Skip to main content
Top
Published in: Cellular Oncology 4/2016

01-08-2016 | Original Paper

Prognostic implications of securin expression and sub-cellular localization in human breast cancer

Authors: N. Gurvits, H. Repo, E. Löyttyniemi, M. Nykänen, J. Anttinen, T. Kuopio, K. Talvinen, P. Kronqvist

Published in: Cellular Oncology | Issue 4/2016

Login to get access

Abstract

Purpose

Securin belongs to a class of cell cycle regulators that prevent metaphase-to-anaphase transition until sister chromatid separation is complete. Evidence is accumulating that securin has a prognostic impact on a variety of malignancies but, thus far, the role and regulation of securin expression and its sub-cellular localization have not been systematically addressed in breast cancer.

Methods

In total 470 breast cancer specimens with follow-up data for up to 22 years were included. Immunohistochemical staining and immunofluorescence double-staining were performed for securin and its regulating proteins PTTG1IP, CDC20 and BUBR1. Prognostic associations were evaluated between the expression patterns of these proteins and established prognosticators of invasive breast cancer and patient survival.

Results

We found that a high fraction of securin expressing cancer cells predicted an unfavorable clinical outcome of the breast cancer patients (p < 0.001). Also in multivariate analyses, the fraction of securin expressing cancer cells served as an independent prognosticator of a poor survival (p < 0.0001). We also found that the sub-cellular localization of securin exhibited prognostic power, since cytoplasmic securin expression in the cancer cells appeared to be associated with aggressive breast cancer subtypes and high breast cancer-associated mortality rates (p = 0.003). Through immunofluorescence double-staining, we found that PTTG1IP, CDC20 and BUBR1 exhibited distinct patterns of co-expression with securin, suggesting a regulatory role in the metaphase-to-anaphase transition in human breast cancer cells. We also noted that a subgroup of triple-negative breast carcinomas exhibited deviant expression patterns for the proteins studied.

Conclusions

Our data indicate that securin expression may serve as a strong and independent prognosticator of breast cancer outcome and that a cytoplasmic localization of the protein may provide additional prognostic information, particularly in the biologically and clinically challenging subgroup of triple-negative breast carcinomas. The sub-cellular localization of securin appears to reflect the expression of PTTG1IP, CDC20 and BUBR1, which may participate in the regulation of securin activity and, ultimately, in the survival of breast cancer patients.
Literature
1.
go back to reference F. Salehi, K. Kovacs, B.W. Scheithauer, R.V. Lloyd, M. Cusimano, Pituitary tumor-transforming gene in endocrine and other neoplasms: a review and update. Endocr. Relat. Cancer. 15, 721–743 (2008)CrossRefPubMed F. Salehi, K. Kovacs, B.W. Scheithauer, R.V. Lloyd, M. Cusimano, Pituitary tumor-transforming gene in endocrine and other neoplasms: a review and update. Endocr. Relat. Cancer. 15, 721–743 (2008)CrossRefPubMed
2.
go back to reference L. Pei, S. Melmed, Isolation and characterization of a pituitary tumor-transforming gene (PTTG). Mol. Endocrinol. 11, 433–441 (1997)CrossRefPubMed L. Pei, S. Melmed, Isolation and characterization of a pituitary tumor-transforming gene (PTTG). Mol. Endocrinol. 11, 433–441 (1997)CrossRefPubMed
3.
go back to reference G. Fang, H. Yu, M.W. Kirschner, Direct binding of CDC20 protein family members activates the anaphase-promoting complex in mitosis and G1. Mol. Cell 2, 163–171 (1998)CrossRefPubMed G. Fang, H. Yu, M.W. Kirschner, Direct binding of CDC20 protein family members activates the anaphase-promoting complex in mitosis and G1. Mol. Cell 2, 163–171 (1998)CrossRefPubMed
4.
5.
go back to reference J.M. Peters, The anaphase-promoting complex: proteolysis in mitosis and beyond. Mol. Cell 9, 931–943 (2002)CrossRefPubMed J.M. Peters, The anaphase-promoting complex: proteolysis in mitosis and beyond. Mol. Cell 9, 931–943 (2002)CrossRefPubMed
6.
7.
go back to reference G. Vlotides, T. Eigler, S. Melmed, Pituitary tumor-transforming gene: physiology and implications for tumorigenesis. Endocr. Rev. 28, 165–186 (2007)CrossRefPubMed G. Vlotides, T. Eigler, S. Melmed, Pituitary tumor-transforming gene: physiology and implications for tumorigenesis. Endocr. Rev. 28, 165–186 (2007)CrossRefPubMed
8.
go back to reference W.H. Li, L. Chang, Y.X. Xia, L. Wang, Y.Y. Liu, Y.H. Wang, Z. Jiang, J. Xiao, Z.R. Wang, Knockdown of PTTG1 inhibits the growth and invasion of lung adenocarcinoma cells through regulation of TGFB1/SMAD3 signaling. Int. J. Immunopathol. Pharmacol. 28, 45–52 (2015)CrossRefPubMed W.H. Li, L. Chang, Y.X. Xia, L. Wang, Y.Y. Liu, Y.H. Wang, Z. Jiang, J. Xiao, Z.R. Wang, Knockdown of PTTG1 inhibits the growth and invasion of lung adenocarcinoma cells through regulation of TGFB1/SMAD3 signaling. Int. J. Immunopathol. Pharmacol. 28, 45–52 (2015)CrossRefPubMed
9.
go back to reference S. Caporali, E. Alvino, L. Levati, A.I. Esposito, M. Ciomei, M.G. Brasca, D. del Bufalo, M. Desideri, E. Bonmassar, U. Pfeffer, S. d’Atri, Down-regulation of the PTTG1 proto-oncogene contributes to the melanoma suppressive effects of the cyclin-dependent kinase inhibitor PHA-848125. Biochem. Pharmacol. 84, 598–611 (2012)CrossRefPubMed S. Caporali, E. Alvino, L. Levati, A.I. Esposito, M. Ciomei, M.G. Brasca, D. del Bufalo, M. Desideri, E. Bonmassar, U. Pfeffer, S. d’Atri, Down-regulation of the PTTG1 proto-oncogene contributes to the melanoma suppressive effects of the cyclin-dependent kinase inhibitor PHA-848125. Biochem. Pharmacol. 84, 598–611 (2012)CrossRefPubMed
10.
go back to reference V. Ramaswamy, J.S. Williams, K.M. Robinson, R.L. Sopko, M.C. Schultz, Global control of histone modification by the anaphase-promoting complex. Mol. Cell. Biol. 23, 9136–9149 (2003)CrossRefPubMedPubMedCentral V. Ramaswamy, J.S. Williams, K.M. Robinson, R.L. Sopko, M.C. Schultz, Global control of histone modification by the anaphase-promoting complex. Mol. Cell. Biol. 23, 9136–9149 (2003)CrossRefPubMedPubMedCentral
11.
go back to reference K. Talvinen, J. Tuikkala, O. Nevalainen, A. Rantanen, P. Hirsimäki, J. Sundström, P. Kronqvist, Proliferation marker securin identifies favourable outcome in invasive ductal breast cancer. Br. J. Cancer 99, 335–340 (2008)CrossRefPubMedPubMedCentral K. Talvinen, J. Tuikkala, O. Nevalainen, A. Rantanen, P. Hirsimäki, J. Sundström, P. Kronqvist, Proliferation marker securin identifies favourable outcome in invasive ductal breast cancer. Br. J. Cancer 99, 335–340 (2008)CrossRefPubMedPubMedCentral
12.
go back to reference X. Zhang, G.A. Horwitz, T.R. Prezant, A. Valentini, M. Nakashima, M.D. Bronstein, S. Melmed, Structure, expression, and function of human pituitary tumortransforming gene (PTTG). Mol. Endocrinol. 13, 156–166 (1999)CrossRefPubMed X. Zhang, G.A. Horwitz, T.R. Prezant, A. Valentini, M. Nakashima, M.D. Bronstein, S. Melmed, Structure, expression, and function of human pituitary tumortransforming gene (PTTG). Mol. Endocrinol. 13, 156–166 (1999)CrossRefPubMed
13.
15.
go back to reference S. Yan, C. Zhou, X. Lou, Z. Xiao, H. Zhu, Q. Wang, Pttg overexpression promotes lymph node metastasis in human esophageal squamous cell carcinoma. Cancer Res. 69, 3283–3290 (2009)CrossRefPubMed S. Yan, C. Zhou, X. Lou, Z. Xiao, H. Zhu, Q. Wang, Pttg overexpression promotes lymph node metastasis in human esophageal squamous cell carcinoma. Cancer Res. 69, 3283–3290 (2009)CrossRefPubMed
16.
go back to reference M.L. Zhang, S. Lu, S.S. Zheng, Epigenetic changes of pituitary tumor-derived transforming gene 1 in pancreatic cancer. Hepatobil. Pancreat. Dis. Int. 7, 313–317 (2008) M.L. Zhang, S. Lu, S.S. Zheng, Epigenetic changes of pituitary tumor-derived transforming gene 1 in pancreatic cancer. Hepatobil. Pancreat. Dis. Int. 7, 313–317 (2008)
17.
go back to reference J. Ai, Z. Zhang, D. Xin, H. Zhu, Q. Yan, Z. Xin, Identification of over-expressed genes in human renal cell carcinoma by combining suppression subtractive hybridization and cDNA library array. Sci. China C. Life. Sci. 47, 148–157 (2004)CrossRefPubMed J. Ai, Z. Zhang, D. Xin, H. Zhu, Q. Yan, Z. Xin, Identification of over-expressed genes in human renal cell carcinoma by combining suppression subtractive hybridization and cDNA library array. Sci. China C. Life. Sci. 47, 148–157 (2004)CrossRefPubMed
18.
go back to reference A. Dominguez, F. Ramos-Morales, F. Romero, R.M. Rios, F. Dreyfus, M. Tortolero, Hpttg, a human homologue of rat Pttg, is overexpressed in hematopoietic neoplasms. Evidence for a transcriptional activation function of hpttg. Oncogene 17, 2187–2193 (1998)CrossRefPubMed A. Dominguez, F. Ramos-Morales, F. Romero, R.M. Rios, F. Dreyfus, M. Tortolero, Hpttg, a human homologue of rat Pttg, is overexpressed in hematopoietic neoplasms. Evidence for a transcriptional activation function of hpttg. Oncogene 17, 2187–2193 (1998)CrossRefPubMed
19.
go back to reference B. Chen, Z. Hou, C. Li, Y. Tong, MiRNA-494 inhibits metastasis of cervical cancer through Pttg1. Tumour Biol. 36, 7143–7149 (2015)CrossRefPubMed B. Chen, Z. Hou, C. Li, Y. Tong, MiRNA-494 inhibits metastasis of cervical cancer through Pttg1. Tumour Biol. 36, 7143–7149 (2015)CrossRefPubMed
20.
go back to reference C. Zhou, Y. Tong, K. Wawrowsky, S. Melmed, Pttg acts as a stat3 target gene for colorectal cancer cell growth and motility. Oncogene 33, 851–861 (2014)CrossRefPubMed C. Zhou, Y. Tong, K. Wawrowsky, S. Melmed, Pttg acts as a stat3 target gene for colorectal cancer cell growth and motility. Oncogene 33, 851–861 (2014)CrossRefPubMed
21.
go back to reference S. Huang, Q. Liao, L. Li, D. Xin, Pttg1 inhibits smad3 in prostate cancer cells to promote their proliferation. Tumour Biol. 35, 6265–6270 (2014)CrossRefPubMed S. Huang, Q. Liao, L. Li, D. Xin, Pttg1 inhibits smad3 in prostate cancer cells to promote their proliferation. Tumour Biol. 35, 6265–6270 (2014)CrossRefPubMed
22.
go back to reference C. Solbach, M. Roller, S. Peters, M. Nicoletti, M. Kaufmann, R. Knecht, Pituitary tumor-transforming gene (PTTG): a novel target for antitumor therapy. Anticancer Res. 25, 121–125 (2005)PubMed C. Solbach, M. Roller, S. Peters, M. Nicoletti, M. Kaufmann, R. Knecht, Pituitary tumor-transforming gene (PTTG): a novel target for antitumor therapy. Anticancer Res. 25, 121–125 (2005)PubMed
23.
go back to reference F. Grizzi, S. di Biccari, B. Fiamengo, S. Štifter, P. Colombo, Pituitary tumor-transforming gene 1 is expressed in primary ductal breast carcinoma, lymph node infiltration, and distant metastases. Dis. Markers 35, 267–272 (2013)CrossRefPubMedPubMedCentral F. Grizzi, S. di Biccari, B. Fiamengo, S. Štifter, P. Colombo, Pituitary tumor-transforming gene 1 is expressed in primary ductal breast carcinoma, lymph node infiltration, and distant metastases. Dis. Markers 35, 267–272 (2013)CrossRefPubMedPubMedCentral
24.
go back to reference M.J. Demeure, K.E. Coan, C.S. Grant, R.A. Komorowski, E. Stephan, S. Sinari, D. Mount, K.J. Bussey, PTTG1 overexpression in adrenocortical cancer is associated with poor survival and represents a potential therapeutic target. Surgery 154, 1405–1416 (2013)CrossRefPubMedPubMedCentral M.J. Demeure, K.E. Coan, C.S. Grant, R.A. Komorowski, E. Stephan, S. Sinari, D. Mount, K.J. Bussey, PTTG1 overexpression in adrenocortical cancer is associated with poor survival and represents a potential therapeutic target. Surgery 154, 1405–1416 (2013)CrossRefPubMedPubMedCentral
25.
go back to reference F. Salehi, B.W. Scheithauer, S. Sharma, K. Kovacs, R.V. Lloyd, M.D. Cusimano, D.G. Munoz, Immunohistochemical expression of PTTG in brain tumors. Anticancer Res. 33, 119–222 (2013)PubMed F. Salehi, B.W. Scheithauer, S. Sharma, K. Kovacs, R.V. Lloyd, M.D. Cusimano, D.G. Munoz, Immunohistochemical expression of PTTG in brain tumors. Anticancer Res. 33, 119–222 (2013)PubMed
26.
go back to reference N. Genkai, J. Homma, M. Sano, R. Tanaka, R. Yamanaka, Increased expression of pituitary tumor-transforming gene (PTTG)-1 is correlated with poor prognosis in glioma patients. Oncol. Rep. 15, 1569–1574 (2006)PubMed N. Genkai, J. Homma, M. Sano, R. Tanaka, R. Yamanaka, Increased expression of pituitary tumor-transforming gene (PTTG)-1 is correlated with poor prognosis in glioma patients. Oncol. Rep. 15, 1569–1574 (2006)PubMed
27.
go back to reference K. Talvinen, H. Karra, R. Pitkänen, I. Ahonen, M. Nykänen, M. Lintunen, M. Söderström, T. Kuopio, P. Kronqvist, Low cdc27 and high Securin expression predict short survival for breast cancer patients. APMIS 121, 945–953 (2013)CrossRefPubMed K. Talvinen, H. Karra, R. Pitkänen, I. Ahonen, M. Nykänen, M. Lintunen, M. Söderström, T. Kuopio, P. Kronqvist, Low cdc27 and high Securin expression predict short survival for breast cancer patients. APMIS 121, 945–953 (2013)CrossRefPubMed
28.
go back to reference H. Karra, R. Pitkänen, M. Nykänen, K. Talvinen, T. Kuopio, M. Söderström, P. Kronqvist, Securin predicts aneuploidy and survival in breast cancer. Histopathology 60, 586–596 (2012)CrossRefPubMed H. Karra, R. Pitkänen, M. Nykänen, K. Talvinen, T. Kuopio, M. Söderström, P. Kronqvist, Securin predicts aneuploidy and survival in breast cancer. Histopathology 60, 586–596 (2012)CrossRefPubMed
29.
go back to reference H. Karra, H. Repo, I. Ahonen, E. Löyttyniemi, R. Pitkänen, M. Lintunen, T. Kuopio, M. Söderström, P. Kronqvist, Cdc20 and securin overexpression predict short-term breast cancer survival. Br. J. Cancer 110, 2905–2913 (2014)CrossRefPubMedPubMedCentral H. Karra, H. Repo, I. Ahonen, E. Löyttyniemi, R. Pitkänen, M. Lintunen, T. Kuopio, M. Söderström, P. Kronqvist, Cdc20 and securin overexpression predict short-term breast cancer survival. Br. J. Cancer 110, 2905–2913 (2014)CrossRefPubMedPubMedCentral
30.
go back to reference C. Sáez, M.A. Japón, F. Ramos-Morales, F. Romero, D.I. Segura, M. Tortolero, J.A. Pintor-Toro, hpttg is over-expressed in pituitary adenomas and other primary epithelial neoplasias. Oncogene 18, 5473–5476 (1999)CrossRefPubMed C. Sáez, M.A. Japón, F. Ramos-Morales, F. Romero, D.I. Segura, M. Tortolero, J.A. Pintor-Toro, hpttg is over-expressed in pituitary adenomas and other primary epithelial neoplasias. Oncogene 18, 5473–5476 (1999)CrossRefPubMed
31.
go back to reference F. Pierconti, D. Milardi, M. Martini, G. Grande, T. Cenci, G. Gulino, L.M. Larocca, G. Rindi, A. Pontecorvi, L. de Marinis, Pituitary-tumour-transforming-gene 1 expression in testicular cancer. Andrologia 47, 427–432 (2015)CrossRefPubMed F. Pierconti, D. Milardi, M. Martini, G. Grande, T. Cenci, G. Gulino, L.M. Larocca, G. Rindi, A. Pontecorvi, L. de Marinis, Pituitary-tumour-transforming-gene 1 expression in testicular cancer. Andrologia 47, 427–432 (2015)CrossRefPubMed
32.
go back to reference C. Wei, X. Yang, J. Xi, W. Wu, Z. Yang, W. Wang, Z. Tang, Q. Ying, Y. Zhang, High expression of pituitary tumor-transforming gene-1 predicts poor prognosis in clear cell renal cell carcinoma. Mol. Clin. Oncol. 3, 387–391 (2015)PubMed C. Wei, X. Yang, J. Xi, W. Wu, Z. Yang, W. Wang, Z. Tang, Q. Ying, Y. Zhang, High expression of pituitary tumor-transforming gene-1 predicts poor prognosis in clear cell renal cell carcinoma. Mol. Clin. Oncol. 3, 387–391 (2015)PubMed
33.
go back to reference A.L. Stratford, K. Boelaert, L.A. Tannahill, D.S. Kim, A. Warfield, M.C. Eggo, N.J. Gittoes, L.S. Young, J.A. Franklyn, C.J. McCabe, Pituitary tumor transforming gene binding factor: a novel transforming gene in thyroid tumorigenesis. J. Clin. Endocrinol. Metab. 90, 4341–4349 (2005)CrossRefPubMed A.L. Stratford, K. Boelaert, L.A. Tannahill, D.S. Kim, A. Warfield, M.C. Eggo, N.J. Gittoes, L.S. Young, J.A. Franklyn, C.J. McCabe, Pituitary tumor transforming gene binding factor: a novel transforming gene in thyroid tumorigenesis. J. Clin. Endocrinol. Metab. 90, 4341–4349 (2005)CrossRefPubMed
34.
go back to reference W. Chien, L. Pei, A novel binding factor facilitates nuclear translocation and transcriptional activation function of the pituitary tumor-transforming gene product. J. Biol. Chem. 275, 19422–19427 (2000)CrossRefPubMed W. Chien, L. Pei, A novel binding factor facilitates nuclear translocation and transcriptional activation function of the pituitary tumor-transforming gene product. J. Biol. Chem. 275, 19422–19427 (2000)CrossRefPubMed
35.
go back to reference C. Hsueh, J. Lin, Y. Chang, Prognostic significance of pituitary tumor-transforming gene-binding factor (PBF) expression in papillary thyroid carcinoma. Clin. Endocrinol. 78, 303–309 (2012)CrossRef C. Hsueh, J. Lin, Y. Chang, Prognostic significance of pituitary tumor-transforming gene-binding factor (PBF) expression in papillary thyroid carcinoma. Clin. Endocrinol. 78, 303–309 (2012)CrossRef
36.
go back to reference M.L. Read, G.D. Lewy, J.C. Fong, Proto-oncogene PBF/PTTG1IP regulates thyroid cell growth and represses radioiodide treatment. Cancer Res. 71, 6153–6164 (2011)CrossRefPubMedPubMedCentral M.L. Read, G.D. Lewy, J.C. Fong, Proto-oncogene PBF/PTTG1IP regulates thyroid cell growth and represses radioiodide treatment. Cancer Res. 71, 6153–6164 (2011)CrossRefPubMedPubMedCentral
37.
go back to reference M.L. Read, R.I. Seed, B. Modasia, P.P. Kwan, N. Sharma, V.E. Smith, R.J. Watkins, S. Bansal, T. Gagliano, A.L. Stratford, T. Ismail, M.J. Wakelam, D.S. Kim, S.T. Ward, K. Boelaert, J.A. Franklyn, A.S. Turnell, C.J. McCabe, The proto-oncogene PBF binds p53 and is associated with prognostic features in colorectal cancer. Mol. Carcinog. 55, 15–26 (2016)CrossRefPubMed M.L. Read, R.I. Seed, B. Modasia, P.P. Kwan, N. Sharma, V.E. Smith, R.J. Watkins, S. Bansal, T. Gagliano, A.L. Stratford, T. Ismail, M.J. Wakelam, D.S. Kim, S.T. Ward, K. Boelaert, J.A. Franklyn, A.S. Turnell, C.J. McCabe, The proto-oncogene PBF binds p53 and is associated with prognostic features in colorectal cancer. Mol. Carcinog. 55, 15–26 (2016)CrossRefPubMed
38.
go back to reference M.L. Read, R.I. Seed, J.C. Fong, B. Modasia, G.A. Ryan, R.J. Watkins, T. Gagliano, V.E. Smith, A.L. Stratford, P.K. Kwan, N. Sharma, O.M. Dixon, J.C. Watkinson, K. Boelaert, J.A. Franklyn, A.S. Turnell, C.J. McCabe, The PTTG1-binding factor (PBF/PTTG1IP) regulates p53 activity in thyroid cells. Endocrinology 155, 1222–1234 (2014)CrossRefPubMedPubMedCentral M.L. Read, R.I. Seed, J.C. Fong, B. Modasia, G.A. Ryan, R.J. Watkins, T. Gagliano, V.E. Smith, A.L. Stratford, P.K. Kwan, N. Sharma, O.M. Dixon, J.C. Watkinson, K. Boelaert, J.A. Franklyn, A.S. Turnell, C.J. McCabe, The PTTG1-binding factor (PBF/PTTG1IP) regulates p53 activity in thyroid cells. Endocrinology 155, 1222–1234 (2014)CrossRefPubMedPubMedCentral
39.
go back to reference J.C. McCabe, J.S. Khaira, K. Boelaert, A.P. Heaney, L.A. Tannahill, S. Hussain, R. Mitchell, J. Olliff, M.C. Sheppard, J.A. Franklyn, N.J. Gittoes, Expression of pituitary tumour transforming gene (PTTG) and fibroblast growth factor-2 (FGF-2) in human pituitary adenomas: relationships to clinical tumour behaviour. Clin. Endocrinol. 58, 141–150 (2003)CrossRef J.C. McCabe, J.S. Khaira, K. Boelaert, A.P. Heaney, L.A. Tannahill, S. Hussain, R. Mitchell, J. Olliff, M.C. Sheppard, J.A. Franklyn, N.J. Gittoes, Expression of pituitary tumour transforming gene (PTTG) and fibroblast growth factor-2 (FGF-2) in human pituitary adenomas: relationships to clinical tumour behaviour. Clin. Endocrinol. 58, 141–150 (2003)CrossRef
40.
go back to reference R.J. Watkins, M.L. Read, V.E. Smith, N. Sharma, G.M. Reynolds, L. Buckley, C. Doig, M.J. Campbell, G. Lewy, M.C. Eggo, L.S. Loubiere, J.A. FranklynA, K. Boelaert, C.J. McCabe, Pituitary tumor transforming gene binding factor: a new gene in breast cancer. Cancer Res. 70, 3739–3749 (2010)CrossRefPubMedPubMedCentral R.J. Watkins, M.L. Read, V.E. Smith, N. Sharma, G.M. Reynolds, L. Buckley, C. Doig, M.J. Campbell, G. Lewy, M.C. Eggo, L.S. Loubiere, J.A. FranklynA, K. Boelaert, C.J. McCabe, Pituitary tumor transforming gene binding factor: a new gene in breast cancer. Cancer Res. 70, 3739–3749 (2010)CrossRefPubMedPubMedCentral
41.
go back to reference D. Li, G. Morley, M. Whitaker, J.Y. Huang, Recruitment of Cdc20 to the kinetochore requires BubR1 but Not Mad2 in drosophila melanogaster. Mol. Cell. Biol. 30, 3384–3395 (2010)CrossRefPubMedPubMedCentral D. Li, G. Morley, M. Whitaker, J.Y. Huang, Recruitment of Cdc20 to the kinetochore requires BubR1 but Not Mad2 in drosophila melanogaster. Mol. Cell. Biol. 30, 3384–3395 (2010)CrossRefPubMedPubMedCentral
42.
go back to reference M. Kapanidou, S. Lee, V.M. Bolanos-Garcia, BubR1 kinase: protection against aneuploidy and premature aging. Trends Mol. Med. 21, 364–372 (2015)CrossRefPubMed M. Kapanidou, S. Lee, V.M. Bolanos-Garcia, BubR1 kinase: protection against aneuploidy and premature aging. Trends Mol. Med. 21, 364–372 (2015)CrossRefPubMed
43.
go back to reference X. Yang, W. Xu, Z. Hu, Y. Zhang, N. Xu, Chk1 is required for the metaphase-anaphase transition via regulating the expression and localization of Cdc20 and Mad2. Life Sci. 106, 12–18 (2014)CrossRefPubMed X. Yang, W. Xu, Z. Hu, Y. Zhang, N. Xu, Chk1 is required for the metaphase-anaphase transition via regulating the expression and localization of Cdc20 and Mad2. Life Sci. 106, 12–18 (2014)CrossRefPubMed
44.
go back to reference W. Wang, T. Wu, M.W. Kirschner, The master cell cycle regulator APC-Cdc20 regulates ciliary length and disassembly of the primary cilium. Elife. 3, e03083 (2014)PubMedPubMedCentral W. Wang, T. Wu, M.W. Kirschner, The master cell cycle regulator APC-Cdc20 regulates ciliary length and disassembly of the primary cilium. Elife. 3, e03083 (2014)PubMedPubMedCentral
45.
go back to reference L.A. Malureanu, K.B. Jeganathan, M. Hamada, L. Wasilewski, J. Davenport, J.M. van Deursen, BubR1 N terminus acts as a soluble inhibitor of cyclin B degradation by APC/CCdc20 in interphase. Dev. Cell 16, 118–131 (2009)CrossRefPubMedPubMedCentral L.A. Malureanu, K.B. Jeganathan, M. Hamada, L. Wasilewski, J. Davenport, J.M. van Deursen, BubR1 N terminus acts as a soluble inhibitor of cyclin B degradation by APC/CCdc20 in interphase. Dev. Cell 16, 118–131 (2009)CrossRefPubMedPubMedCentral
46.
go back to reference M. Sczaniecka, A. Feoktistova, K.M. May, J.S. Chen, J. Blyth, K.L. Gould, K.G. Hardwick, The spindle checkpoint functions of Mad3 and Mad2 Depend on a Mad3 KEN box-mediated Interaction with Cdc20-anaphase-promoting complex (APC/C). J. Biol. Chem. 283, 23039–23047 (2008)CrossRefPubMedPubMedCentral M. Sczaniecka, A. Feoktistova, K.M. May, J.S. Chen, J. Blyth, K.L. Gould, K.G. Hardwick, The spindle checkpoint functions of Mad3 and Mad2 Depend on a Mad3 KEN box-mediated Interaction with Cdc20-anaphase-promoting complex (APC/C). J. Biol. Chem. 283, 23039–23047 (2008)CrossRefPubMedPubMedCentral
47.
go back to reference V. Sudakin, G.K. Chan, T.J. Yen, Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2. J. Cell Biol. 154, 925–936 (2001)CrossRefPubMedPubMedCentral V. Sudakin, G.K. Chan, T.J. Yen, Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2. J. Cell Biol. 154, 925–936 (2001)CrossRefPubMedPubMedCentral
48.
go back to reference P. Lara-Gonzalez, M.I. Scott, M. Diez, O. Sen, S.S. Taylor, BubR1 blocks substrate recruitment to the APC/C in a KEN-box-dependent manner. PLoS One 7, e49041 (2012)CrossRefPubMedPubMedCentral P. Lara-Gonzalez, M.I. Scott, M. Diez, O. Sen, S.S. Taylor, BubR1 blocks substrate recruitment to the APC/C in a KEN-box-dependent manner. PLoS One 7, e49041 (2012)CrossRefPubMedPubMedCentral
49.
go back to reference A. Goldhirsch, J.N. Ingle, R.D. Gelber, A.S. Coates, B. Thürlimann, H.J. Senn, Panel members, thresholds for therapies: highlights of the St Gallen international expert consensus on the primary therapy of early breast cancer. Ann. Oncol. 20, 1319–1329 (2009)CrossRefPubMedPubMedCentral A. Goldhirsch, J.N. Ingle, R.D. Gelber, A.S. Coates, B. Thürlimann, H.J. Senn, Panel members, thresholds for therapies: highlights of the St Gallen international expert consensus on the primary therapy of early breast cancer. Ann. Oncol. 20, 1319–1329 (2009)CrossRefPubMedPubMedCentral
50.
go back to reference S.R. Lakhani, WHO classification of tumours of the breast (International Agency for Research on Cancer, Lyon, 2012), pp. 10–11 S.R. Lakhani, WHO classification of tumours of the breast (International Agency for Research on Cancer, Lyon, 2012), pp. 10–11
51.
go back to reference A.S. Coates, E.P. Winer, A. Goldhirsch, R.D. Gelber, M. Gnant, M. Piccart-Gebhart, B. Thürlimann, H.J. Senn, Panel members, tailoring therapies-improving the management of early breast cancer: St Gallen international expert consensus on the primary therapy of early breast cancer 2015. Ann. Oncol. 26, 1533–1546 (2015)CrossRefPubMedPubMedCentral A.S. Coates, E.P. Winer, A. Goldhirsch, R.D. Gelber, M. Gnant, M. Piccart-Gebhart, B. Thürlimann, H.J. Senn, Panel members, tailoring therapies-improving the management of early breast cancer: St Gallen international expert consensus on the primary therapy of early breast cancer 2015. Ann. Oncol. 26, 1533–1546 (2015)CrossRefPubMedPubMedCentral
52.
go back to reference M.D. Xu, L. Dong, P. Qi, W.W. Weng, X.H. Shen, S.J. Ni, D. Huang, C. Tan, W.Q. Sheng, X.Y. Zhou, X. Du, Pituitary tumor-transforming gene-1 serves as an independent prognostic biomarker for gastric cancer. Gastric Cancer 19, 107–115 (2016)CrossRefPubMed M.D. Xu, L. Dong, P. Qi, W.W. Weng, X.H. Shen, S.J. Ni, D. Huang, C. Tan, W.Q. Sheng, X.Y. Zhou, X. Du, Pituitary tumor-transforming gene-1 serves as an independent prognostic biomarker for gastric cancer. Gastric Cancer 19, 107–115 (2016)CrossRefPubMed
53.
go back to reference T. Ito, Y. Shimada, T. Kan, S. David, Y. Cheng, Y. Mori, R. Agarwal, B. Paun, Z. Jin, A. Olaru, J.P. Hamilton, J. Yang, J.M. Abraham, S.J. Meltzer, F. Sato, Pituitary tumor-transforming 1 increases cell motility and promotes lymph node metastasis in esophageal squamous cell carcinoma. Cancer Res. 68, 3214–3224 (2008)CrossRefPubMedPubMedCentral T. Ito, Y. Shimada, T. Kan, S. David, Y. Cheng, Y. Mori, R. Agarwal, B. Paun, Z. Jin, A. Olaru, J.P. Hamilton, J. Yang, J.M. Abraham, S.J. Meltzer, F. Sato, Pituitary tumor-transforming 1 increases cell motility and promotes lymph node metastasis in esophageal squamous cell carcinoma. Cancer Res. 68, 3214–3224 (2008)CrossRefPubMedPubMedCentral
54.
go back to reference M.E. Hammond, D.F. Hayes, M. Dowsett, D.C. Allred, K.L. Hagerty, S. Badve, P.L. Fitzgibbons, G. Francis, N.S. Goldstein, M. Hayes, D.G. Hicks, S. Lester, R. Love, P.B. Mangu, L. McShane, K. Miller, C.K. Osborne, S. Paik, J. Perlmutter, A. Rhodes, H. Sasano, J.N. Schwartz, F.C. Sweep, S. Taube, E.E. Torlakovic, P. Valenstein, G. Viale, D. Visscher, T. Wheeler, R.B. Williams, J.L. Wittliff, A.C. Wolff, American society of clinical oncology/college of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J. Clin. Oncol. 28, 2784–2795 (2010)CrossRefPubMedPubMedCentral M.E. Hammond, D.F. Hayes, M. Dowsett, D.C. Allred, K.L. Hagerty, S. Badve, P.L. Fitzgibbons, G. Francis, N.S. Goldstein, M. Hayes, D.G. Hicks, S. Lester, R. Love, P.B. Mangu, L. McShane, K. Miller, C.K. Osborne, S. Paik, J. Perlmutter, A. Rhodes, H. Sasano, J.N. Schwartz, F.C. Sweep, S. Taube, E.E. Torlakovic, P. Valenstein, G. Viale, D. Visscher, T. Wheeler, R.B. Williams, J.L. Wittliff, A.C. Wolff, American society of clinical oncology/college of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J. Clin. Oncol. 28, 2784–2795 (2010)CrossRefPubMedPubMedCentral
55.
go back to reference A.C. Wolff, M.E.H. Hammond, D.G. Hicks, M. Dowsett, L.M. McShane, K.H. Allison, D.C. Allred, J.M.S. Bartlett, M. Bilous, P. Fitzgibbons, W. Hanna, R.B. Jenkins, P.B. Mangu, S. Paik, E.A. Perez, M.F. Press, P.A. Spears, G.H. Vance, G. Viale, D.F. Hayes, Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American society of clinical oncology/college of American pathologists clinical practice guideline update. J. Clin. Oncol. 31, 3997–4014 (2013)CrossRefPubMed A.C. Wolff, M.E.H. Hammond, D.G. Hicks, M. Dowsett, L.M. McShane, K.H. Allison, D.C. Allred, J.M.S. Bartlett, M. Bilous, P. Fitzgibbons, W. Hanna, R.B. Jenkins, P.B. Mangu, S. Paik, E.A. Perez, M.F. Press, P.A. Spears, G.H. Vance, G. Viale, D.F. Hayes, Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American society of clinical oncology/college of American pathologists clinical practice guideline update. J. Clin. Oncol. 31, 3997–4014 (2013)CrossRefPubMed
56.
go back to reference R. Yu, A.P. Heaney, W. Lu, J. Chen, S. Melmed, Pituitary tumor transforming gene causes aneuploidy and p53-dependent and p53-independent apoptosis. J. Biol. Chem. 275, 36502–36505 (2000)CrossRefPubMed R. Yu, A.P. Heaney, W. Lu, J. Chen, S. Melmed, Pituitary tumor transforming gene causes aneuploidy and p53-dependent and p53-independent apoptosis. J. Biol. Chem. 275, 36502–36505 (2000)CrossRefPubMed
57.
go back to reference Y.M. Mu, K. Oba, T. Yanase, T. Ito, K. Ashida, K. Goto, H. Morinaga, S. Ikuyama, R. Takayanagi, H. Nawata, Human pituitary tumor transforming gene (hPTTG) inhibits human lung cancer A549 cell growth through activation of p21(WAF1/CIP1). Endocr. J. 50, 771–781 (2003)CrossRefPubMed Y.M. Mu, K. Oba, T. Yanase, T. Ito, K. Ashida, K. Goto, H. Morinaga, S. Ikuyama, R. Takayanagi, H. Nawata, Human pituitary tumor transforming gene (hPTTG) inhibits human lung cancer A549 cell growth through activation of p21(WAF1/CIP1). Endocr. J. 50, 771–781 (2003)CrossRefPubMed
58.
go back to reference H. Zhang, R. Du, Y.H. Huang, L. She, L. Dong, X. Wang, A.L. Kwan, Characterization of pituitary tumor transforming gene in meningiomas. Clin. Neurol. Neurosurg. 122, 120–123 (2014)CrossRefPubMed H. Zhang, R. Du, Y.H. Huang, L. She, L. Dong, X. Wang, A.L. Kwan, Characterization of pituitary tumor transforming gene in meningiomas. Clin. Neurol. Neurosurg. 122, 120–123 (2014)CrossRefPubMed
59.
go back to reference S.E. Ghayad, J.A. Vendrell, I. Bieche, F. Spyratos, C. Dumontet, I. Treilleux, R. Lidereau, P.A. Cohen, Identification of TACC1, NOV, and PTTG1 as new candidate genes associated with endocrine therapy resistance in breast cancer. J. Mol. Endocrinol. 42, 87–103 (2009)CrossRefPubMed S.E. Ghayad, J.A. Vendrell, I. Bieche, F. Spyratos, C. Dumontet, I. Treilleux, R. Lidereau, P.A. Cohen, Identification of TACC1, NOV, and PTTG1 as new candidate genes associated with endocrine therapy resistance in breast cancer. J. Mol. Endocrinol. 42, 87–103 (2009)CrossRefPubMed
60.
go back to reference H. Lin, Q.L. Chen, X.Y. Wang, W. Han, T.Y. He, D. Yan, K. Chen, L.D. Su, Clinical significance of pituitary tumor transforming gene 1 and transgelin-2 in pancreatic cancer. Int. J. Immunopathol. Pharmacol. 26, 147–156 (2013)PubMed H. Lin, Q.L. Chen, X.Y. Wang, W. Han, T.Y. He, D. Yan, K. Chen, L.D. Su, Clinical significance of pituitary tumor transforming gene 1 and transgelin-2 in pancreatic cancer. Int. J. Immunopathol. Pharmacol. 26, 147–156 (2013)PubMed
61.
go back to reference C.Y. Wen, T. Nakayama, A.P. Wang, M. Nakashima, Y.T. Ding, M. Ito, H. Ishibashi, M. Matsuu, K. Shichijo, I. Sekine, Expression of pituitary tumor transforming gene in human gastric carcinoma. World J. Gastroenterol. 10, 481–483 (2004)CrossRefPubMedPubMedCentral C.Y. Wen, T. Nakayama, A.P. Wang, M. Nakashima, Y.T. Ding, M. Ito, H. Ishibashi, M. Matsuu, K. Shichijo, I. Sekine, Expression of pituitary tumor transforming gene in human gastric carcinoma. World J. Gastroenterol. 10, 481–483 (2004)CrossRefPubMedPubMedCentral
62.
go back to reference C. Ramírez, S. Cheng, G. Vargas, S.L. Asa, S. Ezzat, B. González, L. Cabrera, G. Guinto, M. Mercado, Expression of Ki-67, PTTG1, FGFR4, and SSTR 2, 3, and 5 in nonfunctioning pituitary adenomas: a high throughput TMA, immunohistochemical study. J. Clin. Endocrinol. Metab. 97, 1745–1751 (2012)CrossRefPubMed C. Ramírez, S. Cheng, G. Vargas, S.L. Asa, S. Ezzat, B. González, L. Cabrera, G. Guinto, M. Mercado, Expression of Ki-67, PTTG1, FGFR4, and SSTR 2, 3, and 5 in nonfunctioning pituitary adenomas: a high throughput TMA, immunohistochemical study. J. Clin. Endocrinol. Metab. 97, 1745–1751 (2012)CrossRefPubMed
63.
go back to reference M.A. Moreno-Mateos, A.G. Espina, B. Torres, M.M. Gámez del Estal, A. Romero-Franco, R.M. Ríos, J.A. Pintor-Toro, PTTG1/Securin modulates microtubule nucleation and cell migration. Mol. Biol. Cell 22, 4302–4311 (2011)CrossRefPubMedPubMedCentral M.A. Moreno-Mateos, A.G. Espina, B. Torres, M.M. Gámez del Estal, A. Romero-Franco, R.M. Ríos, J.A. Pintor-Toro, PTTG1/Securin modulates microtubule nucleation and cell migration. Mol. Biol. Cell 22, 4302–4311 (2011)CrossRefPubMedPubMedCentral
64.
go back to reference E.A. Rakha, J.S. Reis-Filho, I.O. Ellis, Basal-like breast cancer: a critical review. J. Clin. Oncol. 26, 2568–2581 (2008)CrossRefPubMed E.A. Rakha, J.S. Reis-Filho, I.O. Ellis, Basal-like breast cancer: a critical review. J. Clin. Oncol. 26, 2568–2581 (2008)CrossRefPubMed
65.
go back to reference B.P. Schneider, E.P. Winer, W.D. Foulkes, J. Garber, C.M. Perou, A. Richardson, G.W. Sledge, L.A. Carey, Triple-negative breast cancer: risk factors to potential targets. Clin. Cancer Res. 14, 8010–8018 (2008)CrossRefPubMed B.P. Schneider, E.P. Winer, W.D. Foulkes, J. Garber, C.M. Perou, A. Richardson, G.W. Sledge, L.A. Carey, Triple-negative breast cancer: risk factors to potential targets. Clin. Cancer Res. 14, 8010–8018 (2008)CrossRefPubMed
66.
go back to reference M. Liang, J. Liu, H. Ji, M. Chen, Y. Zhao, S. Li, X. Zhang, J. Li, A aconitum coreanum polysaccharide fraction induces apoptosis of hepatocellular carcinoma (HCC) cells via pituitary tumor transforming gene 1 (PTTG1)-mediated suppression of the P13K/Akt and activation of p38 MAPK signaling pathway and displays antitumor activity in vivo. Tumour Biol. 36, 7085–7091 (2015)CrossRefPubMed M. Liang, J. Liu, H. Ji, M. Chen, Y. Zhao, S. Li, X. Zhang, J. Li, A aconitum coreanum polysaccharide fraction induces apoptosis of hepatocellular carcinoma (HCC) cells via pituitary tumor transforming gene 1 (PTTG1)-mediated suppression of the P13K/Akt and activation of p38 MAPK signaling pathway and displays antitumor activity in vivo. Tumour Biol. 36, 7085–7091 (2015)CrossRefPubMed
67.
go back to reference L. Pei, Activation of mitogen-activated protein kinase cascade regulates pituitary tumor-transforming gene transactivation function. J. Biol. Chem. 275, 31191–31198 (2000)CrossRefPubMed L. Pei, Activation of mitogen-activated protein kinase cascade regulates pituitary tumor-transforming gene transactivation function. J. Biol. Chem. 275, 31191–31198 (2000)CrossRefPubMed
68.
go back to reference Y. Tong, T. Eigler, Transcriptional targets for pituitary tumor-transforming gene-1. J. Mol. Endocrinol. 43, 179–185 (2009)CrossRefPubMed Y. Tong, T. Eigler, Transcriptional targets for pituitary tumor-transforming gene-1. J. Mol. Endocrinol. 43, 179–185 (2009)CrossRefPubMed
69.
go back to reference M. Larance, A.I. Lamond, Multidimensional proteomics for cell biology. Nat. Rev. Mol. Cell Biol. 16, 269–280 (2015)CrossRefPubMed M. Larance, A.I. Lamond, Multidimensional proteomics for cell biology. Nat. Rev. Mol. Cell Biol. 16, 269–280 (2015)CrossRefPubMed
70.
go back to reference A.M. Gil-Bernabé, F. Romero, M.C. Limón-Mortés, M. Tortolero, Protein phosphatase 2A stabilizes human securin, whose phosphorylated forms are degraded via the SCF ubiquitin ligase. Mol. Cell. Biol. 26, 4017–4027 (2006)CrossRefPubMedPubMedCentral A.M. Gil-Bernabé, F. Romero, M.C. Limón-Mortés, M. Tortolero, Protein phosphatase 2A stabilizes human securin, whose phosphorylated forms are degraded via the SCF ubiquitin ligase. Mol. Cell. Biol. 26, 4017–4027 (2006)CrossRefPubMedPubMedCentral
71.
go back to reference J. Du, Q. Du, Y. Zhang, C. Sajdik, Y. Ruan, X.X. Tian, W.G. Fang, Expression of cell-cycle regulatory proteins BUBR1, MAD2, Aurora A, cyclin A and cyclin E in invasive ductal breast carcinomas. Histol. Histopathol. 26, 761–768 (2011)PubMed J. Du, Q. Du, Y. Zhang, C. Sajdik, Y. Ruan, X.X. Tian, W.G. Fang, Expression of cell-cycle regulatory proteins BUBR1, MAD2, Aurora A, cyclin A and cyclin E in invasive ductal breast carcinomas. Histol. Histopathol. 26, 761–768 (2011)PubMed
72.
go back to reference A. Maciejczyk, J. Szelachowska, B. Czapiga, R. Matkowski, A. Hałoń, B. Györffy, P. Surowiak, Elevated BUBR1 expression is associated with poor survival in early breast cancer patients: 15 years follow-up analysis. J. Histochem. Cytochem. 61, 330–339 (2013)CrossRefPubMedPubMedCentral A. Maciejczyk, J. Szelachowska, B. Czapiga, R. Matkowski, A. Hałoń, B. Györffy, P. Surowiak, Elevated BUBR1 expression is associated with poor survival in early breast cancer patients: 15 years follow-up analysis. J. Histochem. Cytochem. 61, 330–339 (2013)CrossRefPubMedPubMedCentral
73.
go back to reference Y. Cirak, Y. Furuncuoglu, O. Yapicier, S. Alici, A. Argon, Predictive and prognostic values of BubR1 and synuclein-gamma expression in breast cancer. Int. J. Clin. Exp. Pathol. 8, 5345–5353 (2015)PubMedPubMedCentral Y. Cirak, Y. Furuncuoglu, O. Yapicier, S. Alici, A. Argon, Predictive and prognostic values of BubR1 and synuclein-gamma expression in breast cancer. Int. J. Clin. Exp. Pathol. 8, 5345–5353 (2015)PubMedPubMedCentral
74.
go back to reference G. Palma, G. Frasci, A. Chirico, E. Esposito, C. Siani, C. Saturnino, C. Arra, G. Ciliberto, A. Giordano, M. D’Aiuto, Triple negative breast cancer: looking for the missing link between biology and treatments. Oncotarget 6, 26560–74 (2015)CrossRefPubMedPubMedCentral G. Palma, G. Frasci, A. Chirico, E. Esposito, C. Siani, C. Saturnino, C. Arra, G. Ciliberto, A. Giordano, M. D’Aiuto, Triple negative breast cancer: looking for the missing link between biology and treatments. Oncotarget 6, 26560–74 (2015)CrossRefPubMedPubMedCentral
75.
go back to reference Cancer Genome Atlas Network, Comprehensive molecular portraits of human breast tumours. Nature 490(61–70) (2012) Cancer Genome Atlas Network, Comprehensive molecular portraits of human breast tumours. Nature 490(61–70) (2012)
76.
go back to reference J.A. Bernal, A. Hernández, A, p53 stabilization can be uncoupled from its role in transcriptional activation by loss of PTTG1/securin. J. Biochem. 141, 737–45 (2007)CrossRefPubMed J.A. Bernal, A. Hernández, A, p53 stabilization can be uncoupled from its role in transcriptional activation by loss of PTTG1/securin. J. Biochem. 141, 737–45 (2007)CrossRefPubMed
77.
go back to reference A. Petitjean, M.I. Achatz, A.L. Borresen-Dale, P. Hainaut, M. Olivier, TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene 26, 2157–2165 (2007)CrossRefPubMed A. Petitjean, M.I. Achatz, A.L. Borresen-Dale, P. Hainaut, M. Olivier, TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene 26, 2157–2165 (2007)CrossRefPubMed
Metadata
Title
Prognostic implications of securin expression and sub-cellular localization in human breast cancer
Authors
N. Gurvits
H. Repo
E. Löyttyniemi
M. Nykänen
J. Anttinen
T. Kuopio
K. Talvinen
P. Kronqvist
Publication date
01-08-2016
Publisher
Springer Netherlands
Published in
Cellular Oncology / Issue 4/2016
Print ISSN: 2211-3428
Electronic ISSN: 2211-3436
DOI
https://doi.org/10.1007/s13402-016-0277-5

Other articles of this Issue 4/2016

Cellular Oncology 4/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine