Skip to main content
Top
Published in: Cellular Oncology 4/2016

Open Access 01-08-2016 | Original Paper

TNF-α promotes breast cancer cell migration and enhances the concentration of membrane-associated proteases in lipid rafts

Authors: Dominika Wolczyk, Magdalena Zaremba-Czogalla, Anita Hryniewicz-Jankowska, Renata Tabola, Krzysztof Grabowski, Aleksander F. Sikorski, Katarzyna Augoff

Published in: Cellular Oncology | Issue 4/2016

Login to get access

Abstract

Purpose

Tumor progression is associated with cell migration, invasion and metastasis. These processes are accompanied by the activation of specific proteases that are either linked to cellular membranes or are secreted into extracellular spaces. TNF-α is known to play an important role in various aspects of tumor progression. The aim of this work was to assess the effect of TNF-α on the migration of breast cancer cells and, in addition, to assess its association with the location of membrane-associated proteases in lipid rafts.

Methods

Wound scratch healing and Transwell migration assays were used to study the effect of TNF-α on the migration of both hormone-dependent and hormone-independent breast cancer-derived cells, i.e., MCF7 and MDA-MB-231, respectively. The expression and secretion of three matrix metalloproteases, MMP9, MMP2 and MT1-MMP, and two dipeptidyl peptidases, CD26 and FAP-α, was investigated using RT-PCR, Western blotting and gelatin zymography. In addition, activation of the MAPK/ERK signaling pathway was investigated by Western blotting.

Results

We found that a TNF-α-induced enhancement of breast cancer cell migration was accompanied by an increased secretion of MMP9, but not MMP2, into the culture media. We also found that TNF-α upregulated the expression of the dipeptidyl peptidases CD26 and FAP-α in a dose-dependent manner and, in addition, enhanced the concentration of all five proteases in lipid rafts in the breast cancer-derived cells tested, regardless of cell type. Furthermore, we found that TNF-α activated the MAPK/ERK signaling pathway by increasing the ERK1/2 phosphorylation level. Application of the MEK/ERK1/2 inhibitor U-0126 resulted in down-regulation of TNF-α-induced MMP9 secretion and abrogation of the enhanced concentration of proteases in the lipid rafts.

Conclusions

From our results we conclude that TNF-α-induced activation of the MAPK/ERK signaling pathway may promote breast cancer cell migration via both upregulation of MMP9, CD26 and FAP-α and concentration of these proteases, as also MT1-MMP and MMP2, in the lipid rafts. TNF-α may serve as a potential therapeutic target in breast cancers susceptible to TNF-α stimulation.
Literature
1.
go back to reference P. Lu, K. Takai, V. M. Weaver, Z. Werb, Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb. Perspect. Biol. 3, a005058 (2011)CrossRefPubMedPubMedCentral P. Lu, K. Takai, V. M. Weaver, Z. Werb, Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb. Perspect. Biol. 3, a005058 (2011)CrossRefPubMedPubMedCentral
2.
go back to reference C. M. Overall, C. López-Otín, Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nat. Rev. Cancer 2, 657–672 (2002)CrossRefPubMed C. M. Overall, C. López-Otín, Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nat. Rev. Cancer 2, 657–672 (2002)CrossRefPubMed
3.
go back to reference D. W. Miles, L. C. Happerfield, M. S. Naylor, L. G. Bobrow, R. D. Rubens, F. R. Balkwill, Expression of tumour necrosis factor (TNF-α) and its receptors in benign and malignant breast tissue. Int. J. Cancer 56, 777–782 (1994)CrossRefPubMed D. W. Miles, L. C. Happerfield, M. S. Naylor, L. G. Bobrow, R. D. Rubens, F. R. Balkwill, Expression of tumour necrosis factor (TNF-α) and its receptors in benign and malignant breast tissue. Int. J. Cancer 56, 777–782 (1994)CrossRefPubMed
4.
go back to reference E. Katerinaki, G. S. Evans, P. C. Lorigan, S. MacNeil, TNF-alpha increases human melanoma cell invasion and migration in vitro: the role of proteolytic enzymes. Br. J. Cancer 89, 1123–1129 (2003)CrossRefPubMedPubMedCentral E. Katerinaki, G. S. Evans, P. C. Lorigan, S. MacNeil, TNF-alpha increases human melanoma cell invasion and migration in vitro: the role of proteolytic enzymes. Br. J. Cancer 89, 1123–1129 (2003)CrossRefPubMedPubMedCentral
5.
go back to reference F. S. Panagakos, S. Kumar, Modulation of proteases and their inhibitors in immortal human osteoblast-like cells by tumor necrosis factor-alpha in vitro. Inflammation 18, 243–265 (1994)CrossRefPubMed F. S. Panagakos, S. Kumar, Modulation of proteases and their inhibitors in immortal human osteoblast-like cells by tumor necrosis factor-alpha in vitro. Inflammation 18, 243–265 (1994)CrossRefPubMed
6.
go back to reference J. P. Waters, J. S. Pober, J. R. Bradley, Tumour necrosis factor and cancer. J. Pathol. 230, 241–248 (2013)CrossRefPubMed J. P. Waters, J. S. Pober, J. R. Bradley, Tumour necrosis factor and cancer. J. Pathol. 230, 241–248 (2013)CrossRefPubMed
7.
go back to reference M. Egeblad, Z. Werb, New functions for the matrix metalloproteinases in cancer progression. Nat. Rev. Cancer 2, 161–174 (2002)CrossRefPubMed M. Egeblad, Z. Werb, New functions for the matrix metalloproteinases in cancer progression. Nat. Rev. Cancer 2, 161–174 (2002)CrossRefPubMed
8.
go back to reference M. Björklund, E. Koivunen, Gelatinase-mediated migration and invasion of cancer cells. Biochim. Biophys. Acta 1755, 37–69 (2005)PubMed M. Björklund, E. Koivunen, Gelatinase-mediated migration and invasion of cancer cells. Biochim. Biophys. Acta 1755, 37–69 (2005)PubMed
9.
go back to reference A. Khosravi, S. Shahrabi, M. Shahjahani, N. Saki, The bone marrow metastasis niche in retinoblastoma. Cell. Oncol. 38, 253–263 (2015)CrossRef A. Khosravi, S. Shahrabi, M. Shahjahani, N. Saki, The bone marrow metastasis niche in retinoblastoma. Cell. Oncol. 38, 253–263 (2015)CrossRef
10.
11.
go back to reference G. Murphy, H. Stanton, S. Cowell, G. Butler, V. Knäuper, S. Atkinson, J. Gavrilovic, Mechanisms for pro matrix metalloproteinase activation. APMIS 107, 38–44 (1999)CrossRefPubMed G. Murphy, H. Stanton, S. Cowell, G. Butler, V. Knäuper, S. Atkinson, J. Gavrilovic, Mechanisms for pro matrix metalloproteinase activation. APMIS 107, 38–44 (1999)CrossRefPubMed
12.
go back to reference M. Toth, I. Chvyrkova, M. M. Bernardo, S. Hernandez-Barrantes, R Fridman, Pro-MMP-9 activation by the MT1-MMP/MMP-2 axis and MMP-3: role of TIMP-2 and plasma membranes. Biochem. Biophys. Res. Commun. 308, 386–395 (2003)CrossRefPubMed M. Toth, I. Chvyrkova, M. M. Bernardo, S. Hernandez-Barrantes, R Fridman, Pro-MMP-9 activation by the MT1-MMP/MMP-2 axis and MMP-3: role of TIMP-2 and plasma membranes. Biochem. Biophys. Res. Commun. 308, 386–395 (2003)CrossRefPubMed
13.
go back to reference W. L. Monsky, T. Kelly, C. Y. Lin, W. G. Stetler-Stevenson, S. C. Mueller, W. T. Chen, Binding and localization of Mr 72,000 matrix metalloproteinase at cell surface invadopodia. Cancer Res. 53, 3159–3164 (1993)PubMed W. L. Monsky, T. Kelly, C. Y. Lin, W. G. Stetler-Stevenson, S. C. Mueller, W. T. Chen, Binding and localization of Mr 72,000 matrix metalloproteinase at cell surface invadopodia. Cancer Res. 53, 3159–3164 (1993)PubMed
14.
go back to reference W. T. Chen, T. Kelly, Seprase complexes in cellular invasiveness. Cancer Metastasis Rev. 22, 259–269 (2003)CrossRefPubMed W. T. Chen, T. Kelly, Seprase complexes in cellular invasiveness. Cancer Metastasis Rev. 22, 259–269 (2003)CrossRefPubMed
15.
go back to reference P. O'Brien, B. F. O'Connor, Seprase: an overview of an important matrix serine protease. Biochim. Biophys. Acta 1784, 1130–1145 (2008)CrossRefPubMed P. O'Brien, B. F. O'Connor, Seprase: an overview of an important matrix serine protease. Biochim. Biophys. Acta 1784, 1130–1145 (2008)CrossRefPubMed
16.
go back to reference M. Gimona, R. Buccione, S. A. Courtneidge, S. Linder, Assembly and biological role of podosomes and invadopodia. Curr. Opin. Cell Biol. 20, 235–241 (2008)CrossRefPubMed M. Gimona, R. Buccione, S. A. Courtneidge, S. Linder, Assembly and biological role of podosomes and invadopodia. Curr. Opin. Cell Biol. 20, 235–241 (2008)CrossRefPubMed
17.
go back to reference K. Simons, D. Toomre, Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 1, 31–39 (2000)CrossRefPubMed K. Simons, D. Toomre, Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 1, 31–39 (2000)CrossRefPubMed
18.
go back to reference A. Hryniewicz-Jankowska, K. Augoff, A. Biernatowska, J. Podkalicka, A. F. Sikorski, Membrane rafts as a novel target in cancer therapy. Biochim. Biophys. Acta 1845, 155–165 (2014)PubMed A. Hryniewicz-Jankowska, K. Augoff, A. Biernatowska, J. Podkalicka, A. F. Sikorski, Membrane rafts as a novel target in cancer therapy. Biochim. Biophys. Acta 1845, 155–165 (2014)PubMed
19.
go back to reference S. Sonnino, A. Prinetti, Membrane domains and the "lipid raft" concept. Curr. Med. Chem. 20, 4–21 (2013)PubMed S. Sonnino, A. Prinetti, Membrane domains and the "lipid raft" concept. Curr. Med. Chem. 20, 4–21 (2013)PubMed
20.
go back to reference S. K. Patra, Dissecting lipid raft facilitated cell signaling pathways in cancer. Biochim. Biophys. Acta 1785, 182–206 (2008)PubMed S. K. Patra, Dissecting lipid raft facilitated cell signaling pathways in cancer. Biochim. Biophys. Acta 1785, 182–206 (2008)PubMed
21.
go back to reference H. Yamaguchi, Y. Takeo, S. Yoshida, Z. Kouchi, Y. Nakamura, et al., Lipid rafts and caveolin-1 are required for invadopodia formation and extracellular matrix degradation by human breast cancer cells. Cancer Res. 69, 8594–8602 (2009)CrossRefPubMed H. Yamaguchi, Y. Takeo, S. Yoshida, Z. Kouchi, Y. Nakamura, et al., Lipid rafts and caveolin-1 are required for invadopodia formation and extracellular matrix degradation by human breast cancer cells. Cancer Res. 69, 8594–8602 (2009)CrossRefPubMed
22.
go back to reference H. Yamaguchi, Pathological roles of invadopodia in cancer invasion and metastasis. Eur. J. Cell Biol. 91, 902–907 (2012)CrossRefPubMed H. Yamaguchi, Pathological roles of invadopodia in cancer invasion and metastasis. Eur. J. Cell Biol. 91, 902–907 (2012)CrossRefPubMed
23.
go back to reference B. P. Head, H. H. Patel, P. A. Insel, Interaction of membrane/lipid rafts with the cytoskeleton: impact on signaling and function: membrane/lipid rafts, mediators of cytoskeletal arrangement and cell signaling. Biochim. Biophys. Acta 1838, 532–545 (2014)CrossRefPubMed B. P. Head, H. H. Patel, P. A. Insel, Interaction of membrane/lipid rafts with the cytoskeleton: impact on signaling and function: membrane/lipid rafts, mediators of cytoskeletal arrangement and cell signaling. Biochim. Biophys. Acta 1838, 532–545 (2014)CrossRefPubMed
25.
go back to reference K. Hidalgo, I. G. Rojas, A. B. Penissi, M. I. Rudolph, TNFalpha increases in vitro migration of human HPV18-positive SW756 cervical carcinoma cells. Biocell 29, 303–311 (2005)PubMed K. Hidalgo, I. G. Rojas, A. B. Penissi, M. I. Rudolph, TNFalpha increases in vitro migration of human HPV18-positive SW756 cervical carcinoma cells. Biocell 29, 303–311 (2005)PubMed
26.
go back to reference M. Heidinger, H. Kolb, H. W. Krell, M. Jochum, C. Ries, Modulation of autocrine TNF-alpha-stimulated matrix metalloproteinase 9 (MMP-9) expression by mitogen-activated protein kinases in THP-1 monocytic cells. Biol. Chem. 387, 69–78 (2006)CrossRefPubMed M. Heidinger, H. Kolb, H. W. Krell, M. Jochum, C. Ries, Modulation of autocrine TNF-alpha-stimulated matrix metalloproteinase 9 (MMP-9) expression by mitogen-activated protein kinases in THP-1 monocytic cells. Biol. Chem. 387, 69–78 (2006)CrossRefPubMed
27.
go back to reference E. J. Lee, W. J. Kim, S. K. Moon, Cordycepin suppresses TNF-alpha-induced invasion, migration and matrix metalloproteinase-9 expression in human bladder cancer cells. Phytother. Res. 24, 1755–1761 (2010)CrossRefPubMed E. J. Lee, W. J. Kim, S. K. Moon, Cordycepin suppresses TNF-alpha-induced invasion, migration and matrix metalloproteinase-9 expression in human bladder cancer cells. Phytother. Res. 24, 1755–1761 (2010)CrossRefPubMed
28.
go back to reference S. C. Robinson, K. A. Scott, F. R. Balkwill, Chemokine stimulation of monocyte matrix metalloproteinase-9 requires endogenous TNF-alpha. Eur. J. Immunol. 32, 404–412 (2002)CrossRefPubMed S. C. Robinson, K. A. Scott, F. R. Balkwill, Chemokine stimulation of monocyte matrix metalloproteinase-9 requires endogenous TNF-alpha. Eur. J. Immunol. 32, 404–412 (2002)CrossRefPubMed
29.
go back to reference T. Hagemann, S. C. Robinson, M. Schulz, L. Trümper, F. R. Balkwill, C. Binder, Enhanced invasiveness of breast cancer cell lines upon co-cultivation with macrophages is due to TNF-alpha dependent up-regulation of matrix metalloproteases. Carcinogenesis 25, 1543–1549 (2004)CrossRefPubMed T. Hagemann, S. C. Robinson, M. Schulz, L. Trümper, F. R. Balkwill, C. Binder, Enhanced invasiveness of breast cancer cell lines upon co-cultivation with macrophages is due to TNF-alpha dependent up-regulation of matrix metalloproteases. Carcinogenesis 25, 1543–1549 (2004)CrossRefPubMed
30.
go back to reference H. Raghu, P. K. Sodadasu, R. R. Malla, C. S. Gondi, N. Estes, J. S. Rao, Localization of uPAR and MMP-9 in lipid rafts is critical for migration, invasion and angiogenesis in human breast cancer cells. BMC Cancer 24, 10–647 (2010) H. Raghu, P. K. Sodadasu, R. R. Malla, C. S. Gondi, N. Estes, J. S. Rao, Localization of uPAR and MMP-9 in lipid rafts is critical for migration, invasion and angiogenesis in human breast cancer cells. BMC Cancer 24, 10–647 (2010)
31.
go back to reference M. Rolli, E. Fransvea, J. Pilch, A. Saven, B. Felding-Habermann, Activated integrin alphavbeta3 cooperates with metalloproteinase MMP-9 in regulating migration of metastatic breast cancer cells. Proc. Natl. Acad. Sci. U. S. A. 100, 9482–9487 (2003)CrossRefPubMedPubMedCentral M. Rolli, E. Fransvea, J. Pilch, A. Saven, B. Felding-Habermann, Activated integrin alphavbeta3 cooperates with metalloproteinase MMP-9 in regulating migration of metastatic breast cancer cells. Proc. Natl. Acad. Sci. U. S. A. 100, 9482–9487 (2003)CrossRefPubMedPubMedCentral
32.
go back to reference Q. Yu, I. Stamenkovic, Localization of matrix metalloproteinase 9 to the cell surface provides a mechanism for CD44-mediated tumor invasion. Genes Dev. 13, 35–48 (1999)CrossRefPubMedPubMedCentral Q. Yu, I. Stamenkovic, Localization of matrix metalloproteinase 9 to the cell surface provides a mechanism for CD44-mediated tumor invasion. Genes Dev. 13, 35–48 (1999)CrossRefPubMedPubMedCentral
33.
go back to reference E. Mantuano, G. Inoue, X. Li, K. Takahashi, A. Gaultier, S. L. Gonias, W. M. Campana, The hemopexin domain of matrix metalloproteinase-9 activates cell signaling and promotes migration of schwann cells by binding to low-density lipoprotein receptor-related protein. J. Neurosci. 28, 11571–11582 (2008)CrossRefPubMed E. Mantuano, G. Inoue, X. Li, K. Takahashi, A. Gaultier, S. L. Gonias, W. M. Campana, The hemopexin domain of matrix metalloproteinase-9 activates cell signaling and promotes migration of schwann cells by binding to low-density lipoprotein receptor-related protein. J. Neurosci. 28, 11571–11582 (2008)CrossRefPubMed
34.
go back to reference R. Wang, J. Bi, K. K. Ampah, X. Ba, W. Liu, X. Zeng, Lipid rafts control human melanoma cell migration by regulating focal adhesion disassembly. Biochim. Biophys. Acta 1833, 3195–3205 (2013)CrossRefPubMed R. Wang, J. Bi, K. K. Ampah, X. Ba, W. Liu, X. Zeng, Lipid rafts control human melanoma cell migration by regulating focal adhesion disassembly. Biochim. Biophys. Acta 1833, 3195–3205 (2013)CrossRefPubMed
35.
go back to reference H. Yamaguchi, T. Oikawa, Membrane lipids in invadopodia and podosomes: key structures for cancer invasion and metastasis. Oncotarget 1, 320–328 (2010)CrossRefPubMedPubMedCentral H. Yamaguchi, T. Oikawa, Membrane lipids in invadopodia and podosomes: key structures for cancer invasion and metastasis. Oncotarget 1, 320–328 (2010)CrossRefPubMedPubMedCentral
36.
go back to reference T. Ludwig, Local proteolytic activity in tumor cell invasion and metastasis. BioEssays 27, 1181–1191 (2005)CrossRefPubMed T. Ludwig, Local proteolytic activity in tumor cell invasion and metastasis. BioEssays 27, 1181–1191 (2005)CrossRefPubMed
37.
go back to reference B. Annabi, M. Lachambre, N. Bousquet-Gagnon, M. Pagé, D. Gingras, R. Béliveau, Localization of membrane-type 1 matrix metalloproteinase in caveolae membrane domains. Biochem. J. 353, 547–553 (2001)CrossRefPubMedPubMedCentral B. Annabi, M. Lachambre, N. Bousquet-Gagnon, M. Pagé, D. Gingras, R. Béliveau, Localization of membrane-type 1 matrix metalloproteinase in caveolae membrane domains. Biochem. J. 353, 547–553 (2001)CrossRefPubMedPubMedCentral
38.
go back to reference D. A. Pereira, L. Gomes, M. C. El-Cheikh, R. Borojevic, Dipeptidyl peptidase IV (CD26) activity in the hematopoietic system: differences between the membrane-anchored and the released enzyme activity. Braz. J. Med. Biol. Res. 36, 567–578 (2003)CrossRefPubMed D. A. Pereira, L. Gomes, M. C. El-Cheikh, R. Borojevic, Dipeptidyl peptidase IV (CD26) activity in the hematopoietic system: differences between the membrane-anchored and the released enzyme activity. Braz. J. Med. Biol. Res. 36, 567–578 (2003)CrossRefPubMed
39.
go back to reference N. Shirvaikar, L. A. Marquez-Curtis, A. R. Shaw, A. R. Turner, A. Janowska-Wieczorek, MT1-MMP association with membrane lipid rafts facilitates G-CSF–induced hematopoietic stem/progenitor cell mobilization. Exp. Hematol. 38, 823–835 (2010)CrossRefPubMed N. Shirvaikar, L. A. Marquez-Curtis, A. R. Shaw, A. R. Turner, A. Janowska-Wieczorek, MT1-MMP association with membrane lipid rafts facilitates G-CSF–induced hematopoietic stem/progenitor cell mobilization. Exp. Hematol. 38, 823–835 (2010)CrossRefPubMed
40.
go back to reference N. Ramos-DeSimone, E. Hahn-Dantona, J. Sipley, H. Nagase, D. L. French, J. P. Quigley, Activation of matrix metalloproteinase-9 (MMP-9) via a converging plasmin/stromelysin-1 cascade enhances tumor cell invasion. J. Biol. Chem. 274, 13066–13076 (1999)CrossRefPubMed N. Ramos-DeSimone, E. Hahn-Dantona, J. Sipley, H. Nagase, D. L. French, J. P. Quigley, Activation of matrix metalloproteinase-9 (MMP-9) via a converging plasmin/stromelysin-1 cascade enhances tumor cell invasion. J. Biol. Chem. 274, 13066–13076 (1999)CrossRefPubMed
41.
go back to reference G. Davuluri, K. Augoff, W. P. Schiemann, E. F. Plow, K. Sossey-Alaoui, WAVE3-NFκB interplay is essential for the survival and invasion of cancer cells. PLoS One 9, e110627 (2014)CrossRefPubMedPubMedCentral G. Davuluri, K. Augoff, W. P. Schiemann, E. F. Plow, K. Sossey-Alaoui, WAVE3-NFκB interplay is essential for the survival and invasion of cancer cells. PLoS One 9, e110627 (2014)CrossRefPubMedPubMedCentral
42.
go back to reference L. J. McCawley, P. O'Brien, L. G. Hudson, Epidermal growth factor (EGF)- and scatter factor/hepatocyte growth factor (SF/HGF)- mediated keratinocyte migration is coincident with induction of matrix metalloproteinase (MMP)-9. J. Cell. Physiol. 176, 255–265 (1998)CrossRefPubMed L. J. McCawley, P. O'Brien, L. G. Hudson, Epidermal growth factor (EGF)- and scatter factor/hepatocyte growth factor (SF/HGF)- mediated keratinocyte migration is coincident with induction of matrix metalloproteinase (MMP)-9. J. Cell. Physiol. 176, 255–265 (1998)CrossRefPubMed
43.
go back to reference S. Mukhopadhyay, H. G. Munshi, S. Kambhampati, A. Sassano, L. C. Platanias, M. S. Stack, Calcium-induced matrix metalloproteinase 9 gene expression is differentially regulated by ERK1/2 and p38 MAPK in oral keratinocytes and oral squamous cell carcinoma. J. Biol. Chem. 279, 33139–33146 (2004)CrossRefPubMed S. Mukhopadhyay, H. G. Munshi, S. Kambhampati, A. Sassano, L. C. Platanias, M. S. Stack, Calcium-induced matrix metalloproteinase 9 gene expression is differentially regulated by ERK1/2 and p38 MAPK in oral keratinocytes and oral squamous cell carcinoma. J. Biol. Chem. 279, 33139–33146 (2004)CrossRefPubMed
Metadata
Title
TNF-α promotes breast cancer cell migration and enhances the concentration of membrane-associated proteases in lipid rafts
Authors
Dominika Wolczyk
Magdalena Zaremba-Czogalla
Anita Hryniewicz-Jankowska
Renata Tabola
Krzysztof Grabowski
Aleksander F. Sikorski
Katarzyna Augoff
Publication date
01-08-2016
Publisher
Springer Netherlands
Published in
Cellular Oncology / Issue 4/2016
Print ISSN: 2211-3428
Electronic ISSN: 2211-3436
DOI
https://doi.org/10.1007/s13402-016-0280-x

Other articles of this Issue 4/2016

Cellular Oncology 4/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine