration, invasion, and side populations. Br. J. Cancer 103, 567–574 (2010)PubMedPubMedCentralCrossRef
142.
go back to reference J. Jiang, C. Yu, M. Chen, H. Zhang, S. Tian, C. Sun, Reduction of miR-29c enhances pancreatic cancer cell migration and stem cell-like phenotype. Oncotarget 6, 2767–2778 (2015) J. Jiang, C. Yu, M. Chen, H. Zhang, S. Tian, C. Sun, Reduction of miR-29c enhances pancreatic cancer cell migration and stem cell-like phenotype. Oncotarget 6, 2767–2778 (2015)
143.
go back to reference M.K. Muniyappa, P. Dowling, M. Henry, P. Meleady, P. Doolan, P. Gammell, M. Clynes, N. Barron, MiRNA-29a regulates the expression of numerous proteins and reduces the invasiveness and proliferation of human carcinoma cell lines. Eur. J. Cancer 45, 3104–3118 (2009)PubMedCrossRef M.K. Muniyappa, P. Dowling, M. Henry, P. Meleady, P. Doolan, P. Gammell, M. Clynes, N. Barron, MiRNA-29a regulates the expression of numerous proteins and reduces the invasiveness and proliferation of human carcinoma cell lines. Eur. J. Cancer 45, 3104–3118 (2009)PubMedCrossRef
144.
go back to reference S. Yu, Z. Lu, C. Liu, Y. Meng, Y. Ma, W. Zhao, J. Liu, J. Yu, J. Chen, miRNA-96 suppresses KRAS and functions as a tumor suppressor gene in pancreatic cancer. Cancer Res. 70, 6015–6025 (2010)PubMedCrossRef S. Yu, Z. Lu, C. Liu, Y. Meng, Y. Ma, W. Zhao, J. Liu, J. Yu, J. Chen, miRNA-96 suppresses KRAS and functions as a tumor suppressor gene in pancreatic cancer. Cancer Res. 70, 6015–6025 (2010)PubMedCrossRef
145.
go back to reference J. Feng, J. Yu, X. Pan, Z. Li, Z. Chen, W. Zhang, B. Wang, L. Yang, H. Xu, G. Zhang, Z. Xu, HERG1 functions as an oncogene in pancreatic cancer and is downregulated by miR-96. Oncotarget 5, 5832–5844 (2014)PubMedPubMedCentralCrossRef J. Feng, J. Yu, X. Pan, Z. Li, Z. Chen, W. Zhang, B. Wang, L. Yang, H. Xu, G. Zhang, Z. Xu, HERG1 functions as an oncogene in pancreatic cancer and is downregulated by miR-96. Oncotarget 5, 5832–5844 (2014)PubMedPubMedCentralCrossRef
146.
go back to reference C. Li, X. Du, S. Tai, X. Zhong, Z. Wang, Z. Hu, L. Zhang, P. Kang, D. Ji, X. Jiang, Q. Zhou, M. Wan, G. Jiang, Y. Cui, GPC1 regulated by miR-96-5p, rather than miR-182-5p, in inhibition of pancreatic carcinoma cell proliferation. Int. J. Mol. Sci. 15, 6314–6327 (2014)PubMedPubMedCentralCrossRef C. Li, X. Du, S. Tai, X. Zhong, Z. Wang, Z. Hu, L. Zhang, P. Kang, D. Ji, X. Jiang, Q. Zhou, M. Wan, G. Jiang, Y. Cui, GPC1 regulated by miR-96-5p, rather than miR-182-5p, in inhibition of pancreatic carcinoma cell proliferation. Int. J. Mol. Sci. 15, 6314–6327 (2014)PubMedPubMedCentralCrossRef
147.
go back to reference X. Huang, W. Lv, J.H. Zhang, D.L. Lu, miR96 functions as a tumor suppressor gene by targeting NUAK1 in pancreatic cancer. Int. J. Mol. Med. 34, 1599–1605 (2014)PubMed X. Huang, W. Lv, J.H. Zhang, D.L. Lu, miR96 functions as a tumor suppressor gene by targeting NUAK1 in pancreatic cancer. Int. J. Mol. Med. 34, 1599–1605 (2014)PubMed
148.
go back to reference D. Li, X. Li, W. Cao, Y. Qi, X. Yang, Antagonism of microRNA-99a promotes cell invasion and down-regulates E-cadherin expression in pancreatic cancer cells by regulating mammalian target of rapamycin. Acta Histochem. 116, 723–729 (2014)PubMedCrossRef D. Li, X. Li, W. Cao, Y. Qi, X. Yang, Antagonism of microRNA-99a promotes cell invasion and down-regulates E-cadherin expression in pancreatic cancer cells by regulating mammalian target of rapamycin. Acta Histochem. 116, 723–729 (2014)PubMedCrossRef
149.
go back to reference Z. Li, X. Li, C. Yu, M. Wang, F. Peng, J. Xiao, R. Tian, J. Jiang, C. Sun, MicroRNA-100 regulates pancreatic cancer cells growth and sensitivity to chemotherapy through targeting FGFR3. Tumour Biol. 35, 11751–11759 (2014)PubMedCrossRef Z. Li, X. Li, C. Yu, M. Wang, F. Peng, J. Xiao, R. Tian, J. Jiang, C. Sun, MicroRNA-100 regulates pancreatic cancer cells growth and sensitivity to chemotherapy through targeting FGFR3. Tumour Biol. 35, 11751–11759 (2014)PubMedCrossRef
150.
go back to reference W. Jiang, W. Gu, R. Qiu, C. Shen, E.Y. YaohaoWu, J. Zhang, J. Zhou, Y. Guo, Z. Li, J. Deng, L. Zeng, J. Tang, Q. Zhi, X. Deng, miRNA-101 suppresses epithelial-to-mesenchymal transition by targeting HMGA2 in pancreatic cancer cells. Anticancer Agents Med. Chem. (2015). doi:10.2174/1871520615666150507122142 W. Jiang, W. Gu, R. Qiu, C. Shen, E.Y. YaohaoWu, J. Zhang, J. Zhou, Y. Guo, Z. Li, J. Deng, L. Zeng, J. Tang, Q. Zhi, X. Deng, miRNA-101 suppresses epithelial-to-mesenchymal transition by targeting HMGA2 in pancreatic cancer cells. Anticancer Agents Med. Chem. (2015). doi:10.​2174/​1871520615666150​507122142
151.
go back to reference A.M. Qazi, O. Gruzdyn, A. Semaan, S. Seward, S. Chamala, V. Dhulipala, S. Sethi, R. Ali-Fehmi, P.A. Philip, D.L. Bouwman, D.W. Weaver, S.A. Gruber, R.B. Batchu, Restoration of E-cadherin expression in pancreatic ductal adenocarcinoma treated with microRNA-101. Surgery 152, 704–711 (2012)PubMedCrossRef A.M. Qazi, O. Gruzdyn, A. Semaan, S. Seward, S. Chamala, V. Dhulipala, S. Sethi, R. Ali-Fehmi, P.A. Philip, D.L. Bouwman, D.W. Weaver, S.A. Gruber, R.B. Batchu, Restoration of E-cadherin expression in pancreatic ductal adenocarcinoma treated with microRNA-101. Surgery 152, 704–711 (2012)PubMedCrossRef
152.
go back to reference K.H. Lee, C. Lotterman, C. Karikari, N. Omura, G. Feldmann, N. Habbe, M.G. Goggins, J.T. Mendell, A. Maitra, Epigenetic silencing of MicroRNA miR-107 regulates cyclin-dependent kinase 6 expression in pancreatic cancer. Pancreatology 9, 293–301 (2009)PubMedPubMedCentralCrossRef K.H. Lee, C. Lotterman, C. Karikari, N. Omura, G. Feldmann, N. Habbe, M.G. Goggins, J.T. Mendell, A. Maitra, Epigenetic silencing of MicroRNA miR-107 regulates cyclin-dependent kinase 6 expression in pancreatic cancer. Pancreatology 9, 293–301 (2009)PubMedPubMedCentralCrossRef
153.
go back to reference P. Wang, L. Chen, J. Zhang, H. Chen, J. Fan, K. Wang, J. Luo, Z. Chen, Z. Meng, L. Liu, Methylation-mediated silencing of the miR-124 genes facilitates pancreatic cancer progression and metastasis by targeting Rac1. Oncogene 33, 514–524 (2014)PubMedCrossRef P. Wang, L. Chen, J. Zhang, H. Chen, J. Fan, K. Wang, J. Luo, Z. Chen, Z. Meng, L. Liu, Methylation-mediated silencing of the miR-124 genes facilitates pancreatic cancer progression and metastasis by targeting Rac1. Oncogene 33, 514–524 (2014)PubMedCrossRef
154.
go back to reference S. Hamada, K. Satoh, W. Fujibuchi, M. Hirota, A. Kanno, J. Unno, A. Masamune, K. Kikuta, K. Kume, T. Shimosegawa, MiR-126 acts as a tumor suppressor in pancreatic cancer cells via the regulation of ADAM9. Mol. Cancer Res. 10, 3–10 (2012)PubMedCrossRef S. Hamada, K. Satoh, W. Fujibuchi, M. Hirota, A. Kanno, J. Unno, A. Masamune, K. Kikuta, K. Kume, T. Shimosegawa, MiR-126 acts as a tumor suppressor in pancreatic cancer cells via the regulation of ADAM9. Mol. Cancer Res. 10, 3–10 (2012)PubMedCrossRef
155.
go back to reference G. Zhao, J.G. Zhang, Y. Shi, Q. Qin, Y. Liu, B. Wang, K. Tian, S.C. Deng, X. Li, S. Zhu, Q. Gong, Y. Niu, C.Y. Wang, MiR-130b is a prognostic marker and inhibits cell proliferation and invasion in pancreatic cancer through targeting STAT3. PLoS One 8, e73803 (2013)PubMedPubMedCentralCrossRef G. Zhao, J.G. Zhang, Y. Shi, Q. Qin, Y. Liu, B. Wang, K. Tian, S.C. Deng, X. Li, S. Zhu, Q. Gong, Y. Niu, C.Y. Wang, MiR-130b is a prognostic marker and inhibits cell proliferation and invasion in pancreatic cancer through targeting STAT3. PLoS One 8, e73803 (2013)PubMedPubMedCentralCrossRef
156.
go back to reference S. Zhang, J. Hao, F. Xie, X. Hu, C. Liu, J. Tong, J. Zhou, J. Wu, C. Shao, Downregulation of miR-132 by promoter methylation contributes to pancreatic cancer development. Carcinogenesis 32, 1183–1189 (2011)PubMedCrossRef S. Zhang, J. Hao, F. Xie, X. Hu, C. Liu, J. Tong, J. Zhou, J. Wu, C. Shao, Downregulation of miR-132 by promoter methylation contributes to pancreatic cancer development. Carcinogenesis 32, 1183–1189 (2011)PubMedCrossRef
157.
go back to reference Z. Dang, W.H. Xu, P. Lu, N. Wu, J. Liu, B. Ruan, L. Zhou, W.J. Song, K.F. Dou, MicroRNA-135a inhibits cell proliferation by targeting Bmi1 in pancreatic ductal adenocarcinoma. Int. J. Biol. Sci. 10, 733–745 (2014)PubMedPubMedCentralCrossRef Z. Dang, W.H. Xu, P. Lu, N. Wu, J. Liu, B. Ruan, L. Zhou, W.J. Song, K.F. Dou, MicroRNA-135a inhibits cell proliferation by targeting Bmi1 in pancreatic ductal adenocarcinoma. Int. J. Biol. Sci. 10, 733–745 (2014)PubMedPubMedCentralCrossRef
158.
go back to reference C. Yu, M. Wang, M. Chen, Y. Huang, J. Jiang, Upregulation of microRNA1385p inhibits pancreatic cancer cell migration and increases chemotherapy sensitivity. Mol. Med. Rep. 12, 5135–5140 (2015)PubMed C. Yu, M. Wang, M. Chen, Y. Huang, J. Jiang, Upregulation of microRNA1385p inhibits pancreatic cancer cell migration and increases chemotherapy sensitivity. Mol. Med. Rep. 12, 5135–5140 (2015)PubMed
159.
go back to reference S. Liang, X. Gong, G. Zhang, G. Huang, Y. Lu, Y. Li, MicroRNA-140 regulates cell growth and invasion in pancreatic duct adenocarcinoma by targeting iASPP. Acta Biochim. Biophys. Sin. (Shanghai) 48, 174–181 (2016) S. Liang, X. Gong, G. Zhang, G. Huang, Y. Lu, Y. Li, MicroRNA-140 regulates cell growth and invasion in pancreatic duct adenocarcinoma by targeting iASPP. Acta Biochim. Biophys. Sin. (Shanghai) 48, 174–181 (2016)
160.
go back to reference T.N. MacKenzie, N. Mujumdar, S. Banerjee, V. Sangwan, A. Sarver, S. Vickers, S. Subramanian, A.K. Saluja, Triptolide induces the expression of miR-142-3p: a negative regulator of heat shock protein 70 and pancreatic cancer cell proliferation. Mol. Cancer Ther. 12, 1266–1275 (2013)PubMedPubMedCentralCrossRef T.N. MacKenzie, N. Mujumdar, S. Banerjee, V. Sangwan, A. Sarver, S. Vickers, S. Subramanian, A.K. Saluja, Triptolide induces the expression of miR-142-3p: a negative regulator of heat shock protein 70 and pancreatic cancer cell proliferation. Mol. Cancer Ther. 12, 1266–1275 (2013)PubMedPubMedCentralCrossRef
161.
go back to reference Y. Hu, Y. Ou, K. Wu, Y. Chen, W. Sun, miR-143 inhibits the metastasis of pancreatic cancer and an associated signaling pathway. Tumour Biol. 33, 1863–1870 (2012)PubMedCrossRef Y. Hu, Y. Ou, K. Wu, Y. Chen, W. Sun, miR-143 inhibits the metastasis of pancreatic cancer and an associated signaling pathway. Tumour Biol. 33, 1863–1870 (2012)PubMedCrossRef
162.
go back to reference H. Pham, C.E. Rodriguez, G.W. Donald, K.M. Hertzer, X.S. Jung, H.H. Chang, A. Moro, H.A. Reber, O.J. Hines, G. Eibl, miR-143 decreases COX-2 mRNA stability and expression in pancreatic cancer cells. Biochem. Biophys. Res. Commun. 439, 6–11 (2013)PubMedPubMedCentralCrossRef H. Pham, C.E. Rodriguez, G.W. Donald, K.M. Hertzer, X.S. Jung, H.H. Chang, A. Moro, H.A. Reber, O.J. Hines, G. Eibl, miR-143 decreases COX-2 mRNA stability and expression in pancreatic cancer cells. Biochem. Biophys. Res. Commun. 439, 6–11 (2013)PubMedPubMedCentralCrossRef
163.
go back to reference T. Han, X.P. Yi, B. Liu, M.J. Ke, Y.X. Li, MicroRNA-145 suppresses cell proliferation, invasion and migration in pancreatic cancer cells by targeting NEDD9. Mol. Med. Rep. 11, 4115–4120 (2015)PubMedPubMedCentral T. Han, X.P. Yi, B. Liu, M.J. Ke, Y.X. Li, MicroRNA-145 suppresses cell proliferation, invasion and migration in pancreatic cancer cells by targeting NEDD9. Mol. Med. Rep. 11, 4115–4120 (2015)PubMedPubMedCentral
164.
go back to reference S. Khan, M.C. Ebeling, M.S. Zaman, M. Sikander, M.M. Yallapu, N. Chauhan, A.M. Yacoubian, S.W. Behrman, N. Zafar, D. Kumar, P.A. Thompson, M. Jaggi, S.C. Chauhan, MicroRNA-145 targets MUC13 and suppresses growth and invasion of pancreatic cancer. Oncotarget 5, 7599–7609 (2014)PubMedPubMedCentralCrossRef S. Khan, M.C. Ebeling, M.S. Zaman, M. Sikander, M.M. Yallapu, N. Chauhan, A.M. Yacoubian, S.W. Behrman, N. Zafar, D. Kumar, P.A. Thompson, M. Jaggi, S.C. Chauhan, MicroRNA-145 targets MUC13 and suppresses growth and invasion of pancreatic cancer. Oncotarget 5, 7599–7609 (2014)PubMedPubMedCentralCrossRef
165.
go back to reference S. Ali, A. Ahmad, A. Aboukameel, A. Ahmed, B. Bao, S. Banerjee, P.A. Philip, F.H. Sarkar, Deregulation of miR-146a expression in a mouse model of pancreatic cancer affecting EGFR signaling. Cancer Lett. 351, 134–142 (2014)PubMedPubMedCentralCrossRef S. Ali, A. Ahmad, A. Aboukameel, A. Ahmed, B. Bao, S. Banerjee, P.A. Philip, F.H. Sarkar, Deregulation of miR-146a expression in a mouse model of pancreatic cancer affecting EGFR signaling. Cancer Lett. 351, 134–142 (2014)PubMedPubMedCentralCrossRef
166.
go back to reference Y. Li, T.G. VandenBoom 2nd, Z. Wang, D. Kong, S. Ali, P.A. Philip, F.H. Sarkar, Up-regulation of miR-146a contributes to the inhibition of invasion of pancreatic cancer cells. Cancer Res. 70, 5703 (2010)PubMedPubMedCentralCrossRef Y. Li, T.G. VandenBoom 2nd, Z. Wang, D. Kong, S. Ali, P.A. Philip, F.H. Sarkar, Up-regulation of miR-146a contributes to the inhibition of invasion of pancreatic cancer cells. Cancer Res. 70, 5703 (2010)PubMedPubMedCentralCrossRef
167.
go back to reference F. Lin, X. Wang, Z. Jie, X. Hong, X. Li, M. Wang, Y. Yu, Inhibitory effects of miR-146b-5p on cell migration and invasion of pancreatic cancer by targeting MMP16. J. Huazhong Univ. Sci. Technolog. Med. Sci. 31, 509–514 (2011)PubMedCrossRef F. Lin, X. Wang, Z. Jie, X. Hong, X. Li, M. Wang, Y. Yu, Inhibitory effects of miR-146b-5p on cell migration and invasion of pancreatic cancer by targeting MMP16. J. Huazhong Univ. Sci. Technolog. Med. Sci. 31, 509–514 (2011)PubMedCrossRef
168.
go back to reference M. Azizi, L. Teimoori-Toolabi, M.K. Arzanani, K. Azadmanesh, P. Fard-Esfahani, S. Zeinali, MicroRNA-148b and microRNA-152 reactivate tumor suppressor genes through suppression of DNA methyltransferase-1 gene in pancreatic cancer cell lines. Cancer Biol. Ther. 15, 419–427 (2014)PubMedPubMedCentralCrossRef M. Azizi, L. Teimoori-Toolabi, M.K. Arzanani, K. Azadmanesh, P. Fard-Esfahani, S. Zeinali, MicroRNA-148b and microRNA-152 reactivate tumor suppressor genes through suppression of DNA methyltransferase-1 gene in pancreatic cancer cell lines. Cancer Biol. Ther. 15, 419–427 (2014)PubMedPubMedCentralCrossRef
169.
go back to reference X. Bofill-De Ros, M. Gironella, C. Fillat, miR-148a- and miR-216a-regulated oncolytic adenoviruses targeting pancreatic tumors attenuate tissue damage without perturbation of miRNA activity. Mol. Ther. 22, 1665–1677 (2014)PubMedPubMedCentralCrossRef X. Bofill-De Ros, M. Gironella, C. Fillat, miR-148a- and miR-216a-regulated oncolytic adenoviruses targeting pancreatic tumors attenuate tissue damage without perturbation of miRNA activity. Mol. Ther. 22, 1665–1677 (2014)PubMedPubMedCentralCrossRef
170.
go back to reference S.T. Liffers, J.B. Munding, M. Vogt, J.D. Kuhlmann, B. Verdoodt, S. Nambiar, A. Maghnouj, A. Mirmohammadsadegh, S.A. Hahn, A. Tannapfel, MicroRNA-148a is down-regulated in human pancreatic ductal adenocarcinomas and regulates cell survival by targeting CDC25B. Lab. Invest. 91, 1472–1479 (2011)PubMedCrossRef S.T. Liffers, J.B. Munding, M. Vogt, J.D. Kuhlmann, B. Verdoodt, S. Nambiar, A. Maghnouj, A. Mirmohammadsadegh, S.A. Hahn, A. Tannapfel, MicroRNA-148a is down-regulated in human pancreatic ductal adenocarcinomas and regulates cell survival by targeting CDC25B. Lab. Invest. 91, 1472–1479 (2011)PubMedCrossRef
171.
go back to reference G. Zhao, J.G. Zhang, Y. Liu, Q. Qin, B. Wang, K. Tian, L. Liu, X. Li, Y. Niu, S.C. Deng, C.Y. Wang, miR-148b functions as a tumor suppressor in pancreatic cancer by targeting AMPKalpha1. Mol. Cancer. Ther. 12, 83–93 (2013)PubMedCrossRef G. Zhao, J.G. Zhang, Y. Liu, Q. Qin, B. Wang, K. Tian, L. Liu, X. Li, Y. Niu, S.C. Deng, C.Y. Wang, miR-148b functions as a tumor suppressor in pancreatic cancer by targeting AMPKalpha1. Mol. Cancer. Ther. 12, 83–93 (2013)PubMedCrossRef
172.
go back to reference L. Farhana, M.I. Dawson, F. Murshed, J.K. Das, A.K. Rishi, J.A. Fontana, Upregulation of miR-150* and miR-630 induces apoptosis in pancreatic cancer cells by targeting IGF-1R. PLoS One 8, e61015 (2013)PubMedPubMedCentralCrossRef L. Farhana, M.I. Dawson, F. Murshed, J.K. Das, A.K. Rishi, J.A. Fontana, Upregulation of miR-150* and miR-630 induces apoptosis in pancreatic cancer cells by targeting IGF-1R. PLoS One 8, e61015 (2013)PubMedPubMedCentralCrossRef
173.
go back to reference Y. Sun, X.L. Jin, T.T. Zhang, C.W. Jia, J. Chen, MiR-150-5p inhibits the proliferation and promoted apoptosis of pancreatic cancer cells. Zhonghua Bing Li Xue Za Zhi 42, 460–464 (2013)PubMed Y. Sun, X.L. Jin, T.T. Zhang, C.W. Jia, J. Chen, MiR-150-5p inhibits the proliferation and promoted apoptosis of pancreatic cancer cells. Zhonghua Bing Li Xue Za Zhi 42, 460–464 (2013)PubMed
174.
go back to reference L. Zhou, W.G. Zhang, D.S. Wang, K.S. Tao, W.J. Song, K.F. Dou, MicroRNA-183 is involved in cell proliferation, survival and poor prognosis in pancreatic ductal adenocarcinoma by regulating Bmi-1. Oncol. Rep. 32, 1734–1740 (2014)PubMed L. Zhou, W.G. Zhang, D.S. Wang, K.S. Tao, W.J. Song, K.F. Dou, MicroRNA-183 is involved in cell proliferation, survival and poor prognosis in pancreatic ductal adenocarcinoma by regulating Bmi-1. Oncol. Rep. 32, 1734–1740 (2014)PubMed
175.
go back to reference H. Liu, X.F. Xu, Y. Zhao, M.C. Tang, Y.Q. Zhou, J. Lu, F.H. Gao, MicroRNA-191 promotes pancreatic cancer progression by targeting USP10. Tumour Biol. 35, 12157–12163 (2014)PubMedCrossRef H. Liu, X.F. Xu, Y. Zhao, M.C. Tang, Y.Q. Zhou, J. Lu, F.H. Gao, MicroRNA-191 promotes pancreatic cancer progression by targeting USP10. Tumour Biol. 35, 12157–12163 (2014)PubMedCrossRef
176.
go back to reference J. Li, F. Kong, K. Wu, K. Song, J. He, W. Sun, miR-193b directly targets STMN1 and uPA genes and suppresses tumor growth and metastasis in pancreatic cancer. Mol. Med. Rep. 10, 2613–2620 (2014)PubMed J. Li, F. Kong, K. Wu, K. Song, J. He, W. Sun, miR-193b directly targets STMN1 and uPA genes and suppresses tumor growth and metastasis in pancreatic cancer. Mol. Med. Rep. 10, 2613–2620 (2014)PubMed
177.
go back to reference C. Marin-Muller, D. Li, U. Bharadwaj, M. Li, C. Chen, S.E. Hodges, W.E. Fisher, Q. Mo, M.C. Hung, Q. Yao, A tumorigenic factor interactome connected through tumor suppressor microRNA-198 in human pancreatic cancer. Clin. Cancer Res. 19, 5901–5913 (2013)PubMedPubMedCentralCrossRef C. Marin-Muller, D. Li, U. Bharadwaj, M. Li, C. Chen, S.E. Hodges, W.E. Fisher, Q. Mo, M.C. Hung, Q. Yao, A tumorigenic factor interactome connected through tumor suppressor microRNA-198 in human pancreatic cancer. Clin. Cancer Res. 19, 5901–5913 (2013)PubMedPubMedCentralCrossRef
178.
go back to reference P. Radhakrishnan, A.M. Mohr, P.M. Grandgenett, M.M. Steele, S.K. Batra, M.A. Hollingsworth, MicroRNA-200c modulates the expression of MUC4 and MUC16 by directly targeting their coding sequences in human pancreatic cancer. PLoS One 8, e73356 (2013)PubMedPubMedCentralCrossRef P. Radhakrishnan, A.M. Mohr, P.M. Grandgenett, M.M. Steele, S.K. Batra, M.A. Hollingsworth, MicroRNA-200c modulates the expression of MUC4 and MUC16 by directly targeting their coding sequences in human pancreatic cancer. PLoS One 8, e73356 (2013)PubMedPubMedCentralCrossRef
179.
go back to reference J. Yu, K. Ohuchida, K. Mizumoto, N. Sato, T. Kayashima, H. Fujita, K. Nakata, M. Tanaka, MicroRNA, hsa-miR-200c, is an independent prognostic factor in pancreatic cancer and its upregulation inhibits pancreatic cancer invasion but increases cell proliferation. Mol. Cancer. 9, 169 (2010). doi:10.1186/1476-4598-9-169 PubMedPubMedCentralCrossRef J. Yu, K. Ohuchida, K. Mizumoto, N. Sato, T. Kayashima, H. Fujita, K. Nakata, M. Tanaka, MicroRNA, hsa-miR-200c, is an independent prognostic factor in pancreatic cancer and its upregulation inhibits pancreatic cancer invasion but increases cell proliferation. Mol. Cancer. 9, 169 (2010). doi:10.​1186/​1476-4598-9-169 PubMedPubMedCentralCrossRef
180.
go back to reference O. Soubani, A.S. Ali, F. Logna, S. Ali, P.A. Philip, F.H. Sarkar, Re-expression of miR-200 by novel approaches regulates the expression of PTEN and MT1-MMP in pancreatic cancer. Carcinogenesis 33, 1563–1571 (2012)PubMedPubMedCentralCrossRef O. Soubani, A.S. Ali, F. Logna, S. Ali, P.A. Philip, F.H. Sarkar, Re-expression of miR-200 by novel approaches regulates the expression of PTEN and MT1-MMP in pancreatic cancer. Carcinogenesis 33, 1563–1571 (2012)PubMedPubMedCentralCrossRef
181.
go back to reference L. Miao, X. Xiong, Y. Lin, Y. Cheng, J. Lu, J. Zhang, N. Cheng, miR-203 inhibits tumor cell migration and invasion via caveolin-1 in pancreatic cancer cells. Oncol. Lett. 7, 658–662 (2014)PubMedPubMedCentral L. Miao, X. Xiong, Y. Lin, Y. Cheng, J. Lu, J. Zhang, N. Cheng, miR-203 inhibits tumor cell migration and invasion via caveolin-1 in pancreatic cancer cells. Oncol. Lett. 7, 658–662 (2014)PubMedPubMedCentral
182.
go back to reference D. Xu, Q. Wang, Y. An, L. Xu, MiR203 regulates the proliferation, apoptosis and cell cycle progression of pancreatic cancer cells by targeting survivin. Mol. Med. Rep. 8, 379–384 (2013)PubMed D. Xu, Q. Wang, Y. An, L. Xu, MiR203 regulates the proliferation, apoptosis and cell cycle progression of pancreatic cancer cells by targeting survivin. Mol. Med. Rep. 8, 379–384 (2013)PubMed
183.
go back to reference N. Ikenaga, K. Ohuchida, K. Mizumoto, J. Yu, T. Kayashima, H. Sakai, H. Fujita, K. Nakata, M. Tanaka, MicroRNA-203 expression as a new prognostic marker of pancreatic adenocarcinoma. Ann. Surg. Oncol. 17, 3120–3128 (2010)PubMedCrossRef N. Ikenaga, K. Ohuchida, K. Mizumoto, J. Yu, T. Kayashima, H. Sakai, H. Fujita, K. Nakata, M. Tanaka, MicroRNA-203 expression as a new prognostic marker of pancreatic adenocarcinoma. Ann. Surg. Oncol. 17, 3120–3128 (2010)PubMedCrossRef
184.
go back to reference A. Mittal, D. Chitkara, S.W. Behrman, R.I. Mahato, Efficacy of gemcitabine conjugated and miRNA-205 complexed micelles for treatment of advanced pancreatic cancer. Biomaterials 35, 7077–7087 (2014)PubMedCrossRef A. Mittal, D. Chitkara, S.W. Behrman, R.I. Mahato, Efficacy of gemcitabine conjugated and miRNA-205 complexed micelles for treatment of advanced pancreatic cancer. Biomaterials 35, 7077–7087 (2014)PubMedCrossRef
185.
go back to reference C. Stahlhut, Y. Suarez, J. Lu, Y. Mishima, A.J. Giraldez, miR-1 and miR-206 regulate angiogenesis by modulating VegfA expression in zebrafish. Development 139, 4356–4364 (2012)PubMedPubMedCentralCrossRef C. Stahlhut, Y. Suarez, J. Lu, Y. Mishima, A.J. Giraldez, miR-1 and miR-206 regulate angiogenesis by modulating VegfA expression in zebrafish. Development 139, 4356–4364 (2012)PubMedPubMedCentralCrossRef
186.
go back to reference I. Keklikoglou, K. Hosaka, C. Bender, A. Bott, C. Koerner, D. Mitra, R. Will, A. Woerner, E. Muenstermann, H. Wilhelm, Y. Cao, S. Wiemann, MicroRNA-206 functions as a pleiotropic modulator of cell proliferation, invasion and lymphangiogenesis in pancreatic adenocarcinoma by targeting ANXA2 and KRAS genes. Oncogene 34, 4867–4878 (2015)PubMedCrossRef I. Keklikoglou, K. Hosaka, C. Bender, A. Bott, C. Koerner, D. Mitra, R. Will, A. Woerner, E. Muenstermann, H. Wilhelm, Y. Cao, S. Wiemann, MicroRNA-206 functions as a pleiotropic modulator of cell proliferation, invasion and lymphangiogenesis in pancreatic adenocarcinoma by targeting ANXA2 and KRAS genes. Oncogene 34, 4867–4878 (2015)PubMedCrossRef
187.
go back to reference M. Maftouh, A. Avan, N. Funel, A.E. Frampton, H. Fiuji, S. Pelliccioni, L. Castellano, V. Galla, G.J. Peters, E. Giovannetti, miR-211 modulates gemcitabine activity through downregulation of ribonucleotide reductase and inhibits the invasive behavior of pancreatic cancer cells. Nucleosides Nucleotides Nucleic Acids 33, 384–393 (2014)PubMedCrossRef M. Maftouh, A. Avan, N. Funel, A.E. Frampton, H. Fiuji, S. Pelliccioni, L. Castellano, V. Galla, G.J. Peters, E. Giovannetti, miR-211 modulates gemcitabine activity through downregulation of ribonucleotide reductase and inhibits the invasive behavior of pancreatic cancer cells. Nucleosides Nucleotides Nucleic Acids 33, 384–393 (2014)PubMedCrossRef
188.
go back to reference S. Wang, X. Chen, M. Tang, MicroRNA-216a inhibits pancreatic cancer by directly targeting Janus kinase 2. Oncol. Rep. 32, 2824–2830 (2014)PubMed S. Wang, X. Chen, M. Tang, MicroRNA-216a inhibits pancreatic cancer by directly targeting Janus kinase 2. Oncol. Rep. 32, 2824–2830 (2014)PubMed
189.
go back to reference X. Zhang, H. Shi, S. Lin, M. Ba, S. Cui, MicroRNA-216a enhances the radiosensitivity of pancreatic cancer cells by inhibiting beclin-1-mediated autophagy. Oncol. Rep. 34, 1557–1564 (2015)PubMed X. Zhang, H. Shi, S. Lin, M. Ba, S. Cui, MicroRNA-216a enhances the radiosensitivity of pancreatic cancer cells by inhibiting beclin-1-mediated autophagy. Oncol. Rep. 34, 1557–1564 (2015)PubMed
190.
go back to reference H. He, S.J. Hao, L. Yao, F. Yang, Y. Di, J. Li, Y.J. Jiang, C. Jin, D.L. Fu, MicroRNA-218 inhibits cell invasion and migration of pancreatic cancer via regulating ROBO1. Cancer Biol. Ther. 15, 1333–1339 (2014)PubMedPubMedCentralCrossRef H. He, S.J. Hao, L. Yao, F. Yang, Y. Di, J. Li, Y.J. Jiang, C. Jin, D.L. Fu, MicroRNA-218 inhibits cell invasion and migration of pancreatic cancer via regulating ROBO1. Cancer Biol. Ther. 15, 1333–1339 (2014)PubMedPubMedCentralCrossRef
191.
go back to reference C.H. Li, K.F. To, J.H. Tong, Z. Xiao, T. Xia, P.B. Lai, S.C. Chow, Y.X. Zhu, S.L. Chan, V.E. Marquez, Y. Chen, Enhancer of zeste homolog 2 silences microRNA-218 in human pancreatic ductal adenocarcinoma cells by inducing formation of heterochromatin. Gastroenterology 144, 1086–1097.e9 (2013)PubMedCrossRef C.H. Li, K.F. To, J.H. Tong, Z. Xiao, T. Xia, P.B. Lai, S.C. Chow, Y.X. Zhu, S.L. Chan, V.E. Marquez, Y. Chen, Enhancer of zeste homolog 2 silences microRNA-218 in human pancreatic ductal adenocarcinoma cells by inducing formation of heterochromatin. Gastroenterology 144, 1086–1097.e9 (2013)PubMedCrossRef
192.
go back to reference Z.L. Zhang, Z.H. Bai, X.B. Wang, L. Bai, F. Miao, H.H. Pei, miR-186 and 326 predict the prognosis of pancreatic ductal adenocarcinoma and affect the proliferation and migration of cancer cells. PLoS One 10, e0118814 (2015)PubMedPubMedCentralCrossRef Z.L. Zhang, Z.H. Bai, X.B. Wang, L. Bai, F. Miao, H.H. Pei, miR-186 and 326 predict the prognosis of pancreatic ductal adenocarcinoma and affect the proliferation and migration of cancer cells. PLoS One 10, e0118814 (2015)PubMedPubMedCentralCrossRef
193.
go back to reference L. Gao, Y. Yang, H. Xu, R. Liu, D. Li, H. Hong, M. Qin, Y. Wang, MiR-335 functions as a tumor suppressor in pancreatic cancer by targeting OCT4. Tumour Biol. 35, 8309–8318 (2014)PubMedCrossRef L. Gao, Y. Yang, H. Xu, R. Liu, D. Li, H. Hong, M. Qin, Y. Wang, MiR-335 functions as a tumor suppressor in pancreatic cancer by targeting OCT4. Tumour Biol. 35, 8309–8318 (2014)PubMedCrossRef
194.
go back to reference R. Guo, J. Gu, Z. Zhang, Y. Wang, C. Gu, MicroRNA-410 functions as a tumor suppressor by targeting angiotensin II type 1 receptor in pancreatic cancer. IUBMB Life 67, 42–53 (2015)PubMedCrossRef R. Guo, J. Gu, Z. Zhang, Y. Wang, C. Gu, MicroRNA-410 functions as a tumor suppressor by targeting angiotensin II type 1 receptor in pancreatic cancer. IUBMB Life 67, 42–53 (2015)PubMedCrossRef
195.
go back to reference R. Guo, Y. Wang, W.Y. Shi, B. Liu, S.Q. Hou, L. Liu, MicroRNA miR-491-5p targeting both TP53 and Bcl-XL induces cell apoptosis in SW1990 pancreatic cancer cells through mitochondria mediated pathway. Molecules 17, 14733–14747 (2012)PubMedCrossRef R. Guo, Y. Wang, W.Y. Shi, B. Liu, S.Q. Hou, L. Liu, MicroRNA miR-491-5p targeting both TP53 and Bcl-XL induces cell apoptosis in SW1990 pancreatic cancer cells through mitochondria mediated pathway. Molecules 17, 14733–14747 (2012)PubMedCrossRef
196.
go back to reference Y. Liu, X. Li, S. Zhu, J.G. Zhang, M. Yang, Q. Qin, S.C. Deng, B. Wang, K. Tian, L. Liu, Y. Niu, C.Y. Wang, G. Zhao, Ectopic expression of miR-494 inhibited the proliferation, invasion and chemoresistance of pancreatic cancer by regulating SIRT1 and c-Myc. Gene Ther. 22, 729–738 (2015)PubMedCrossRef Y. Liu, X. Li, S. Zhu, J.G. Zhang, M. Yang, Q. Qin, S.C. Deng, B. Wang, K. Tian, L. Liu, Y. Niu, C.Y. Wang, G. Zhao, Ectopic expression of miR-494 inhibited the proliferation, invasion and chemoresistance of pancreatic cancer by regulating SIRT1 and c-Myc. Gene Ther. 22, 729–738 (2015)PubMedCrossRef
197.
go back to reference L. Li, Z. Li, X. Kong, D. Xie, Z. Jia, W. Jiang, J. Cui, Y. Du, D. Wei, S. Huang, K. Xie, Down-regulation of MicroRNA 494 via loss of SMAD4 increases FOXM1 and beta-catenin signaling in pancreatic ductal adenocarcinoma cells. Gastroenterology 147, 485–497 (2014) L. Li, Z. Li, X. Kong, D. Xie, Z. Jia, W. Jiang, J. Cui, Y. Du, D. Wei, S. Huang, K. Xie, Down-regulation of MicroRNA 494 via loss of SMAD4 increases FOXM1 and beta-catenin signaling in pancreatic ductal adenocarcinoma cells. Gastroenterology 147, 485–497 (2014)
198.
go back to reference J.W. Xu, T.X. Wang, L. You, L.F. Zheng, H. Shu, T.P. Zhang, Y.P. Zhao, Insulin-like growth factor 1 receptor (IGF-1R) as a target of MiR-497 and plasma IGF-1R levels associated with TNM stage of pancreatic cancer. PLoS One 9, e92847 (2014)PubMedPubMedCentralCrossRef J.W. Xu, T.X. Wang, L. You, L.F. Zheng, H. Shu, T.P. Zhang, Y.P. Zhao, Insulin-like growth factor 1 receptor (IGF-1R) as a target of MiR-497 and plasma IGF-1R levels associated with TNM stage of pancreatic cancer. PLoS One 9, e92847 (2014)PubMedPubMedCentralCrossRef
199.
go back to reference J. Xu, T. Wang, Z. Cao, H. Huang, J. Li, W. Liu, S. Liu, L. You, L. Zhou, T. Zhang, Y. Zhao, MiR-497 downregulation contributes to the malignancy of pancreatic cancer and associates with a poor prognosis. Oncotarget 5, 6983–6993 (2014)PubMedPubMedCentralCrossRef J. Xu, T. Wang, Z. Cao, H. Huang, J. Li, W. Liu, S. Liu, L. You, L. Zhou, T. Zhang, Y. Zhao, MiR-497 downregulation contributes to the malignancy of pancreatic cancer and associates with a poor prognosis. Oncotarget 5, 6983–6993 (2014)PubMedPubMedCentralCrossRef
200.
go back to reference J. Du, X. Zheng, S. Cai, Z. Zhu, J. Tan, B. Hu, Z. Huang, H. Jiao, MicroRNA506 participates in pancreatic cancer pathogenesis by targeting PIM3. Mol. Med. Rep. 12, 5121–5126 (2015)PubMed J. Du, X. Zheng, S. Cai, Z. Zhu, J. Tan, B. Hu, Z. Huang, H. Jiao, MicroRNA506 participates in pancreatic cancer pathogenesis by targeting PIM3. Mol. Med. Rep. 12, 5121–5126 (2015)PubMed
201.
go back to reference B. Song, W. Ji, S. Guo, A. Liu, W. Jing, C. Shao, G. Li, G. Jin, miR-545 inhibited pancreatic ductal adenocarcinoma growth by targeting RIG-I. FEBS Lett. 588, 4375–4381 (2014)PubMedCrossRef B. Song, W. Ji, S. Guo, A. Liu, W. Jing, C. Shao, G. Li, G. Jin, miR-545 inhibited pancreatic ductal adenocarcinoma growth by targeting RIG-I. FEBS Lett. 588, 4375–4381 (2014)PubMedCrossRef
202.
go back to reference H. Heyn, S. Schreek, R. Buurman, T. Focken, B. Schlegelberger, C. Beger, MicroRNA miR-548d is a superior regulator in pancreatic cancer. Pancreas 41, 218–221 (2012)PubMedCrossRef H. Heyn, S. Schreek, R. Buurman, T. Focken, B. Schlegelberger, C. Beger, MicroRNA miR-548d is a superior regulator in pancreatic cancer. Pancreas 41, 218–221 (2012)PubMedCrossRef
203.
go back to reference Y. Sun, T. Zhang, C. Wang, X. Jin, C. Jia, S. Yu, J. Chen, MiRNA-615-5p Functions as a Tumor Suppressor in Pancreatic Ductal Adenocarcinoma by Targeting AKT2. PLoS One 10, e0119783 (2015)PubMedPubMedCentralCrossRef Y. Sun, T. Zhang, C. Wang, X. Jin, C. Jia, S. Yu, J. Chen, MiRNA-615-5p Functions as a Tumor Suppressor in Pancreatic Ductal Adenocarcinoma by Targeting AKT2. PLoS One 10, e0119783 (2015)PubMedPubMedCentralCrossRef
204.
go back to reference Y. Harazono, T. Muramatsu, H. Endo, N. Uzawa, T. Kawano, K. Harada, J. Inazawa, K. Kozaki, miR-655 Is an EMT-suppressive microRNA targeting ZEB1 and TGFBR2. PLoS One 8, e62757 (2013)PubMedPubMedCentralCrossRef Y. Harazono, T. Muramatsu, H. Endo, N. Uzawa, T. Kawano, K. Harada, J. Inazawa, K. Kozaki, miR-655 Is an EMT-suppressive microRNA targeting ZEB1 and TGFBR2. PLoS One 8, e62757 (2013)PubMedPubMedCentralCrossRef
205.
go back to reference S. Muller, S. Raulefs, P. Bruns, F. Afonso-Grunz, A. Plotner, R. Thermann, C. Jager, A.M. Schlitter, B. Kong, I. Regel, W.K. Roth, B. Rotter, K. Hoffmeier, G. Kahl, I. Koch, F.J. Theis, J. Kleeff, P. Winter, C.W. Michalski, Next-generation sequencing reveals novel differentially regulated mRNAs, lncRNAs, miRNAs, sdRNAs and a piRNA in pancreatic cancer. Mol. Cancer. 14, 94 (2015). doi:10.1186/s12943-015-0358-5 PubMedPubMedCentralCrossRef S. Muller, S. Raulefs, P. Bruns, F. Afonso-Grunz, A. Plotner, R. Thermann, C. Jager, A.M. Schlitter, B. Kong, I. Regel, W.K. Roth, B. Rotter, K. Hoffmeier, G. Kahl, I. Koch, F.J. Theis, J. Kleeff, P. Winter, C.W. Michalski, Next-generation sequencing reveals novel differentially regulated mRNAs, lncRNAs, miRNAs, sdRNAs and a piRNA in pancreatic cancer. Mol. Cancer. 14, 94 (2015). doi:10.​1186/​s12943-015-0358-5 PubMedPubMedCentralCrossRef
206.
go back to reference J. Jiang, Z. Li, C. Yu, M. Chen, S. Tian, C. Sun, MiR-1181 inhibits stem cell-like phenotypes and suppresses SOX2 and STAT3 in human pancreatic cancer. Cancer Lett. 356, 962–970 (2015)PubMedCrossRef J. Jiang, Z. Li, C. Yu, M. Chen, S. Tian, C. Sun, MiR-1181 inhibits stem cell-like phenotypes and suppresses SOX2 and STAT3 in human pancreatic cancer. Cancer Lett. 356, 962–970 (2015)PubMedCrossRef
207.
go back to reference S. Shi, Y. Lu, Y. Qin, W. Li, H. Cheng, Y. Xu, J. Xu, J. Long, L. Liu, C. Liu, X. Yu, miR-1247 is correlated with prognosis of pancreatic cancer and inhibits cell proliferation by targeting neuropilins. Curr. Mol. Med. 14, 316–327 (2014)PubMedCrossRef S. Shi, Y. Lu, Y. Qin, W. Li, H. Cheng, Y. Xu, J. Xu, J. Long, L. Liu, C. Liu, X. Yu, miR-1247 is correlated with prognosis of pancreatic cancer and inhibits cell proliferation by targeting neuropilins. Curr. Mol. Med. 14, 316–327 (2014)PubMedCrossRef
208.
go back to reference K. Ohuchida, K. Mizumoto, C. Lin, H. Yamaguchi, T. Ohtsuka, N. Sato, H. Toma, M. Nakamura, E. Nagai, M. Hashizume, M. Tanaka, MicroRNA-10a is overexpressed in human pancreatic cancer and involved in its invasiveness partially via suppression of the HOXA1 gene. Ann. Surg. Oncol. 19, 2394–2402 (2012)PubMedCrossRef K. Ohuchida, K. Mizumoto, C. Lin, H. Yamaguchi, T. Ohtsuka, N. Sato, H. Toma, M. Nakamura, E. Nagai, M. Hashizume, M. Tanaka, MicroRNA-10a is overexpressed in human pancreatic cancer and involved in its invasiveness partially via suppression of the HOXA1 gene. Ann. Surg. Oncol. 19, 2394–2402 (2012)PubMedCrossRef
209.
go back to reference F.U. Weiss, I.J. Marques, J.M. Woltering, D.H. Vlecken, A. Aghdassi, L.I. Partecke, C.D. Heidecke, M.M. Lerch, C.P. Bagowski, Retinoic acid receptor antagonists inhibit miR-10a expression and block metastatic behavior of pancreatic cancer. Gastroenterology 137, 2136–45.e1-7 (2009)PubMedCrossRef F.U. Weiss, I.J. Marques, J.M. Woltering, D.H. Vlecken, A. Aghdassi, L.I. Partecke, C.D. Heidecke, M.M. Lerch, C.P. Bagowski, Retinoic acid receptor antagonists inhibit miR-10a expression and block metastatic behavior of pancreatic cancer. Gastroenterology 137, 2136–45.e1-7 (2009)PubMedCrossRef
210.
go back to reference H. Ouyang, J. Gore, S. Deitz, M. Korc, microRNA-10b enhances pancreatic cancer cell invasion by suppressing TIP30 expression and promoting EGF and TGF-beta actions. Oncogene 33, 4664–4674 (2014)PubMedCrossRef H. Ouyang, J. Gore, S. Deitz, M. Korc, microRNA-10b enhances pancreatic cancer cell invasion by suppressing TIP30 expression and promoting EGF and TGF-beta actions. Oncogene 33, 4664–4674 (2014)PubMedCrossRef
211.
go back to reference K. Nakata, K. Ohuchida, K. Mizumoto, T. Kayashima, N. Ikenaga, H. Sakai, C. Lin, H. Fujita, T. Otsuka, S. Aishima, E. Nagai, Y. Oda, M. Tanaka, MicroRNA-10b is overexpressed in pancreatic cancer, promotes its invasiveness, and correlates with a poor prognosis. Surgery 150, 916–922 (2011)PubMedCrossRef K. Nakata, K. Ohuchida, K. Mizumoto, T. Kayashima, N. Ikenaga, H. Sakai, C. Lin, H. Fujita, T. Otsuka, S. Aishima, E. Nagai, Y. Oda, M. Tanaka, MicroRNA-10b is overexpressed in pancreatic cancer, promotes its invasiveness, and correlates with a poor prognosis. Surgery 150, 916–922 (2011)PubMedCrossRef
212.
go back to reference J. Yu, K. Ohuchida, K. Mizumoto, H. Fujita, K. Nakata, M. Tanaka, MicroRNA miR-17-5p is overexpressed in pancreatic cancer, associated with a poor prognosis, and involved in cancer cell proliferation and invasion. Cancer Biol. Ther. 10, 748–757 (2010)PubMedCrossRef J. Yu, K. Ohuchida, K. Mizumoto, H. Fujita, K. Nakata, M. Tanaka, MicroRNA miR-17-5p is overexpressed in pancreatic cancer, associated with a poor prognosis, and involved in cancer cell proliferation and invasion. Cancer Biol. Ther. 10, 748–757 (2010)PubMedCrossRef
213.
go back to reference H.J. Yan, W.S. Liu, W.H. Sun, J. Wu, M. Ji, Q. Wang, X. Zheng, J.T. Jiang, C.P. Wu, miR-17-5p inhibitor enhances chemosensitivity to gemcitabine via upregulating Bim expression in pancreatic cancer cells. Dig. Dis. Sci. 57, 3160–3167 (2012)PubMedCrossRef H.J. Yan, W.S. Liu, W.H. Sun, J. Wu, M. Ji, Q. Wang, X. Zheng, J.T. Jiang, C.P. Wu, miR-17-5p inhibitor enhances chemosensitivity to gemcitabine via upregulating Bim expression in pancreatic cancer cells. Dig. Dis. Sci. 57, 3160–3167 (2012)PubMedCrossRef
214.
go back to reference Y. Nagao, M. Hisaoka, A. Matsuyama, S. Kanemitsu, T. Hamada, T. Fukuyama, R. Nakano, A. Uchiyama, M. Kawamoto, K. Yamaguchi, H. Hashimoto, Association of microRNA-21 expression with its targets, PDCD4 and TIMP3, in pancreatic ductal adenocarcinoma. Mod. Pathol. 25, 112–121 (2012)PubMedCrossRef Y. Nagao, M. Hisaoka, A. Matsuyama, S. Kanemitsu, T. Hamada, T. Fukuyama, R. Nakano, A. Uchiyama, M. Kawamoto, K. Yamaguchi, H. Hashimoto, Association of microRNA-21 expression with its targets, PDCD4 and TIMP3, in pancreatic ductal adenocarcinoma. Mod. Pathol. 25, 112–121 (2012)PubMedCrossRef
215.
go back to reference J. Dong, Y.P. Zhao, L. Zhou, T.P. Zhang, G. Chen, Bcl-2 upregulation induced by miR-21 via a direct interaction is associated with apoptosis and chemoresistance in MIA PaCa-2 pancreatic cancer cells. Arch. Med. Res. 42, 8–14 (2011)PubMedCrossRef J. Dong, Y.P. Zhao, L. Zhou, T.P. Zhang, G. Chen, Bcl-2 upregulation induced by miR-21 via a direct interaction is associated with apoptosis and chemoresistance in MIA PaCa-2 pancreatic cancer cells. Arch. Med. Res. 42, 8–14 (2011)PubMedCrossRef
216.
go back to reference T. Moriyama, K. Ohuchida, K. Mizumoto, J. Yu, N. Sato, T. Nabae, S. Takahata, H. Toma, E. Nagai, M. Tanaka, MicroRNA-21 modulates biological functions of pancreatic cancer cells including their proliferation, invasion, and chemoresistance. Mol. Cancer Ther. 8, 1067–1074 (2009)PubMedCrossRef T. Moriyama, K. Ohuchida, K. Mizumoto, J. Yu, N. Sato, T. Nabae, S. Takahata, H. Toma, E. Nagai, M. Tanaka, MicroRNA-21 modulates biological functions of pancreatic cancer cells including their proliferation, invasion, and chemoresistance. Mol. Cancer Ther. 8, 1067–1074 (2009)PubMedCrossRef
217.
go back to reference Y. Ma, S. Yu, W. Zhao, Z. Lu, J. Chen, miR-27a regulates the growth, colony formation and migration of pancreatic cancer cells by targeting Sprouty2. Cancer Lett. 298, 150–158 (2010)PubMedCrossRef Y. Ma, S. Yu, W. Zhao, Z. Lu, J. Chen, miR-27a regulates the growth, colony formation and migration of pancreatic cancer cells by targeting Sprouty2. Cancer Lett. 298, 150–158 (2010)PubMedCrossRef
218.
go back to reference G. He, L. Zhang, Q. Li, L. Yang, miR-92a/DUSP10/JNK signalling axis promotes human pancreatic cancer cells proliferation. Biomed. Pharmacother. 68, 25–30 (2014)PubMedCrossRef G. He, L. Zhang, Q. Li, L. Yang, miR-92a/DUSP10/JNK signalling axis promotes human pancreatic cancer cells proliferation. Biomed. Pharmacother. 68, 25–30 (2014)PubMedCrossRef
219.
go back to reference W.G. Li, Y.Z. Yuan, M.M. Qiao, Y.P. Zhang, High dose glargine alters the expression profiles of microRNAs in pancreatic cancer cells. World J. Gastroenterol. 18, 2630–2639 (2012)PubMedPubMedCentralCrossRef W.G. Li, Y.Z. Yuan, M.M. Qiao, Y.P. Zhang, High dose glargine alters the expression profiles of microRNAs in pancreatic cancer cells. World J. Gastroenterol. 18, 2630–2639 (2012)PubMedPubMedCentralCrossRef
220.
go back to reference P. Li, Q. Xu, D. Zhang, X. Li, L. Han, J. Lei, W. Duan, Q. Ma, Z. Wu, Z. Wang, Upregulated miR-106a plays an oncogenic role in pancreatic cancer. FEBS Lett. 588, 705–712 (2014)PubMedCrossRef P. Li, Q. Xu, D. Zhang, X. Li, L. Han, J. Lei, W. Duan, Q. Ma, Z. Wu, Z. Wang, Upregulated miR-106a plays an oncogenic role in pancreatic cancer. FEBS Lett. 588, 705–712 (2014)PubMedCrossRef
221.
go back to reference Z. Bai, J. Sun, X. Wang, H. Wang, H. Pei, Z. Zhang, MicroRNA-153 is a prognostic marker and inhibits cell migration and invasion by targeting SNAI1 in human pancreatic ductal adenocarcinoma. Oncol. Rep. 34, 595–602 (2015)PubMedPubMedCentral Z. Bai, J. Sun, X. Wang, H. Wang, H. Pei, Z. Zhang, MicroRNA-153 is a prognostic marker and inhibits cell migration and invasion by targeting SNAI1 in human pancreatic ductal adenocarcinoma. Oncol. Rep. 34, 595–602 (2015)PubMedPubMedCentral
222.
go back to reference D. Takiuchi, H. Eguchi, H. Nagano, Y. Iwagami, Y. Tomimaru, H. Wada, K. Kawamoto, S. Kobayashi, S. Marubashi, M. Tanemura, M. Mori, Y. Doki, Involvement of microRNA-181b in the gemcitabine resistance of pancreatic cancer cells. Pancreatology 13, 517–523 (2013)PubMedCrossRef D. Takiuchi, H. Eguchi, H. Nagano, Y. Iwagami, Y. Tomimaru, H. Wada, K. Kawamoto, S. Kobayashi, S. Marubashi, M. Tanemura, M. Mori, Y. Doki, Involvement of microRNA-181b in the gemcitabine resistance of pancreatic cancer cells. Pancreatology 13, 517–523 (2013)PubMedCrossRef
223.
go back to reference Z. Song, H. Ren, S. Gao, X. Zhao, H. Zhang, J. Hao, The clinical significance and regulation mechanism of hypoxia-inducible factor-1 and miR-191 expression in pancreatic cancer. Tumour Biol. 35, 11319–11328 (2014)PubMedCrossRef Z. Song, H. Ren, S. Gao, X. Zhao, H. Zhang, J. Hao, The clinical significance and regulation mechanism of hypoxia-inducible factor-1 and miR-191 expression in pancreatic cancer. Tumour Biol. 35, 11319–11328 (2014)PubMedCrossRef
224.
go back to reference C. Zhao, J. Zhang, S. Zhang, D. Yu, Y. Chen, Q. Liu, M. Shi, C. Ni, M. Zhu, Diagnostic and biological significance of microRNA-192 in pancreatic ductal adenocarcinoma. Oncol. Rep. 30, 276–284 (2013)PubMed C. Zhao, J. Zhang, S. Zhang, D. Yu, Y. Chen, Q. Liu, M. Shi, C. Ni, M. Zhu, Diagnostic and biological significance of microRNA-192 in pancreatic ductal adenocarcinoma. Oncol. Rep. 30, 276–284 (2013)PubMed
225.
go back to reference J. Zhang, C.Y. Zhao, S.H. Zhang, D.H. Yu, Y. Chen, Q.H. Liu, M. Shi, C.R. Ni, M.H. Zhu, Upregulation of miR-194 contributes to tumor growth and progression in pancreatic ductal adenocarcinoma. Oncol. Rep. 31, 1157–1164 (2014)PubMed J. Zhang, C.Y. Zhao, S.H. Zhang, D.H. Yu, Y. Chen, Q.H. Liu, M. Shi, C.R. Ni, M.H. Zhu, Upregulation of miR-194 contributes to tumor growth and progression in pancreatic ductal adenocarcinoma. Oncol. Rep. 31, 1157–1164 (2014)PubMed
226.
go back to reference M. Liu, Y. Du, J. Gao, J. Liu, X. Kong, Y. Gong, Z. Li, H. Wu, H. Chen, Aberrant expression miR-196a is associated with abnormal apoptosis, invasion, and proliferation of pancreatic cancer cells. Pancreas 42, 1169–1181 (2013)PubMedCrossRef M. Liu, Y. Du, J. Gao, J. Liu, X. Kong, Y. Gong, Z. Li, H. Wu, H. Chen, Aberrant expression miR-196a is associated with abnormal apoptosis, invasion, and proliferation of pancreatic cancer cells. Pancreas 42, 1169–1181 (2013)PubMedCrossRef
227.
go back to reference F. Huang, J. Tang, X. Zhuang, Y. Zhuang, W. Cheng, W. Chen, H. Yao, S. Zhang, MiR-196a promotes pancreatic cancer progression by targeting nuclear factor kappa-B-inhibitor alpha. PLoS One 9, e87897 (2014)PubMedPubMedCentralCrossRef F. Huang, J. Tang, X. Zhuang, Y. Zhuang, W. Cheng, W. Chen, H. Yao, S. Zhang, MiR-196a promotes pancreatic cancer progression by targeting nuclear factor kappa-B-inhibitor alpha. PLoS One 9, e87897 (2014)PubMedPubMedCentralCrossRef
228.
go back to reference S. Hamada, K. Satoh, S. Miura, M. Hirota, A. Kanno, A. Masamune, K. Kikuta, K. Kume, J. Unno, S. Egawa, F. Motoi, M. Unno, T. Shimosegawa, miR-197 induces epithelial-mesenchymal transition in pancreatic cancer cells by targeting p120 catenin. J. Cell. Physiol. 228, 1255–1263 (2013)PubMedCrossRef S. Hamada, K. Satoh, S. Miura, M. Hirota, A. Kanno, A. Masamune, K. Kikuta, K. Kume, J. Unno, S. Egawa, F. Motoi, M. Unno, T. Shimosegawa, miR-197 induces epithelial-mesenchymal transition in pancreatic cancer cells by targeting p120 catenin. J. Cell. Physiol. 228, 1255–1263 (2013)PubMedCrossRef
229.
go back to reference A. Liu, C. Shao, G. Jin, R. Liu, J. Hao, B. Song, L. Ouyang, X. Hu, miR-208-induced epithelial to mesenchymal transition of pancreatic cancer cells promotes cell metastasis and invasion. Cell Biochem. Biophys. 69, 341–346 (2014)PubMedCrossRef A. Liu, C. Shao, G. Jin, R. Liu, J. Hao, B. Song, L. Ouyang, X. Hu, miR-208-induced epithelial to mesenchymal transition of pancreatic cancer cells promotes cell metastasis and invasion. Cell Biochem. Biophys. 69, 341–346 (2014)PubMedCrossRef
230.
go back to reference J. Jung, C. Yeom, Y.S. Choi, S. Kim, E. Lee, M.J. Park, S.W. Kang, S.B. Kim, S. Chang, Simultaneous inhibition of multiple oncogenic miRNAs by a multi-potent microRNA sponge. Oncotarget 6, 20370–20387 (2015)PubMedPubMedCentralCrossRef J. Jung, C. Yeom, Y.S. Choi, S. Kim, E. Lee, M.J. Park, S.W. Kang, S.B. Kim, S. Chang, Simultaneous inhibition of multiple oncogenic miRNAs by a multi-potent microRNA sponge. Oncotarget 6, 20370–20387 (2015)PubMedPubMedCentralCrossRef
231.
go back to reference J. Ma, B. Fang, F. Zeng, C. Ma, H. Pang, L. Cheng, Y. Shi, H. Wang, B. Yin, J. Xia, Z. Wang, Down-regulation of miR-223 reverses epithelial-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Oncotarget 6, 1740–1749 (2015)PubMedPubMedCentralCrossRef J. Ma, B. Fang, F. Zeng, C. Ma, H. Pang, L. Cheng, Y. Shi, H. Wang, B. Yin, J. Xia, Z. Wang, Down-regulation of miR-223 reverses epithelial-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Oncotarget 6, 1740–1749 (2015)PubMedPubMedCentralCrossRef
232.
go back to reference J. Ma, L. Cheng, H. Liu, J. Zhang, Y. Shi, F. Zeng, L. Miele, F.H. Sarkar, J. Xia, Z. Wang, Genistein down-regulates miR-223 expression in pancreatic cancer cells. Curr. Drug Targets 14, 1150–1156 (2013)PubMedCrossRef J. Ma, L. Cheng, H. Liu, J. Zhang, Y. Shi, F. Zeng, L. Miele, F.H. Sarkar, J. Xia, Z. Wang, Genistein down-regulates miR-223 expression in pancreatic cancer cells. Curr. Drug Targets 14, 1150–1156 (2013)PubMedCrossRef
233.
go back to reference Z. Chen, L.Y. Chen, H.Y. Dai, P. Wang, S. Gao, K. Wang, miR-301a promotes pancreatic cancer cell proliferation by directly inhibiting Bim expression. J. Cell. Biochem. 113, 3229–3235 (2012)PubMedCrossRef Z. Chen, L.Y. Chen, H.Y. Dai, P. Wang, S. Gao, K. Wang, miR-301a promotes pancreatic cancer cell proliferation by directly inhibiting Bim expression. J. Cell. Biochem. 113, 3229–3235 (2012)PubMedCrossRef
234.
go back to reference Z. Lu, Y. Li, A. Takwi, B. Li, J. Zhang, D.J. Conklin, K.H. Young, R. Martin, Y. Li, miR-301a as an NF-kappaB activator in pancreatic cancer cells. EMBO J. 30, 57–67 (2011)PubMedCrossRef Z. Lu, Y. Li, A. Takwi, B. Li, J. Zhang, D.J. Conklin, K.H. Young, R. Martin, Y. Li, miR-301a as an NF-kappaB activator in pancreatic cancer cells. EMBO J. 30, 57–67 (2011)PubMedCrossRef
235.
go back to reference N. Funamizu, C.R. Lacy, S.T. Parpart, A. Takai, Y. Hiyoshi, K. Yanaga, MicroRNA-301b promotes cell invasiveness through targeting TP63 in pancreatic carcinoma cells. Int. J. Oncol. 44, 725–734 (2014)PubMed N. Funamizu, C.R. Lacy, S.T. Parpart, A. Takai, Y. Hiyoshi, K. Yanaga, MicroRNA-301b promotes cell invasiveness through targeting TP63 in pancreatic carcinoma cells. Int. J. Oncol. 44, 725–734 (2014)PubMed
236.
go back to reference S. Hamada, A. Masamune, S. Miura, K. Satoh, T. Shimosegawa, MiR-365 induces gemcitabine resistance in pancreatic cancer cells by targeting the adaptor protein SHC1 and pro-apoptotic regulator BAX. Cell. Signal. 26, 179–185 (2014)PubMedCrossRef S. Hamada, A. Masamune, S. Miura, K. Satoh, T. Shimosegawa, MiR-365 induces gemcitabine resistance in pancreatic cancer cells by targeting the adaptor protein SHC1 and pro-apoptotic regulator BAX. Cell. Signal. 26, 179–185 (2014)PubMedCrossRef
237.
go back to reference D. He, H. Miao, Y. Xu, L. Xiong, Y. Wang, H. Xiang, H. Zhang, Z. Zhang, MiR-371-5p facilitates pancreatic cancer cell proliferation and decreases patient survival. PLoS One 9, e112930 (2014)PubMedPubMedCentralCrossRef D. He, H. Miao, Y. Xu, L. Xiong, Y. Wang, H. Xiang, H. Zhang, Z. Zhang, MiR-371-5p facilitates pancreatic cancer cell proliferation and decreases patient survival. PLoS One 9, e112930 (2014)PubMedPubMedCentralCrossRef
238.
go back to reference K. Wu, G. Hu, X. He, P. Zhou, J. Li, B. He, W. Sun, MicroRNA-424-5p suppresses the expression of SOCS6 in pancreatic cancer. Pathol. Oncol. Res. 19, 739–748 (2013)PubMedCrossRef K. Wu, G. Hu, X. He, P. Zhou, J. Li, B. He, W. Sun, MicroRNA-424-5p suppresses the expression of SOCS6 in pancreatic cancer. Pathol. Oncol. Res. 19, 739–748 (2013)PubMedCrossRef
239.
go back to reference S. Hasegawa, H. Eguchi, H. Nagano, M. Konno, Y. Tomimaru, H. Wada, N. Hama, K. Kawamoto, S. Kobayashi, N. Nishida, J. Koseki, T. Nishimura, N. Gotoh, S. Ohno, N. Yabuta, H. Nojima, M. Mori, Y. Doki, H. Ishii, MicroRNA-1246 expression associated with CCNG2-mediated chemoresistance and stemness in pancreatic cancer. Br. J. Cancer 111, 1572–1580 (2014)PubMedPubMedCentralCrossRef S. Hasegawa, H. Eguchi, H. Nagano, M. Konno, Y. Tomimaru, H. Wada, N. Hama, K. Kawamoto, S. Kobayashi, N. Nishida, J. Koseki, T. Nishimura, N. Gotoh, S. Ohno, N. Yabuta, H. Nojima, M. Mori, Y. Doki, H. Ishii, MicroRNA-1246 expression associated with CCNG2-mediated chemoresistance and stemness in pancreatic cancer. Br. J. Cancer 111, 1572–1580 (2014)PubMedPubMedCentralCrossRef
240.
go back to reference Y. Wang, Z. Li, S. Zheng, Y. Zhou, L. Zhao, H. Ye, X. Zhao, W. Gao, Z. Fu, Q. Zhou, Y. Liu, R. Chen, Expression profile of long non-coding RNAs in pancreatic cancer and their clinical significance as biomarkers. Oncotarget 6, 35684–35698 (2015)PubMedPubMedCentral Y. Wang, Z. Li, S. Zheng, Y. Zhou, L. Zhao, H. Ye, X. Zhao, W. Gao, Z. Fu, Q. Zhou, Y. Liu, R. Chen, Expression profile of long non-coding RNAs in pancreatic cancer and their clinical significance as biomarkers. Oncotarget 6, 35684–35698 (2015)PubMedPubMedCentral
241.
go back to reference Q. Wang, H. Jiang, C. Ping, R. Shen, T. Liu, J. Li, Y. Qian, Y. Tang, S. Cheng, W. Yao, L. Wang, Exploring the Wnt pathway-associated LncRNAs and genes involved in pancreatic carcinogenesis driven by Tp53 mutation. Pharm. Res. 32, 793–805 (2015)PubMedCrossRef Q. Wang, H. Jiang, C. Ping, R. Shen, T. Liu, J. Li, Y. Qian, Y. Tang, S. Cheng, W. Yao, L. Wang, Exploring the Wnt pathway-associated LncRNAs and genes involved in pancreatic carcinogenesis driven by Tp53 mutation. Pharm. Res. 32, 793–805 (2015)PubMedCrossRef
242.
go back to reference A.C. Tahira, M.S. Kubrusly, M.F. Faria, B. Dazzani, R.S. Fonseca, V. Maracaja-Coutinho, S. Verjovski-Almeida, M.C. Machado, E.M. Reis, Long noncoding intronic RNAs are differentially expressed in primary and metastatic pancreatic cancer. Mol. Cancer. 10, 141 (2011). doi:10.1186/1476-4598-10-141 PubMedPubMedCentralCrossRef A.C. Tahira, M.S. Kubrusly, M.F. Faria, B. Dazzani, R.S. Fonseca, V. Maracaja-Coutinho, S. Verjovski-Almeida, M.C. Machado, E.M. Reis, Long noncoding intronic RNAs are differentially expressed in primary and metastatic pancreatic cancer. Mol. Cancer. 10, 141 (2011). doi:10.​1186/​1476-4598-10-141 PubMedPubMedCentralCrossRef
243.
go back to reference S. Cao, W. Liu, F. Li, W. Zhao, C. Qin, Decreased expression of lncRNA GAS5 predicts a poor prognosis in cervical cancer. Int. J. Clin. Exp. Pathol. 7, 6776–6783 (2014)PubMedPubMedCentral S. Cao, W. Liu, F. Li, W. Zhao, C. Qin, Decreased expression of lncRNA GAS5 predicts a poor prognosis in cervical cancer. Int. J. Clin. Exp. Pathol. 7, 6776–6783 (2014)PubMedPubMedCentral
244.
go back to reference M. Mourtada-Maarabouni, M.R. Pickard, V.L. Hedge, F. Farzaneh, G.T. Williams, GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene 28, 195–208 (2009)PubMedCrossRef M. Mourtada-Maarabouni, M.R. Pickard, V.L. Hedge, F. Farzaneh, G.T. Williams, GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene 28, 195–208 (2009)PubMedCrossRef
245.
go back to reference Y. Nakamura, N. Takahashi, E. Kakegawa, K. Yoshida, Y. Ito, H. Kayano, N. Niitsu, I. Jinnai, M. Bessho, The GAS5 (growth arrest-specific transcript 5) gene fuses to BCL6 as a result of t(1;3)(q25;q27) in a patient with B-cell lymphoma. Cancer Genet. Cytogenet. 182, 144–149 (2008)PubMedCrossRef Y. Nakamura, N. Takahashi, E. Kakegawa, K. Yoshida, Y. Ito, H. Kayano, N. Niitsu, I. Jinnai, M. Bessho, The GAS5 (growth arrest-specific transcript 5) gene fuses to BCL6 as a result of t(1;3)(q25;q27) in a patient with B-cell lymphoma. Cancer Genet. Cytogenet. 182, 144–149 (2008)PubMedCrossRef
246.
go back to reference K. Yacqub-Usman, M.R. Pickard, G.T. Williams, Reciprocal regulation of GAS5 lncRNA levels and mTOR inhibitor action in prostate cancer cells. Prostate 75, 693–705 (2015)PubMedCrossRef K. Yacqub-Usman, M.R. Pickard, G.T. Williams, Reciprocal regulation of GAS5 lncRNA levels and mTOR inhibitor action in prostate cancer cells. Prostate 75, 693–705 (2015)PubMedCrossRef
247.
go back to reference X. Lu, Y. Fang, Z. Wang, J. Xie, Q. Zhan, X. Deng, H. Chen, J. Jin, C. Peng, H. Li, B. Shen, Downregulation of gas5 increases pancreatic cancer cell proliferation by regulating CDK6. Cell Tissue Res. 354, 891–896 (2013)PubMedCrossRef X. Lu, Y. Fang, Z. Wang, J. Xie, Q. Zhan, X. Deng, H. Chen, J. Jin, C. Peng, H. Li, B. Shen, Downregulation of gas5 increases pancreatic cancer cell proliferation by regulating CDK6. Cell Tissue Res. 354, 891–896 (2013)PubMedCrossRef
248.
go back to reference P. Ji, S. Diederichs, W. Wang, S. Boing, R. Metzger, P.M. Schneider, N. Tidow, B. Brandt, H. Buerger, E. Bulk, M. Thomas, W.E. Berdel, H. Serve, C. Muller-Tidow, MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 22, 8031–8041 (2003)PubMedCrossRef P. Ji, S. Diederichs, W. Wang, S. Boing, R. Metzger, P.M. Schneider, N. Tidow, B. Brandt, H. Buerger, E. Bulk, M. Thomas, W.E. Berdel, H. Serve, C. Muller-Tidow, MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 22, 8031–8041 (2003)PubMedCrossRef
249.
go back to reference E.J. Pang, R. Yang, X.B. Fu, Y.F. Liu, Overexpression of long non-coding RNA MALAT1 is correlated with clinical progression and unfavorable prognosis in pancreatic cancer. Tumour Biol. 36, 2403–2407 (2015) E.J. Pang, R. Yang, X.B. Fu, Y.F. Liu, Overexpression of long non-coding RNA MALAT1 is correlated with clinical progression and unfavorable prognosis in pancreatic cancer. Tumour Biol. 36, 2403–2407 (2015)
250.
go back to reference F. Jiao, H. Hu, C. Yuan, L. Wang, W. Jiang, Z. Jin, Z. Guo, L. Wang, Elevated expression level of long noncoding RNA MALAT-1 facilitates cell growth, migration and invasion in pancreatic cancer. Oncol. Rep. 32, 2485–2492 (2014)PubMed F. Jiao, H. Hu, C. Yuan, L. Wang, W. Jiang, Z. Jin, Z. Guo, L. Wang, Elevated expression level of long noncoding RNA MALAT-1 facilitates cell growth, migration and invasion in pancreatic cancer. Oncol. Rep. 32, 2485–2492 (2014)PubMed
251.
go back to reference F. Jiao, H. Hu, T. Han, C. Yuan, L. Wang, Z. Jin, Z. Guo, L. Wang, Long noncoding RNA MALAT-1 enhances stem cell-like phenotypes in pancreatic cancer cells. Int. J. Mol. Sci. 16, 6677–6693 (2015)PubMedPubMedCentralCrossRef F. Jiao, H. Hu, T. Han, C. Yuan, L. Wang, Z. Jin, Z. Guo, L. Wang, Long noncoding RNA MALAT-1 enhances stem cell-like phenotypes in pancreatic cancer cells. Int. J. Mol. Sci. 16, 6677–6693 (2015)PubMedPubMedCentralCrossRef
252.
go back to reference K. Panzitt, M.M. Tschernatsch, C. Guelly, T. Moustafa, M. Stradner, H.M. Strohmaier, C.R. Buck, H. Denk, R. Schroeder, M. Trauner, K. Zatloukal, Characterization of HULC, a novel gene with striking up-regulation in hepatocellular carcinoma, as noncoding RNA. Gastroenterology 132, 330–342 (2007)PubMedCrossRef K. Panzitt, M.M. Tschernatsch, C. Guelly, T. Moustafa, M. Stradner, H.M. Strohmaier, C.R. Buck, H. Denk, R. Schroeder, M. Trauner, K. Zatloukal, Characterization of HULC, a novel gene with striking up-regulation in hepatocellular carcinoma, as noncoding RNA. Gastroenterology 132, 330–342 (2007)PubMedCrossRef
254.
go back to reference M. Hajjari, A. Salavaty, HOTAIR: an oncogenic long non-coding RNA in different cancers. Cancer. Biol. Med. 12, 1–9 (2015)PubMedPubMedCentral M. Hajjari, A. Salavaty, HOTAIR: an oncogenic long non-coding RNA in different cancers. Cancer. Biol. Med. 12, 1–9 (2015)PubMedPubMedCentral
255.
go back to reference J.K. Stratford, D.J. Bentrem, J.M. Anderson, C. Fan, K.A. Volmar, J.S. Marron, E.D. Routh, L.S. Caskey, J.C. Samuel, C.J. Der, L.B. Thorne, B.F. Calvo, H.J. Kim, M.S. Talamonti, C.A. Iacobuzio-Donahue, M.A. Hollingsworth, C.M. Perou, J.J. Yeh, A six-gene signature predicts survival of patients with localized pancreatic ductal adenocarcinoma. PLoS Med. 7, e1000307 (2010)PubMedPubMedCentralCrossRef J.K. Stratford, D.J. Bentrem, J.M. Anderson, C. Fan, K.A. Volmar, J.S. Marron, E.D. Routh, L.S. Caskey, J.C. Samuel, C.J. Der, L.B. Thorne, B.F. Calvo, H.J. Kim, M.S. Talamonti, C.A. Iacobuzio-Donahue, M.A. Hollingsworth, C.M. Perou, J.J. Yeh, A six-gene signature predicts survival of patients with localized pancreatic ductal adenocarcinoma. PLoS Med. 7, e1000307 (2010)PubMedPubMedCentralCrossRef
256.
go back to reference M.C. Tsai, O. Manor, Y. Wan, N. Mosammaparast, J.K. Wang, F. Lan, Y. Shi, E. Segal, H.Y. Chang, Long noncoding RNA as modular scaffold of histone modification complexes. Science 329, 689–693 (2010)PubMedPubMedCentralCrossRef M.C. Tsai, O. Manor, Y. Wan, N. Mosammaparast, J.K. Wang, F. Lan, Y. Shi, E. Segal, H.Y. Chang, Long noncoding RNA as modular scaffold of histone modification complexes. Science 329, 689–693 (2010)PubMedPubMedCentralCrossRef
257.
go back to reference R.A. Gupta, N. Shah, K.C. Wang, J. Kim, H.M. Horlings, D.J. Wong, M.C. Tsai, T. Hung, P. Argani, J.L. Rinn, Y. Wang, P. Brzoska, B. Kong, R. Li, R.B. West, M.J. van de Vijver, S. Sukumar, H.Y. Chang, Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464, 1071–1076 (2010)PubMedPubMedCentralCrossRef R.A. Gupta, N. Shah, K.C. Wang, J. Kim, H.M. Horlings, D.J. Wong, M.C. Tsai, T. Hung, P. Argani, J.L. Rinn, Y. Wang, P. Brzoska, B. Kong, R. Li, R.B. West, M.J. van de Vijver, S. Sukumar, H.Y. Chang, Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464, 1071–1076 (2010)PubMedPubMedCentralCrossRef
258.
go back to reference Y. Jiang, Z. Li, S. Zheng, H. Chen, X. Zhao, W. Gao, Z. Bi, K. You, Y. Wang, W. Li, L. Li, Y. Liu, R. Chen, The long non-coding RNA HOTAIR affects the radiosensitivity of pancreatic ductal adenocarcinoma by regulating the expression of Wnt inhibitory factor 1. Tumour Biol. (2015). doi:10.1007/s13277-015-4234-0 Y. Jiang, Z. Li, S. Zheng, H. Chen, X. Zhao, W. Gao, Z. Bi, K. You, Y. Wang, W. Li, L. Li, Y. Liu, R. Chen, The long non-coding RNA HOTAIR affects the radiosensitivity of pancreatic ductal adenocarcinoma by regulating the expression of Wnt inhibitory factor 1. Tumour Biol. (2015). doi:10.​1007/​s13277-015-4234-0
259.
go back to reference A.E. Teschendorff, S.H. Lee, A. Jones, H. Fiegl, M. Kalwa, W. Wagner, K. Chindera, I. Evans, L. Dubeau, A. Orjalo, H.M. Horlings, L. Niederreiter, A. Kaser, W. Yang, E.L. Goode, B.L. Fridley, R.G. Jenner, E.M. Berns, E. Wik, H.B. Salvesen, G.B. Wisman, A.G. van der Zee, B. Davidson, C.G. Trope, S. Lambrechts, I. Vergote, H. Calvert, I.J. Jacobs, M. Widschwendter, HOTAIR and its surrogate DNA methylation signature indicate carboplatin resistance in ovarian cancer. Genome Med. 7, 108 (2015). doi:10.1186/s13073-015-0233-4 PubMedPubMedCentralCrossRef A.E. Teschendorff, S.H. Lee, A. Jones, H. Fiegl, M. Kalwa, W. Wagner, K. Chindera, I. Evans, L. Dubeau, A. Orjalo, H.M. Horlings, L. Niederreiter, A. Kaser, W. Yang, E.L. Goode, B.L. Fridley, R.G. Jenner, E.M. Berns, E. Wik, H.B. Salvesen, G.B. Wisman, A.G. van der Zee, B. Davidson, C.G. Trope, S. Lambrechts, I. Vergote, H. Calvert, I.J. Jacobs, M. Widschwendter, HOTAIR and its surrogate DNA methylation signature indicate carboplatin resistance in ovarian cancer. Genome Med. 7, 108 (2015). doi:10.​1186/​s13073-015-0233-4 PubMedPubMedCentralCrossRef
260.
go back to reference K.C. Wang, Y.W. Yang, B. Liu, A. Sanyal, R. Corces-Zimmerman, Y. Chen, B.R. Lajoie, A. Protacio, R.A. Flynn, R.A. Gupta, J. Wysocka, M. Lei, J. Dekker, J.A. Helms, H.Y. Chang, A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472, 120–124 (2011)PubMedPubMedCentralCrossRef K.C. Wang, Y.W. Yang, B. Liu, A. Sanyal, R. Corces-Zimmerman, Y. Chen, B.R. Lajoie, A. Protacio, R.A. Flynn, R.A. Gupta, J. Wysocka, M. Lei, J. Dekker, J.A. Helms, H.Y. Chang, A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472, 120–124 (2011)PubMedPubMedCentralCrossRef
261.
go back to reference J.J. Song, R.E. Kingston, WDR5 interacts with mixed lineage leukemia (MLL) protein via the histone H3-binding pocket. J. Biol. Chem. 283, 35258–35264 (2008)PubMedPubMedCentralCrossRef J.J. Song, R.E. Kingston, WDR5 interacts with mixed lineage leukemia (MLL) protein via the histone H3-binding pocket. J. Biol. Chem. 283, 35258–35264 (2008)PubMedPubMedCentralCrossRef
262.
go back to reference L. Quagliata, M.S. Matter, S. Piscuoglio, L. Arabi, C. Ruiz, A. Procino, M. Kovac, F. Moretti, Z. Makowska, T. Boldanova, J.B. Andersen, M. Hammerle, L. Tornillo, M.H. Heim, S. Diederichs, C. Cillo, L.M. Terracciano, Long noncoding RNA HOTTIP/HOXA13 expression is associated with disease progression and predicts outcome in hepatocellular carcinoma patients. Hepatology 59, 911–923 (2014)PubMedPubMedCentralCrossRef L. Quagliata, M.S. Matter, S. Piscuoglio, L. Arabi, C. Ruiz, A. Procino, M. Kovac, F. Moretti, Z. Makowska, T. Boldanova, J.B. Andersen, M. Hammerle, L. Tornillo, M.H. Heim, S. Diederichs, C. Cillo, L.M. Terracciano, Long noncoding RNA HOTTIP/HOXA13 expression is associated with disease progression and predicts outcome in hepatocellular carcinoma patients. Hepatology 59, 911–923 (2014)PubMedPubMedCentralCrossRef
263.
go back to reference Z. Li, X. Zhao, Y. Zhou, Y. Liu, Q. Zhou, H. Ye, Y. Wang, J. Zeng, Y. Song, W. Gao, S. Zheng, B. Zhuang, H. Chen, W. Li, H. Li, H. Li, Z. Fu, R. Chen, The long non-coding RNA HOTTIP promotes progression and gemcitabine resistance by regulating HOXA13 in pancreatic cancer. J. Transl. Med. 13, 84 (2015). doi:10.1186/s12967-015-0442-z PubMedPubMedCentralCrossRef Z. Li, X. Zhao, Y. Zhou, Y. Liu, Q. Zhou, H. Ye, Y. Wang, J. Zeng, Y. Song, W. Gao, S. Zheng, B. Zhuang, H. Chen, W. Li, H. Li, H. Li, Z. Fu, R. Chen, The long non-coding RNA HOTTIP promotes progression and gemcitabine resistance by regulating HOXA13 in pancreatic cancer. J. Transl. Med. 13, 84 (2015). doi:10.​1186/​s12967-015-0442-z PubMedPubMedCentralCrossRef
264.
go back to reference Y. Cheng, I. Jutooru, G. Chadalapaka, J.C. Corton, S. Safe, The long non-coding RNA HOTTIP enhances pancreatic cancer cell proliferation, survival and migration. Oncotarget 6, 10840–10852 (2015) Y. Cheng, I. Jutooru, G. Chadalapaka, J.C. Corton, S. Safe, The long non-coding RNA HOTTIP enhances pancreatic cancer cell proliferation, survival and migration. Oncotarget 6, 10840–10852 (2015)
265.
go back to reference Y.W. Sun, Y.F. Chen, J. Li, Y.M. Huo, D.J. Liu, R. Hua, J.F. Zhang, W. Liu, J.Y. Yang, X.L. Fu, T. Yan, J. Hong, H. Cao, A novel long non-coding RNA ENST00000480739 suppresses tumour cell invasion by regulating OS-9 and HIF-1alpha in pancreatic ductal adenocarcinoma. Br. J. Cancer 111, 2131–2141 (2014)PubMedPubMedCentralCrossRef Y.W. Sun, Y.F. Chen, J. Li, Y.M. Huo, D.J. Liu, R. Hua, J.F. Zhang, W. Liu, J.Y. Yang, X.L. Fu, T. Yan, J. Hong, H. Cao, A novel long non-coding RNA ENST00000480739 suppresses tumour cell invasion by regulating OS-9 and HIF-1alpha in pancreatic ductal adenocarcinoma. Br. J. Cancer 111, 2131–2141 (2014)PubMedPubMedCentralCrossRef
266.
go back to reference S. Zheng, H. Chen, Y. Wang, W. Gao, Z. Fu, Q. Zhou, Y. Jiang, Q. Lin, L. Tan, H. Ye, X. Zhao, Y. Luo, G. Li, L. Ye, Y. Liu, W. Li, Z. Li, R. Chen, Long non-coding RNA LOC389641 promotes progression of pancreatic ductal adenocarcinoma and increases cell invasion by regulating E-cadherin in a TNFRSF10A-related manner. Cancer Lett. 37, 354–365 (2016) S. Zheng, H. Chen, Y. Wang, W. Gao, Z. Fu, Q. Zhou, Y. Jiang, Q. Lin, L. Tan, H. Ye, X. Zhao, Y. Luo, G. Li, L. Ye, Y. Liu, W. Li, Z. Li, R. Chen, Long non-coding RNA LOC389641 promotes progression of pancreatic ductal adenocarcinoma and increases cell invasion by regulating E-cadherin in a TNFRSF10A-related manner. Cancer Lett. 37, 354–365 (2016)
267.
go back to reference A. Ashkenazi, R.C. Pai, S. Fong, S. Leung, D.A. Lawrence, S.A. Marsters, C. Blackie, L. Chang, A.E. McMurtrey, A. Hebert, L. DeForge, I.L. Koumenis, D. Lewis, L. Harris, J. Bussiere, H. Koeppen, Z. Shahrokh, R.H. Schwall, Safety and antitumor activity of recombinant soluble Apo2 ligand. J. Clin. Invest. 104, 155–162 (1999)PubMedPubMedCentralCrossRef A. Ashkenazi, R.C. Pai, S. Fong, S. Leung, D.A. Lawrence, S.A. Marsters, C. Blackie, L. Chang, A.E. McMurtrey, A. Hebert, L. DeForge, I.L. Koumenis, D. Lewis, L. Harris, J. Bussiere, H. Koeppen, Z. Shahrokh, R.H. Schwall, Safety and antitumor activity of recombinant soluble Apo2 ligand. J. Clin. Invest. 104, 155–162 (1999)PubMedPubMedCentralCrossRef
268.
go back to reference I. Ariel, S. Ayesh, E.J. Perlman, G. Pizov, V. Tanos, T. Schneider, V.A. Erdmann, D. Podeh, D. Komitowski, A.S. Quasem, N. de Groot, A. Hochberg, The product of the imprinted H19 gene is an oncofetal RNA. Mol. Pathol. 50, 34–44 (1997)PubMedPubMedCentralCrossRef I. Ariel, S. Ayesh, E.J. Perlman, G. Pizov, V. Tanos, T. Schneider, V.A. Erdmann, D. Podeh, D. Komitowski, A.S. Quasem, N. de Groot, A. Hochberg, The product of the imprinted H19 gene is an oncofetal RNA. Mol. Pathol. 50, 34–44 (1997)PubMedPubMedCentralCrossRef
269.
go back to reference T. Arima, T. Matsuda, N. Takagi, N. Wake, Association of IGF2 and H19 imprinting with choriocarcinoma development. Cancer Genet. Cytogenet. 93, 39–47 (1997)PubMedCrossRef T. Arima, T. Matsuda, N. Takagi, N. Wake, Association of IGF2 and H19 imprinting with choriocarcinoma development. Cancer Genet. Cytogenet. 93, 39–47 (1997)PubMedCrossRef
270.
go back to reference G. Banet, O. Bibi, I. Matouk, S. Ayesh, M. Laster, K.M. Kimber, M. Tykocinski, N. de Groot, A. Hochberg, P. Ohana, Characterization of human and mouse H19 regulatory sequences. Mol. Biol. Rep. 27, 157–165 (2000)PubMedCrossRef G. Banet, O. Bibi, I. Matouk, S. Ayesh, M. Laster, K.M. Kimber, M. Tykocinski, N. de Groot, A. Hochberg, P. Ohana, Characterization of human and mouse H19 regulatory sequences. Mol. Biol. Rep. 27, 157–165 (2000)PubMedCrossRef
271.
go back to reference I.J. Matouk, N. DeGroot, S. Mezan, S. Ayesh, R. Abu-lail, A. Hochberg, E. Galun, The H19 non-coding RNA is essential for human tumor growth. PLoS One 2, e845 (2007)PubMedPubMedCentralCrossRef I.J. Matouk, N. DeGroot, S. Mezan, S. Ayesh, R. Abu-lail, A. Hochberg, E. Galun, The H19 non-coding RNA is essential for human tumor growth. PLoS One 2, e845 (2007)PubMedPubMedCentralCrossRef
272.
go back to reference C. Ma, K. Nong, H. Zhu, W. Wang, X. Huang, Z. Yuan, K. Ai, H19 promotes pancreatic cancer metastasis by derepressing let-7’s suppression on its target HMGA2-mediated EMT. Tumour Biol. 35, 9163–9169 (2014)PubMedCrossRef C. Ma, K. Nong, H. Zhu, W. Wang, X. Huang, Z. Yuan, K. Ai, H19 promotes pancreatic cancer metastasis by derepressing let-7’s suppression on its target HMGA2-mediated EMT. Tumour Biol. 35, 9163–9169 (2014)PubMedCrossRef
273.
go back to reference D. Amit, A. Hochberg, Development of targeted therapy for a broad spectrum of cancers (pancreatic cancer, ovarian cancer, glioblastoma and HCC) mediated by a double promoter plasmid expressing diphtheria toxin under the control of H19 and IGF2-P4 regulatory sequences. Int. J. Clin. Exp. Med. 5, 296–305 (2012)PubMedPubMedCentral D. Amit, A. Hochberg, Development of targeted therapy for a broad spectrum of cancers (pancreatic cancer, ovarian cancer, glioblastoma and HCC) mediated by a double promoter plasmid expressing diphtheria toxin under the control of H19 and IGF2-P4 regulatory sequences. Int. J. Clin. Exp. Med. 5, 296–305 (2012)PubMedPubMedCentral
274.
go back to reference A.A. Sidi, P. Ohana, S. Benjamin, M. Shalev, J.H. Ransom, D. Lamm, A. Hochberg, I. Leibovitch, Phase I/II marker lesion study of intravesical BC-819 DNA plasmid in H19 over expressing superficial bladder cancer refractory to bacillus Calmette-Guerin. J. Urol. 180, 2379–2383 (2008)PubMedCrossRef A.A. Sidi, P. Ohana, S. Benjamin, M. Shalev, J.H. Ransom, D. Lamm, A. Hochberg, I. Leibovitch, Phase I/II marker lesion study of intravesical BC-819 DNA plasmid in H19 over expressing superficial bladder cancer refractory to bacillus Calmette-Guerin. J. Urol. 180, 2379–2383 (2008)PubMedCrossRef
275.
go back to reference A. Mizrahi, A. Czerniak, T. Levy, S. Amiur, J. Gallula, I. Matouk, R. Abu-lail, V. Sorin, T. Birman, N. de Groot, A. Hochberg, P. Ohana, Development of targeted therapy for ovarian cancer mediated by a plasmid expressing diphtheria toxin under the control of H19 regulatory sequences. J.Transl.Med. 7, 69 (2009). doi:10.1186/1479-5876-7-69 PubMedPubMedCentralCrossRef A. Mizrahi, A. Czerniak, T. Levy, S. Amiur, J. Gallula, I. Matouk, R. Abu-lail, V. Sorin, T. Birman, N. de Groot, A. Hochberg, P. Ohana, Development of targeted therapy for ovarian cancer mediated by a plasmid expressing diphtheria toxin under the control of H19 regulatory sequences. J.Transl.Med. 7, 69 (2009). doi:10.​1186/​1479-5876-7-69 PubMedPubMedCentralCrossRef
276.
go back to reference ClinicalTrials.gov [Internet] Identifier: NCT01413087, Efficacy and safety of BC-819 and gemcitabine in patients with locally advanced pancreatic adenocarcinoma (LAPC-BC-819), 2015 (2012) ClinicalTrials.gov [Internet] Identifier: NCT01413087, Efficacy and safety of BC-819 and gemcitabine in patients with locally advanced pancreatic adenocarcinoma (LAPC-BC-819), 2015 (2012)
277.
go back to reference J.H. Liu, G. Chen, Y.W. Dang, C.J. Li, D.Z. Luo, Expression and prognostic significance of lncRNA MALAT1 in pancreatic cancer tissues. Asian Pac. J. Cancer Prev. 15, 2971–2977 (2014)PubMedCrossRef J.H. Liu, G. Chen, Y.W. Dang, C.J. Li, D.Z. Luo, Expression and prognostic significance of lncRNA MALAT1 in pancreatic cancer tissues. Asian Pac. J. Cancer Prev. 15, 2971–2977 (2014)PubMedCrossRef
278.
go back to reference E. Heister, V. Neves, C. Lamprecht, S.R.P. Silva, H.M. Coley, J. McFadden, Drug loading, dispersion stability, and therapeutic efficacy in targeted drug delivery with carbon nanotubes. 50, 622–632 (2012) E. Heister, V. Neves, C. Lamprecht, S.R.P. Silva, H.M. Coley, J. McFadden, Drug loading, dispersion stability, and therapeutic efficacy in targeted drug delivery with carbon nanotubes. 50, 622–632 (2012)
279.
go back to reference C.J. Cheng, R. Bahal, I.A. Babar, Z. Pincus, F. Barrera, C. Liu, A. Svoronos, D.T. Braddock, P.M. Glazer, D.M. Engelman, W.M. Saltzman, F.J. Slack, MicroRNA silencing for cancer therapy targeted to the tumour microenvironment. Nature 518, 107–110 (2015)PubMedCrossRef C.J. Cheng, R. Bahal, I.A. Babar, Z. Pincus, F. Barrera, C. Liu, A. Svoronos, D.T. Braddock, P.M. Glazer, D.M. Engelman, W.M. Saltzman, F.J. Slack, MicroRNA silencing for cancer therapy targeted to the tumour microenvironment. Nature 518, 107–110 (2015)PubMedCrossRef
280.
go back to reference C.F. Bennett, E.E. Swayze, RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu. Rev. Pharmacol. Toxicol. 50, 259–293 (2010)PubMedCrossRef C.F. Bennett, E.E. Swayze, RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu. Rev. Pharmacol. Toxicol. 50, 259–293 (2010)PubMedCrossRef
282.
go back to reference C.W. Kimbrough, A. Khanal, M. Zeiderman, B.R. Khanal, N.C. Burton, K.M. McMasters, S.M. Vickers, W.E. Grizzle, L.R. McNally, Targeting acidity in pancreatic adenocarcinoma: multispectral optoacoustic tomography detects pH-low insertion peptide probes in vivo. Clin. Cancer Res. 21, 4576–4585 (2015) C.W. Kimbrough, A. Khanal, M. Zeiderman, B.R. Khanal, N.C. Burton, K.M. McMasters, S.M. Vickers, W.E. Grizzle, L.R. McNally, Targeting acidity in pancreatic adenocarcinoma: multispectral optoacoustic tomography detects pH-low insertion peptide probes in vivo. Clin. Cancer Res. 21, 4576–4585 (2015)
283.
go back to reference H. Atkinson, R. Chalmers, Delivering the goods: viral and non-viral gene therapy systems and the inherent limits on cargo DNA and internal sequences. Genetica 138, 485–498 (2010)PubMedCrossRef H. Atkinson, R. Chalmers, Delivering the goods: viral and non-viral gene therapy systems and the inherent limits on cargo DNA and internal sequences. Genetica 138, 485–498 (2010)PubMedCrossRef
284.
285.
go back to reference G. Almer, K.L. Summers, B. Scheicher, J. Kellner, I. Stelzer, G. Leitinger, A. Gries, R. Prassl, A. Zimmer, H. Mangge, Interleukin 10-coated nanoparticle systems compared for molecular imaging of atherosclerotic lesions. Int. J. Nanomedicine 9, 4211–4222 (2014)PubMedPubMedCentral G. Almer, K.L. Summers, B. Scheicher, J. Kellner, I. Stelzer, G. Leitinger, A. Gries, R. Prassl, A. Zimmer, H. Mangge, Interleukin 10-coated nanoparticle systems compared for molecular imaging of atherosclerotic lesions. Int. J. Nanomedicine 9, 4211–4222 (2014)PubMedPubMedCentral
286.
go back to reference S. Zalba, A.M. Contreras, A. Haeri, T.L. Ten Hagen, I. Navarro, G. Koning, M.J. Garrido, Cetuximab-oxaliplatin-liposomes for epidermal growth factor receptor targeted chemotherapy of colorectal cancer. J. Control. Release 210, 26–38 (2015)PubMedCrossRef S. Zalba, A.M. Contreras, A. Haeri, T.L. Ten Hagen, I. Navarro, G. Koning, M.J. Garrido, Cetuximab-oxaliplatin-liposomes for epidermal growth factor receptor targeted chemotherapy of colorectal cancer. J. Control. Release 210, 26–38 (2015)PubMedCrossRef
287.
go back to reference K. Bates, K. Kostarelos, Carbon nanotubes as vectors for gene therapy: past achievements, present challenges and future goals. Adv. Drug Deliv. Rev. 65, 2023–2033 (2013)PubMedCrossRef K. Bates, K. Kostarelos, Carbon nanotubes as vectors for gene therapy: past achievements, present challenges and future goals. Adv. Drug Deliv. Rev. 65, 2023–2033 (2013)PubMedCrossRef
288.
go back to reference H.L. Janssen, H.W. Reesink, E.J. Lawitz, S. Zeuzem, M. Rodriguez-Torres, K. Patel, A.J. van der Meer, A.K. Patick, A. Chen, Y. Zhou, R. Persson, B.D. King, S. Kauppinen, A.A. Levin, M.R. Hodges, Treatment of HCV infection by targeting microRNA. N. Engl. J. Med. 368, 1685–1694 (2013)PubMedCrossRef H.L. Janssen, H.W. Reesink, E.J. Lawitz, S. Zeuzem, M. Rodriguez-Torres, K. Patel, A.J. van der Meer, A.K. Patick, A. Chen, Y. Zhou, R. Persson, B.D. King, S. Kauppinen, A.A. Levin, M.R. Hodges, Treatment of HCV infection by targeting microRNA. N. Engl. J. Med. 368, 1685–1694 (2013)PubMedCrossRef
289.
go back to reference E.C. Verna, V. Dhar, Endoscopic ultrasound-guided fine needle injection for cancer therapy: the evolving role of therapeutic endoscopic ultrasound. Ther. Adv. Gastroenterol. 1, 103–109 (2008)CrossRef E.C. Verna, V. Dhar, Endoscopic ultrasound-guided fine needle injection for cancer therapy: the evolving role of therapeutic endoscopic ultrasound. Ther. Adv. Gastroenterol. 1, 103–109 (2008)CrossRef
290.
go back to reference A. Kambadakone, A. Thabet, D.A. Gervais, P.R. Mueller, R.S. Arellano, CT-guided celiac plexus neurolysis: a review of anatomy, indications, technique, and tips for successful treatment. Radiographics 31, 1599–1621 (2011)PubMedCrossRef A. Kambadakone, A. Thabet, D.A. Gervais, P.R. Mueller, R.S. Arellano, CT-guided celiac plexus neurolysis: a review of anatomy, indications, technique, and tips for successful treatment. Radiographics 31, 1599–1621 (2011)PubMedCrossRef
291.
go back to reference V. Scaiewicz, V. Sorin, Y. Fellig, T. Birman, A. Mizrahi, J. Galula, R. Abu-Lail, T. Shneider, P. Ohana, L. Buscail, A. Hochberg, A. Czerniak, Use of H19 gene regulatory sequences in DNA-based therapy for pancreatic cancer. J. Oncol. 2010, 178174 (2010)PubMedPubMedCentralCrossRef V. Scaiewicz, V. Sorin, Y. Fellig, T. Birman, A. Mizrahi, J. Galula, R. Abu-Lail, T. Shneider, P. Ohana, L. Buscail, A. Hochberg, A. Czerniak, Use of H19 gene regulatory sequences in DNA-based therapy for pancreatic cancer. J. Oncol. 2010, 178174 (2010)PubMedPubMedCentralCrossRef
292.
go back to reference J. Kota, R.R. Chivukula, K.A. O’Donnell, E.A. Wentzel, C.L. Montgomery, H.W. Hwang, T.C. Chang, P. Vivekanandan, M. Torbenson, K.R. Clark, J.R. Mendell, J.T. Mendell, Therapeutic delivery of miR-26a inhibits cancer cell proliferation and induces tumor-specific apoptosis. Cell 137, 1005–1017 (2009)PubMedPubMedCentralCrossRef J. Kota, R.R. Chivukula, K.A. O’Donnell, E.A. Wentzel, C.L. Montgomery, H.W. Hwang, T.C. Chang, P. Vivekanandan, M. Torbenson, K.R. Clark, J.R. Mendell, J.T. Mendell, Therapeutic delivery of miR-26a inhibits cancer cell proliferation and induces tumor-specific apoptosis. Cell 137, 1005–1017 (2009)PubMedPubMedCentralCrossRef
293.
go back to reference G.A. Calin, C.D. Dumitru, M. Shimizu, R. Bichi, S. Zupo, E. Noch, H. Aldler, S. Rattan, M. Keating, K. Rai, L. Rassenti, T. Kipps, M. Negrini, F. Bullrich, C.M. Croce, Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. U. S. A. 99, 15524–15529 (2002)PubMedPubMedCentralCrossRef G.A. Calin, C.D. Dumitru, M. Shimizu, R. Bichi, S. Zupo, E. Noch, H. Aldler, S. Rattan, M. Keating, K. Rai, L. Rassenti, T. Kipps, M. Negrini, F. Bullrich, C.M. Croce, Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. U. S. A. 99, 15524–15529 (2002)PubMedPubMedCentralCrossRef
294.
go back to reference H.A. Burris 3rd, M.J. Moore, J. Andersen, M.R. Green, M.L. Rothenberg, M.R. Modiano, M.C. Cripps, R.K. Portenoy, A.M. Storniolo, P. Tarassoff, R. Nelson, F.A. Dorr, C.D. Stephens, D.D. Von Hoff, Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J. Clin. Oncol. 15, 2403–2413 (1997)PubMed H.A. Burris 3rd, M.J. Moore, J. Andersen, M.R. Green, M.L. Rothenberg, M.R. Modiano, M.C. Cripps, R.K. Portenoy, A.M. Storniolo, P. Tarassoff, R. Nelson, F.A. Dorr, C.D. Stephens, D.D. Von Hoff, Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J. Clin. Oncol. 15, 2403–2413 (1997)PubMed
295.
go back to reference Y. Ren, J. Gao, J.Q. Liu, X.W. Wang, J.J. Gu, H.J. Huang, Y.F. Gong, Z.S. Li, Differential signature of fecal microRNAs in patients with pancreatic cancer. Mol. Med. Rep. 6, 201–209 (2012)PubMed Y. Ren, J. Gao, J.Q. Liu, X.W. Wang, J.J. Gu, H.J. Huang, Y.F. Gong, Z.S. Li, Differential signature of fecal microRNAs in patients with pancreatic cancer. Mol. Med. Rep. 6, 201–209 (2012)PubMed
296.
go back to reference M. Humeau, A. Vignolle-Vidoni, F. Sicard, F. Martins, B. Bournet, L. Buscail, J. Torrisani, P. Cordelier, Salivary MicroRNA in pancreatic cancer patients. PLoS One 10, e0130996 (2015)PubMedPubMedCentralCrossRef M. Humeau, A. Vignolle-Vidoni, F. Sicard, F. Martins, B. Bournet, L. Buscail, J. Torrisani, P. Cordelier, Salivary MicroRNA in pancreatic cancer patients. PLoS One 10, e0130996 (2015)PubMedPubMedCentralCrossRef
297.
298.
go back to reference J. Liu, J. Gao, Y. Du, Z. Li, Y. Ren, J. Gu, X. Wang, Y. Gong, W. Wang, X. Kong, Combination of plasma microRNAs with serum CA19-9 for early detection of pancreatic cancer. Int. J. Cancer 131, 683–691 (2012)PubMedCrossRef J. Liu, J. Gao, Y. Du, Z. Li, Y. Ren, J. Gu, X. Wang, Y. Gong, W. Wang, X. Kong, Combination of plasma microRNAs with serum CA19-9 for early detection of pancreatic cancer. Int. J. Cancer 131, 683–691 (2012)PubMedCrossRef
299.
go back to reference K.H. Lee, J.K. Lee, D.W. Choi, I.G. Do, I. Sohn, K.T. Jang, S.H. Jung, J.S. Heo, S.H. Choi, K.T. Lee, Postoperative prognosis prediction of pancreatic cancer with seven MicroRNAs. Pancreas 44, 764–768 (2015) K.H. Lee, J.K. Lee, D.W. Choi, I.G. Do, I. Sohn, K.T. Jang, S.H. Jung, J.S. Heo, S.H. Choi, K.T. Lee, Postoperative prognosis prediction of pancreatic cancer with seven MicroRNAs. Pancreas 44, 764–768 (2015)
Metadata
Title
Non-coding RNAs in pancreatic cancer: challenges and opportunities for clinical application
Authors
V. Taucher
H. Mangge
J. Haybaeck
Publication date
01-08-2016
Publisher
Springer Netherlands
Published in
Cellular Oncology / Issue 4/2016
Print ISSN: 2211-3428
Electronic ISSN: 2211-3436
DOI
https://doi.org/10.1007/s13402-016-0275-7

Other articles of this Issue 4/2016

Cellular Oncology 4/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine