Skip to main content
Top
Published in: Journal of Cardiovascular Translational Research 4/2010

Open Access 01-08-2010

Autophagy Induced by Ischemic Preconditioning is Essential for Cardioprotection

Authors: Chengqun Huang, Smadar Yitzhaki, Cynthia N. Perry, Wayne Liu, Zoltan Giricz, Robert M. Mentzer Jr., Roberta A. Gottlieb

Published in: Journal of Cardiovascular Translational Research | Issue 4/2010

Login to get access

Abstract

Based on growing evidence linking autophagy to preconditioning, we tested the hypothesis that autophagy is necessary for cardioprotection conferred by ischemic preconditioning (IPC). We induced IPC with three cycles of 5 min regional ischemia alternating with 5 min reperfusion and assessed the induction of autophagy in mCherry-LC3 transgenic mice by imaging of fluorescent autophagosomes in cryosections. We found a rapid and significant increase in the number of autophagosomes in the risk zone of the preconditioned hearts. In Langendorff-perfused hearts subjected to an IPC protocol of 3 × 5 min ischemia, we also observed an increase in autophagy within 10 min, as assessed by Western blotting for p62 and cadaverine dye binding. To establish the role of autophagy in IPC cardioprotection, we inhibited autophagy with Tat-ATG5K130R, a dominant negative mutation of the autophagy protein Atg5. Cardioprotection by IPC was reduced in rat hearts perfused with recombinant Tat-ATG5K130R. To extend the potential significance of autophagy in cardioprotection, we also assessed three structurally unrelated cardioprotective agents—UTP, diazoxide, and ranolazine—for their ability to induce autophagy in HL-1 cells. We found that all three agents induced autophagy; inhibition of autophagy abolished their protective effect. Taken together, these findings establish autophagy as an end-effector in ischemic and pharmacologic preconditioning.
Literature
1.
go back to reference Gottlieb, R. A., Finley, K. D., & Mentzer, R. M., Jr. (2009). Cardioprotection requires taking out the trash. Basic Research in Cardiology, 104, 169–180.CrossRefPubMed Gottlieb, R. A., Finley, K. D., & Mentzer, R. M., Jr. (2009). Cardioprotection requires taking out the trash. Basic Research in Cardiology, 104, 169–180.CrossRefPubMed
2.
go back to reference Khan, S., Salloum, F., Das, A., Xi, L., Vetrovec, G. W., & Kukreja, R. C. (2006). Rapamycin confers preconditioning-like protection against ischemia-reperfusion injury in isolated mouse heart and cardiomyocytes. Journal of Molecular and Cellular Cardiology, 41, 256–264.CrossRefPubMed Khan, S., Salloum, F., Das, A., Xi, L., Vetrovec, G. W., & Kukreja, R. C. (2006). Rapamycin confers preconditioning-like protection against ischemia-reperfusion injury in isolated mouse heart and cardiomyocytes. Journal of Molecular and Cellular Cardiology, 41, 256–264.CrossRefPubMed
3.
go back to reference Marzetti E., Wohlgemuth S.E., Anton S.D., Bernabei R., Carter C.S., Leeuwenburgh C. (2009). Cellular mechanisms of cardioprotection by calorie restriction: state of the science and future perspectives. Clin Geriatr Med, 25, 715-32, ix. Marzetti E., Wohlgemuth S.E., Anton S.D., Bernabei R., Carter C.S., Leeuwenburgh C. (2009). Cellular mechanisms of cardioprotection by calorie restriction: state of the science and future perspectives. Clin Geriatr Med, 25, 715-32, ix.
4.
go back to reference Kavazis, A. N., Alvarez, S., Talbert, E., Lee, Y., & Powers, S. K. (2009). Exercise training induces a cardioprotective phenotype and alterations in cardiac subsarcolemmal and intermyofibrillar mitochondrial proteins. American Journal of Physiology. Heart and Circulatory Physiology, 297, H144–H152.CrossRefPubMed Kavazis, A. N., Alvarez, S., Talbert, E., Lee, Y., & Powers, S. K. (2009). Exercise training induces a cardioprotective phenotype and alterations in cardiac subsarcolemmal and intermyofibrillar mitochondrial proteins. American Journal of Physiology. Heart and Circulatory Physiology, 297, H144–H152.CrossRefPubMed
5.
go back to reference Jones, S. P., & Bolli, R. (2006). The ubiquitous role of nitric oxide in cardioprotection. Journal of Molecular and Cellular Cardiology, 40, 16–23.CrossRefPubMed Jones, S. P., & Bolli, R. (2006). The ubiquitous role of nitric oxide in cardioprotection. Journal of Molecular and Cellular Cardiology, 40, 16–23.CrossRefPubMed
6.
go back to reference Ha, T., Hua, F., Liu, X., Ma, J., McMullen, J. R., et al. (2008). Lipopolysaccharide-induced myocardial protection against ischaemia/reperfusion injury is mediated through a PI3K/Akt-dependent mechanism. Cardiovascular Research, 78, 546–553.CrossRefPubMed Ha, T., Hua, F., Liu, X., Ma, J., McMullen, J. R., et al. (2008). Lipopolysaccharide-induced myocardial protection against ischaemia/reperfusion injury is mediated through a PI3K/Akt-dependent mechanism. Cardiovascular Research, 78, 546–553.CrossRefPubMed
7.
go back to reference Gustafsson, A. B., & Gottlieb, R. A. (2008). Eat your heart out: role of autophagy in myocardial ischemia/reperfusion. Autophagy, 4, 416–421.PubMed Gustafsson, A. B., & Gottlieb, R. A. (2008). Eat your heart out: role of autophagy in myocardial ischemia/reperfusion. Autophagy, 4, 416–421.PubMed
8.
go back to reference Yitzhaki, S., Huang, C., Liu, W., Lee, Y., Gustafsson, A. B., et al. (2009). Autophagy is required for preconditioning by the adenosine A1 receptor-selective agonist CCPA. Basic Research in Cardiology, 104, 157–167.CrossRefPubMed Yitzhaki, S., Huang, C., Liu, W., Lee, Y., Gustafsson, A. B., et al. (2009). Autophagy is required for preconditioning by the adenosine A1 receptor-selective agonist CCPA. Basic Research in Cardiology, 104, 157–167.CrossRefPubMed
9.
go back to reference Huang, C., Liu, W., Perry, C. N., Yitzhaki, S., Lee, Y., et al. (2010). Autophagy and protein kinase c are required for cardioprotection by sulfaphenazole. American Journal of Physiology. Heart and Circulatory Physiology, 298(2), H570–H579.CrossRefPubMed Huang, C., Liu, W., Perry, C. N., Yitzhaki, S., Lee, Y., et al. (2010). Autophagy and protein kinase c are required for cardioprotection by sulfaphenazole. American Journal of Physiology. Heart and Circulatory Physiology, 298(2), H570–H579.CrossRefPubMed
10.
go back to reference Yan, L., Sadoshima, J., Vatner, D. E., & Vatner, S. F. (2009). Autophagy in ischemic preconditioning and hibernating myocardium. Autophagy, 5, 709–712.CrossRefPubMed Yan, L., Sadoshima, J., Vatner, D. E., & Vatner, S. F. (2009). Autophagy in ischemic preconditioning and hibernating myocardium. Autophagy, 5, 709–712.CrossRefPubMed
11.
go back to reference Gurusamy, N., Lekli, I., Gorbunov, N., Gherghiceanu, M., Popescu, L. M., & Das, D. K. (2009). Cardioprotection by adaptation to ischemia augments autophagy in association with BAG-1 protein. Journal of Cellular and Molecular Medicine, 13(2), 373–387.CrossRefPubMed Gurusamy, N., Lekli, I., Gorbunov, N., Gherghiceanu, M., Popescu, L. M., & Das, D. K. (2009). Cardioprotection by adaptation to ischemia augments autophagy in association with BAG-1 protein. Journal of Cellular and Molecular Medicine, 13(2), 373–387.CrossRefPubMed
12.
go back to reference Park, H. K., Chu, K., Jung, K. H., Lee, S. T., Bahn, J. J., et al. (2009). Autophagy is involved in the ischemic preconditioning. Neuroscience Letters, 451, 16–19.CrossRefPubMed Park, H. K., Chu, K., Jung, K. H., Lee, S. T., Bahn, J. J., et al. (2009). Autophagy is involved in the ischemic preconditioning. Neuroscience Letters, 451, 16–19.CrossRefPubMed
13.
go back to reference Dengjel, J., Kristensen, A. R., & Andersen, J. S. (2008). Ordered bulk degradation via autophagy. Autophagy, 4, 1057–1059.PubMed Dengjel, J., Kristensen, A. R., & Andersen, J. S. (2008). Ordered bulk degradation via autophagy. Autophagy, 4, 1057–1059.PubMed
14.
go back to reference Yuan, H., Perry, C. N., Huang, C., Iwai-Kanai, E., Carreira, R. S., et al. (2009). LPS-induced autophagy is mediated by oxidative signaling in cardiomyocytes and is associated with cytoprotection. American Journal of Physiology. Heart and Circulatory Physiology, 296, H470–H479.CrossRefPubMed Yuan, H., Perry, C. N., Huang, C., Iwai-Kanai, E., Carreira, R. S., et al. (2009). LPS-induced autophagy is mediated by oxidative signaling in cardiomyocytes and is associated with cytoprotection. American Journal of Physiology. Heart and Circulatory Physiology, 296, H470–H479.CrossRefPubMed
15.
go back to reference Iwai-Kanai, E., Yuan, H., Huang, C., Sayen, M. R., Perry-Garza, C. N., et al. (2008). A method to measure cardiac autophagic flux in vivo. Autophagy, 4, 322–329.PubMed Iwai-Kanai, E., Yuan, H., Huang, C., Sayen, M. R., Perry-Garza, C. N., et al. (2008). A method to measure cardiac autophagic flux in vivo. Autophagy, 4, 322–329.PubMed
16.
go back to reference Granville, D. J., Tashakkor, B., Takeuchi, C., Gustafsson, A. B., Huang, C., et al. (2004). Reduction of ischemia and reperfusion-induced myocardial damage by cytochrome P450 inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 101, 1321–1326.CrossRefPubMed Granville, D. J., Tashakkor, B., Takeuchi, C., Gustafsson, A. B., Huang, C., et al. (2004). Reduction of ischemia and reperfusion-induced myocardial damage by cytochrome P450 inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 101, 1321–1326.CrossRefPubMed
17.
go back to reference Chen, M., Won, D. J., Krajewski, S., & Gottlieb, R. A. (2002). Calpain and mitochondria in ischemia/reperfusion injury. The Journal of Biological Chemistry, 277, 29181–29186.CrossRefPubMed Chen, M., Won, D. J., Krajewski, S., & Gottlieb, R. A. (2002). Calpain and mitochondria in ischemia/reperfusion injury. The Journal of Biological Chemistry, 277, 29181–29186.CrossRefPubMed
18.
go back to reference Becker-Hapak, M., McAllister, S. S., & Dowdy, S. F. (2001). TAT-mediated protein transduction into mammalian cells. Methods, 24, 247–256.CrossRefPubMed Becker-Hapak, M., McAllister, S. S., & Dowdy, S. F. (2001). TAT-mediated protein transduction into mammalian cells. Methods, 24, 247–256.CrossRefPubMed
19.
go back to reference Hamacher-Brady, A., Brady, N. R., Logue, S. E., Sayen, M. R., Jinno, M., et al. (2007). Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy. Cell Death and Differentiation, 14, 146–157.CrossRefPubMed Hamacher-Brady, A., Brady, N. R., Logue, S. E., Sayen, M. R., Jinno, M., et al. (2007). Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy. Cell Death and Differentiation, 14, 146–157.CrossRefPubMed
20.
go back to reference Gustafsson, A. B., Sayen, M. R., Williams, S. D., Crow, M. T., & Gottlieb, R. A. (2002). TAT protein transduction into isolated perfused hearts: TAT-apoptosis repressor with caspase recruitment domain is cardioprotective. Circulation, 106, 735–739.PubMed Gustafsson, A. B., Sayen, M. R., Williams, S. D., Crow, M. T., & Gottlieb, R. A. (2002). TAT protein transduction into isolated perfused hearts: TAT-apoptosis repressor with caspase recruitment domain is cardioprotective. Circulation, 106, 735–739.PubMed
21.
go back to reference Claycomb, W. C., Lanson, N. A., Jr., Stallworth, B. S., Egeland, D. B., Delcarpio, J. B., et al. (1998). HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proceedings of the National Academy of Sciences of the United States of America, 95, 2979–2984.CrossRefPubMed Claycomb, W. C., Lanson, N. A., Jr., Stallworth, B. S., Egeland, D. B., Delcarpio, J. B., et al. (1998). HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proceedings of the National Academy of Sciences of the United States of America, 95, 2979–2984.CrossRefPubMed
22.
go back to reference Hamacher-Brady, A., Brady, N. R., & Gottlieb, R. A. (2006). Enhancing macroautophagy protects against ischemia/reperfusion injury in cardiac myocytes. The Journal of Biological Chemistry, 281, 29776–29787.CrossRefPubMed Hamacher-Brady, A., Brady, N. R., & Gottlieb, R. A. (2006). Enhancing macroautophagy protects against ischemia/reperfusion injury in cardiac myocytes. The Journal of Biological Chemistry, 281, 29776–29787.CrossRefPubMed
23.
go back to reference El-Ani, D., Jacobson, K. A., & Shainberg, A. (1994). Characterization of adenosine receptors in intact cultured heart cells. Biochemical Pharmacology, 48, 727–735.CrossRefPubMed El-Ani, D., Jacobson, K. A., & Shainberg, A. (1994). Characterization of adenosine receptors in intact cultured heart cells. Biochemical Pharmacology, 48, 727–735.CrossRefPubMed
24.
go back to reference Safran, N., Shneyvays, V., Balas, N., Jacobson, K. A., Nawrath, H., & Shainberg, A. (2001). Cardioprotective effects of adenosine A1 and A3 receptor activation during hypoxia in isolated rat cardiac myocytes. Molecular and Cellular Biochemistry, 217, 143–152.CrossRefPubMed Safran, N., Shneyvays, V., Balas, N., Jacobson, K. A., Nawrath, H., & Shainberg, A. (2001). Cardioprotective effects of adenosine A1 and A3 receptor activation during hypoxia in isolated rat cardiac myocytes. Molecular and Cellular Biochemistry, 217, 143–152.CrossRefPubMed
25.
go back to reference Ishii, T., Yanagawa, T., Kawane, T., Yuki, K., Seita, J., et al. (1996). Murine peritoneal macrophages induce a novel 60-kDa protein with structural similarity to a tyrosine kinase p56(lck)-associated protein in response to oxidative stress. Biochemical and Biophysical Research Communications, 226, 456–460.CrossRefPubMed Ishii, T., Yanagawa, T., Kawane, T., Yuki, K., Seita, J., et al. (1996). Murine peritoneal macrophages induce a novel 60-kDa protein with structural similarity to a tyrosine kinase p56(lck)-associated protein in response to oxidative stress. Biochemical and Biophysical Research Communications, 226, 456–460.CrossRefPubMed
26.
go back to reference Bjorkoy, G., Lamark, T., Pankiv, S., Overvatn, A., Brech, A., & Johansen, T. (2009). Monitoring autophagic degradation of p62/SQSTM1. Methods in Enzymology, 452, 181–197.CrossRefPubMed Bjorkoy, G., Lamark, T., Pankiv, S., Overvatn, A., Brech, A., & Johansen, T. (2009). Monitoring autophagic degradation of p62/SQSTM1. Methods in Enzymology, 452, 181–197.CrossRefPubMed
27.
go back to reference Downey, J. M., Krieg, T., & Cohen, M. V. (2008). Mapping preconditioning's signaling pathways: an engineering approach. Annals of the New York Academy of Sciences, 1123, 187–196.CrossRefPubMed Downey, J. M., Krieg, T., & Cohen, M. V. (2008). Mapping preconditioning's signaling pathways: an engineering approach. Annals of the New York Academy of Sciences, 1123, 187–196.CrossRefPubMed
28.
go back to reference Pain, T., Yang, X. M., Critz, S. D., Yue, Y., Nakano, A., et al. (2000). Opening of mitochondrial K(ATP) channels triggers the preconditioned state by generating free radicals. Circulation Research, 87, 460–466.PubMed Pain, T., Yang, X. M., Critz, S. D., Yue, Y., Nakano, A., et al. (2000). Opening of mitochondrial K(ATP) channels triggers the preconditioned state by generating free radicals. Circulation Research, 87, 460–466.PubMed
29.
go back to reference Yitzhaki, S., Shainberg, A., Cheporko, Y., Vidne, B. A., Sagie, A., et al. (2006). Uridine-5'-triphosphate (UTP) reduces infarct size and improves rat heart function after myocardial infarct. Biochemical Pharmacology, 72, 949–955.CrossRefPubMed Yitzhaki, S., Shainberg, A., Cheporko, Y., Vidne, B. A., Sagie, A., et al. (2006). Uridine-5'-triphosphate (UTP) reduces infarct size and improves rat heart function after myocardial infarct. Biochemical Pharmacology, 72, 949–955.CrossRefPubMed
30.
go back to reference Garlid, K. D., Paucek, P., Yarov-Yarovoy, V., Murray, H. N., Darbenzio, R. B., et al. (1997). Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP-sensitive K+ channels. Possible mechanism of cardioprotection. Circulation Research, 81, 1072–1082.PubMed Garlid, K. D., Paucek, P., Yarov-Yarovoy, V., Murray, H. N., Darbenzio, R. B., et al. (1997). Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP-sensitive K+ channels. Possible mechanism of cardioprotection. Circulation Research, 81, 1072–1082.PubMed
31.
go back to reference McCormack, J. G., Barr, R. L., Wolff, A. A., & Lopaschuk, G. D. (1996). Ranolazine stimulates glucose oxidation in normoxic, ischemic, and reperfused ischemic rat hearts. Circulation, 93, 135–142.PubMed McCormack, J. G., Barr, R. L., Wolff, A. A., & Lopaschuk, G. D. (1996). Ranolazine stimulates glucose oxidation in normoxic, ischemic, and reperfused ischemic rat hearts. Circulation, 93, 135–142.PubMed
32.
go back to reference Yitzhaki, S., Shneyvays, V., Jacobson, K. A., & Shainberg, A. (2005). Involvement of uracil nucleotides in protection of cardiomyocytes from hypoxic stress. Biochemical Pharmacology, 69, 1215–1223.CrossRefPubMed Yitzhaki, S., Shneyvays, V., Jacobson, K. A., & Shainberg, A. (2005). Involvement of uracil nucleotides in protection of cardiomyocytes from hypoxic stress. Biochemical Pharmacology, 69, 1215–1223.CrossRefPubMed
33.
go back to reference Wang, Y., Takashi, E., Xu, M., Ayub, A., & Ashraf, M. (2001). Downregulation of protein kinase C inhibits activation of mitochondrial K(ATP) channels by diazoxide. Circulation, 104, 85–90.CrossRefPubMed Wang, Y., Takashi, E., Xu, M., Ayub, A., & Ashraf, M. (2001). Downregulation of protein kinase C inhibits activation of mitochondrial K(ATP) channels by diazoxide. Circulation, 104, 85–90.CrossRefPubMed
34.
go back to reference Hale, S. L., Shryock, J. C., Belardinelli, L., Sweeney, M., & Kloner, R. A. (2008). Late sodium current inhibition as a new cardioprotective approach. Journal of Molecular and Cellular Cardiology, 44, 954–967.CrossRefPubMed Hale, S. L., Shryock, J. C., Belardinelli, L., Sweeney, M., & Kloner, R. A. (2008). Late sodium current inhibition as a new cardioprotective approach. Journal of Molecular and Cellular Cardiology, 44, 954–967.CrossRefPubMed
35.
go back to reference Folmes, C. D., Clanachan, A. S., & Lopaschuk, G. D. (2005). Fatty acid oxidation inhibitors in the management of chronic complications of atherosclerosis. Current Atherosclerosis Reports, 7, 63–70.CrossRefPubMed Folmes, C. D., Clanachan, A. S., & Lopaschuk, G. D. (2005). Fatty acid oxidation inhibitors in the management of chronic complications of atherosclerosis. Current Atherosclerosis Reports, 7, 63–70.CrossRefPubMed
36.
go back to reference Decker, R. S., & Wildenthal, K. (1980). Lysosomal alterations in hypoxic and reoxygenated hearts. I. Ultrastructural and cytochemical changes. The American Journal of Pathology, 98, 425–444.PubMed Decker, R. S., & Wildenthal, K. (1980). Lysosomal alterations in hypoxic and reoxygenated hearts. I. Ultrastructural and cytochemical changes. The American Journal of Pathology, 98, 425–444.PubMed
37.
go back to reference Yan, L., Vatner, D. E., Kim, S. J., Ge, H., Masurekar, M., et al. (2005). Autophagy in chronically ischemic myocardium. Proceedings of the National Academy of Sciences of the United States of America, 102, 13807–13812.CrossRefPubMed Yan, L., Vatner, D. E., Kim, S. J., Ge, H., Masurekar, M., et al. (2005). Autophagy in chronically ischemic myocardium. Proceedings of the National Academy of Sciences of the United States of America, 102, 13807–13812.CrossRefPubMed
38.
go back to reference Gurusamy, N., Lekli, I., Gherghiceanu, M., Popescu, L. M., & Das, D. K. (2009). BAG-1 induces autophagy for cardiac cell survival. Autophagy, 5, 120–121.CrossRefPubMed Gurusamy, N., Lekli, I., Gherghiceanu, M., Popescu, L. M., & Das, D. K. (2009). BAG-1 induces autophagy for cardiac cell survival. Autophagy, 5, 120–121.CrossRefPubMed
39.
go back to reference Araki, M., & Motojima, K. (2008). Hydrophobic statins induce autophagy in cultured human rhabdomyosarcoma cells. Biochemical and Biophysical Research Communications, 367, 462–467.CrossRefPubMed Araki, M., & Motojima, K. (2008). Hydrophobic statins induce autophagy in cultured human rhabdomyosarcoma cells. Biochemical and Biophysical Research Communications, 367, 462–467.CrossRefPubMed
40.
go back to reference Spin, J. M., & Vagelos, R. H. (2003). Early use of statins in acute coronary syndromes. Current Atherosclerosis Reports, 5, 44–51.CrossRefPubMed Spin, J. M., & Vagelos, R. H. (2003). Early use of statins in acute coronary syndromes. Current Atherosclerosis Reports, 5, 44–51.CrossRefPubMed
41.
go back to reference Hickson-Bick, D. L., Jones, C., & Buja, L. M. (2008). Stimulation of mitochondrial biogenesis and autophagy by lipopolysaccharide in the neonatal rat cardiomyocyte protects against programmed cell death. Journal of Molecular and Cellular Cardiology, 44, 411–418.CrossRefPubMed Hickson-Bick, D. L., Jones, C., & Buja, L. M. (2008). Stimulation of mitochondrial biogenesis and autophagy by lipopolysaccharide in the neonatal rat cardiomyocyte protects against programmed cell death. Journal of Molecular and Cellular Cardiology, 44, 411–418.CrossRefPubMed
42.
go back to reference Sala-Mercado J.A., Wider J., Jahania S., Mentzer R.M., Jr, Gottlieb R.A., Przyklenk K. (2009). Abstract 3363: profound cardioprotection with chloramphenicol in the swine model of myocardial ischemia-reperfusion injury. Circulation, 120, S795-b-. Sala-Mercado J.A., Wider J., Jahania S., Mentzer R.M., Jr, Gottlieb R.A., Przyklenk K. (2009). Abstract 3363: profound cardioprotection with chloramphenicol in the swine model of myocardial ischemia-reperfusion injury. Circulation, 120, S795-b-.
43.
go back to reference Kanamori, H., Takemura, G., Maruyama, R., Goto, K., Tsujimoto, A., et al. (2009). Functional significance and morphological characterization of starvation-induced autophagy in the adult heart. The American Journal of Pathology, 174, 1705–1714.CrossRefPubMed Kanamori, H., Takemura, G., Maruyama, R., Goto, K., Tsujimoto, A., et al. (2009). Functional significance and morphological characterization of starvation-induced autophagy in the adult heart. The American Journal of Pathology, 174, 1705–1714.CrossRefPubMed
44.
go back to reference Gottlieb, R. A., Gruol, D. L., Zhu, J. Y., & Engler, R. L. (1996). Preconditioning in rabbit cardiomyocytes: Role of pH, vacuolar proton ATPase, and apoptosis. The Journal of Clinical Investigation, 97, 2391–2398.CrossRefPubMed Gottlieb, R. A., Gruol, D. L., Zhu, J. Y., & Engler, R. L. (1996). Preconditioning in rabbit cardiomyocytes: Role of pH, vacuolar proton ATPase, and apoptosis. The Journal of Clinical Investigation, 97, 2391–2398.CrossRefPubMed
45.
go back to reference Karwatowska-Prokopczuk, E., Nordberg, J., Li, H. L., Engler, R. L., & Gottlieb, R. A. (1998). Effect of the vacuolar proton ATPase on intracellular pH, calcium, and on apoptosis in neonatal cardiomyocytes during metabolic inhibition and recovery. Circulation Research, 82, 1139–1144.PubMed Karwatowska-Prokopczuk, E., Nordberg, J., Li, H. L., Engler, R. L., & Gottlieb, R. A. (1998). Effect of the vacuolar proton ATPase on intracellular pH, calcium, and on apoptosis in neonatal cardiomyocytes during metabolic inhibition and recovery. Circulation Research, 82, 1139–1144.PubMed
46.
go back to reference Ferdinandy, P., Schulz, R., & Baxter, G. F. (2007). Interaction of cardiovascular risk factors with myocardial ischemia/reperfusion injury, preconditioning, and postconditioning. Pharmacological Reviews, 59, 418–458.CrossRefPubMed Ferdinandy, P., Schulz, R., & Baxter, G. F. (2007). Interaction of cardiovascular risk factors with myocardial ischemia/reperfusion injury, preconditioning, and postconditioning. Pharmacological Reviews, 59, 418–458.CrossRefPubMed
47.
go back to reference Bergamini, E., Cavallini, G., Donati, A., & Gori, Z. (2004). The role of macroautophagy in the ageing process, anti-ageing intervention and age-associated diseases. The International Journal of Biochemistry & Cell Biology, 36, 2392–2404.CrossRef Bergamini, E., Cavallini, G., Donati, A., & Gori, Z. (2004). The role of macroautophagy in the ageing process, anti-ageing intervention and age-associated diseases. The International Journal of Biochemistry & Cell Biology, 36, 2392–2404.CrossRef
Metadata
Title
Autophagy Induced by Ischemic Preconditioning is Essential for Cardioprotection
Authors
Chengqun Huang
Smadar Yitzhaki
Cynthia N. Perry
Wayne Liu
Zoltan Giricz
Robert M. Mentzer Jr.
Roberta A. Gottlieb
Publication date
01-08-2010
Publisher
Springer US
Published in
Journal of Cardiovascular Translational Research / Issue 4/2010
Print ISSN: 1937-5387
Electronic ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-010-9189-3

Other articles of this Issue 4/2010

Journal of Cardiovascular Translational Research 4/2010 Go to the issue