Skip to main content
Top
Published in: Journal of Cardiovascular Translational Research 4/2010

01-08-2010

Delivery of Gene and Cellular Therapies for Heart Disease

Authors: Justin A. Mariani, David M. Kaye

Published in: Journal of Cardiovascular Translational Research | Issue 4/2010

Login to get access

Abstract

Although there has been considerable interest in the utilization of gene and cellular therapy for heart disease in recent years, there remain critical questions prior to widespread promotion of therapy, and key among these issues is the delivery method used for both gene therapy and cellular therapy. Much of the failure of gene and cellular therapy can be explained by the biological therapy itself; however, certainly there is a critical role played by the delivery technique, in particular, those that have been adapted from routine clinical use such as intravenous and intracoronary injection. Development of novel techniques to deliver gene and cellular therapy has ensued with some preclinical and even clinical success, though questions regarding safety, invasiveness, and repeatability remain. Here, we review techniques for gene and cellular therapy delivery, both existing and adapted techniques, and novel techniques that have emerged recently at promoting improved efficacy of therapy without the cost of systemic distribution. We also highlight key issues that need to be addressed to improve the chances of success of delivery techniques to enhance therapeutic benefit.
Literature
1.
go back to reference Kaye, D. M., et al. (2007). Percutaneous cardiac recirculation-mediated gene transfer of an inhibitory phospholamban peptide reverses advanced heart failure in large animals. Journal of the American College of Cardiology, 50(3), 253–260.CrossRefPubMed Kaye, D. M., et al. (2007). Percutaneous cardiac recirculation-mediated gene transfer of an inhibitory phospholamban peptide reverses advanced heart failure in large animals. Journal of the American College of Cardiology, 50(3), 253–260.CrossRefPubMed
2.
go back to reference Byrne, M. J., et al. (2008). Recirculating cardiac delivery of AAV2/1SERCA2a improves myocardial function in an experimental model of heart failure in large animals. Gene Therapy, 15(23), 1550–1557.CrossRefPubMed Byrne, M. J., et al. (2008). Recirculating cardiac delivery of AAV2/1SERCA2a improves myocardial function in an experimental model of heart failure in large animals. Gene Therapy, 15(23), 1550–1557.CrossRefPubMed
3.
go back to reference von Ludinghausen, M. (2003). The venous drainage of the human myocardium. Advances in Anatomy, Embryology, And Cell Biology, 168: I-VIII, 1-104. von Ludinghausen, M. (2003). The venous drainage of the human myocardium. Advances in Anatomy, Embryology, And Cell Biology, 168: I-VIII, 1-104.
4.
go back to reference Maselli, D., et al. (2006). Percutaneous mitral annuloplasty: an anatomic study of human coronary sinus and its relation with mitral valve annulus and coronary arteries. Circulation, 114(5), 377–380.CrossRefPubMed Maselli, D., et al. (2006). Percutaneous mitral annuloplasty: an anatomic study of human coronary sinus and its relation with mitral valve annulus and coronary arteries. Circulation, 114(5), 377–380.CrossRefPubMed
5.
go back to reference Gensini, G. G., et al. (1965). Anatomy of the coronary circulation in living man: coronary venography. Circulation, 31(5), 778–784.PubMed Gensini, G. G., et al. (1965). Anatomy of the coronary circulation in living man: coronary venography. Circulation, 31(5), 778–784.PubMed
6.
go back to reference Gilard, M., et al. (1998). Angiographic anatomy of the coronary sinus and its tributaries. Pacing Clin Electrophysiol, 21(11 Pt 2), 2280–2284.CrossRefPubMed Gilard, M., et al. (1998). Angiographic anatomy of the coronary sinus and its tributaries. Pacing Clin Electrophysiol, 21(11 Pt 2), 2280–2284.CrossRefPubMed
7.
go back to reference Van de Veire, N. R., et al. (2006). Non-invasive visualization of the cardiac venous system in coronary artery disease patients using 64-slice computed tomography. Journal of the American College of Cardiology, 48(9), 1832–1838.CrossRefPubMed Van de Veire, N. R., et al. (2006). Non-invasive visualization of the cardiac venous system in coronary artery disease patients using 64-slice computed tomography. Journal of the American College of Cardiology, 48(9), 1832–1838.CrossRefPubMed
8.
go back to reference Jongbloed, M. R., et al. (2005). Noninvasive visualization of the cardiac venous system using multislice computed tomography. Journal of the American College of Cardiology, 45(5), 749–753.CrossRefPubMed Jongbloed, M. R., et al. (2005). Noninvasive visualization of the cardiac venous system using multislice computed tomography. Journal of the American College of Cardiology, 45(5), 749–753.CrossRefPubMed
9.
go back to reference Potkin, B. N., & Roberts, W. C. (1987). Size of coronary sinus at necropsy in subjects without cardiac disease and in patients with various cardiac conditions. American Journal of Cardiology, 60(16), 1418–1421.CrossRefPubMed Potkin, B. N., & Roberts, W. C. (1987). Size of coronary sinus at necropsy in subjects without cardiac disease and in patients with various cardiac conditions. American Journal of Cardiology, 60(16), 1418–1421.CrossRefPubMed
10.
go back to reference Meisel, E., et al. (2001). Investigation of coronary venous anatomy by retrograde venography in patients with malignant ventricular tachycardia. Circulation, 104(4), 442–447.CrossRefPubMed Meisel, E., et al. (2001). Investigation of coronary venous anatomy by retrograde venography in patients with malignant ventricular tachycardia. Circulation, 104(4), 442–447.CrossRefPubMed
11.
go back to reference Angelini, P., et al. (1999). Normal and anomolous coronary arteries in humans. In P. Angelini (Ed.), Coronary artery anomolies. Baltimore: Liipincott Williams and Wilkins. Angelini, P., et al. (1999). Normal and anomolous coronary arteries in humans. In P. Angelini (Ed.), Coronary artery anomolies. Baltimore: Liipincott Williams and Wilkins.
12.
go back to reference Williams, P.L., et al. (eds.) (1989). Gray's anatomy, 37 ed. Churchill Livingstone: London. 1598. Williams, P.L., et al. (eds.) (1989). Gray's anatomy, 37 ed. Churchill Livingstone: London. 1598.
13.
go back to reference Altman, P. A., Sievers, R., & Lee, R. (2003). Exploring heart lymphatics in local drug delivery. Lymphat Res Biol, 1(1), 47–53. discussion 54.CrossRefPubMed Altman, P. A., Sievers, R., & Lee, R. (2003). Exploring heart lymphatics in local drug delivery. Lymphat Res Biol, 1(1), 47–53. discussion 54.CrossRefPubMed
14.
15.
go back to reference Moir, T. W., Eckstein, R. W., & Driscol, T. E. (1963). Thebesian drainage of the septal artery. Circulation Research, 12(2), 212–219. Moir, T. W., Eckstein, R. W., & Driscol, T. E. (1963). Thebesian drainage of the septal artery. Circulation Research, 12(2), 212–219.
16.
go back to reference Cui, Y., Urschel, J. D., & Petrelli, N. J. (2001). The effect of cardiopulmonary lymphatic obstruction on heart and lung function. Thoracic and Cardiovascular Surgeon, 49(1), 35–40.CrossRefPubMed Cui, Y., Urschel, J. D., & Petrelli, N. J. (2001). The effect of cardiopulmonary lymphatic obstruction on heart and lung function. Thoracic and Cardiovascular Surgeon, 49(1), 35–40.CrossRefPubMed
17.
go back to reference Blaese, R. M., et al. (1995). T lymphocyte-directed gene therapy for ADA-SCID: Initial trial results after 4 years. Science, 270(5235), 475–480.CrossRefPubMed Blaese, R. M., et al. (1995). T lymphocyte-directed gene therapy for ADA-SCID: Initial trial results after 4 years. Science, 270(5235), 475–480.CrossRefPubMed
18.
go back to reference Elmadbouh, I., et al. (2007). Ex vivo delivered stromal cell-derived factor-1(alpha) promotes stem cell homing and induces angiomyogenesis in the infarcted myocardium. Journal of Molecular and Cellular Cardiology, 42(4), 792–803.CrossRefPubMed Elmadbouh, I., et al. (2007). Ex vivo delivered stromal cell-derived factor-1(alpha) promotes stem cell homing and induces angiomyogenesis in the infarcted myocardium. Journal of Molecular and Cellular Cardiology, 42(4), 792–803.CrossRefPubMed
19.
go back to reference Kypson, A. P., et al. (1998). Ex vivo adenovirus-mediated gene transfer to the adult rat heart. Journal of Thoracic and Cardiovascular Surgery, 115(3), 623–630.CrossRefPubMed Kypson, A. P., et al. (1998). Ex vivo adenovirus-mediated gene transfer to the adult rat heart. Journal of Thoracic and Cardiovascular Surgery, 115(3), 623–630.CrossRefPubMed
20.
go back to reference Yap, J., et al. (2001). Conditions of vector delivery improve efficiency of adenoviral-mediated gene transfer to the transplanted heart. European Journal of Cardio-Thoracic Surgery, 19(5), 702–707.CrossRefPubMed Yap, J., et al. (2001). Conditions of vector delivery improve efficiency of adenoviral-mediated gene transfer to the transplanted heart. European Journal of Cardio-Thoracic Surgery, 19(5), 702–707.CrossRefPubMed
21.
go back to reference Stadlbauer, T. H. W., et al. (2008). AP-1 and STAT-1 decoy oligodeoxynucleotides attenuate transplant vasculopathy in rat cardiac allografts. Cardiovascular Research, 79(4), 698–705.CrossRefPubMed Stadlbauer, T. H. W., et al. (2008). AP-1 and STAT-1 decoy oligodeoxynucleotides attenuate transplant vasculopathy in rat cardiac allografts. Cardiovascular Research, 79(4), 698–705.CrossRefPubMed
22.
go back to reference Schirmer, J. M., et al. (2007). Recombinant adeno-associated virus vector for gene transfer to the transplanted rat heart. Transplant International, 20(6), 550–557.CrossRefPubMed Schirmer, J. M., et al. (2007). Recombinant adeno-associated virus vector for gene transfer to the transplanted rat heart. Transplant International, 20(6), 550–557.CrossRefPubMed
23.
go back to reference Lazarous, D. F., et al. (1997). Pharmacodynamics of basic fibroblast growth factor: route of administration determines myocardial and systemic distribution. Cardiovascular Research, 36(1), 78–85.CrossRefPubMed Lazarous, D. F., et al. (1997). Pharmacodynamics of basic fibroblast growth factor: route of administration determines myocardial and systemic distribution. Cardiovascular Research, 36(1), 78–85.CrossRefPubMed
24.
go back to reference Barbash, I. M., et al. (2003). Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution. Circulation, 108(7), 863–868.CrossRefPubMed Barbash, I. M., et al. (2003). Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution. Circulation, 108(7), 863–868.CrossRefPubMed
25.
go back to reference Hofmann, M., et al. (2005). Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation, 111(17), 2198–2202.CrossRefPubMed Hofmann, M., et al. (2005). Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation, 111(17), 2198–2202.CrossRefPubMed
26.
go back to reference Franz, W. M., et al. (1997). Analysis of tissue-specific gene delivery by recombinant adenoviruses containing cardiac-specific promoters. Cardiovascular Research, 35(3), 560–566.CrossRefPubMed Franz, W. M., et al. (1997). Analysis of tissue-specific gene delivery by recombinant adenoviruses containing cardiac-specific promoters. Cardiovascular Research, 35(3), 560–566.CrossRefPubMed
27.
go back to reference Aikawa, R., Huggins, G. S., & Snyder, R. O. (2002). Cardiomyocyte-specific gene expression following recombinant adeno-associated viral vector transduction. Journal of Biological Chemistry, 277(21), 18979–18985.CrossRefPubMed Aikawa, R., Huggins, G. S., & Snyder, R. O. (2002). Cardiomyocyte-specific gene expression following recombinant adeno-associated viral vector transduction. Journal of Biological Chemistry, 277(21), 18979–18985.CrossRefPubMed
28.
go back to reference Boecker, W., et al. (2004). Cardiac-specific gene expression facilitated by an enhanced myosin light chain promoter. Mol Imaging, 3(2), 69–75.CrossRefPubMed Boecker, W., et al. (2004). Cardiac-specific gene expression facilitated by an enhanced myosin light chain promoter. Mol Imaging, 3(2), 69–75.CrossRefPubMed
29.
go back to reference Giordano, F. J., et al. (1996). Intracoronary gene transfer of fibroblast growth factor-5 increases blood flow and contractile function in an ischemic region of the heart. Nature Medicine, 2(5), 534–539.CrossRefPubMed Giordano, F. J., et al. (1996). Intracoronary gene transfer of fibroblast growth factor-5 increases blood flow and contractile function in an ischemic region of the heart. Nature Medicine, 2(5), 534–539.CrossRefPubMed
30.
go back to reference Lazarous, D. F., et al. (1999). Adenoviral-mediated gene transfer induces sustained pericardial VEGF expression in dogs: effect on myocardial angiogenesis. Cardiovascular Research, 44(2), 294–302.CrossRefPubMed Lazarous, D. F., et al. (1999). Adenoviral-mediated gene transfer induces sustained pericardial VEGF expression in dogs: effect on myocardial angiogenesis. Cardiovascular Research, 44(2), 294–302.CrossRefPubMed
31.
go back to reference Hou, D., et al. (2005). Radiolabeled cell distribution after intramyocardial, intracoronary, and interstitial retrograde coronary venous delivery: implications for current clinical trials. Circulation, 112(9 Suppl), I150–I156.PubMed Hou, D., et al. (2005). Radiolabeled cell distribution after intramyocardial, intracoronary, and interstitial retrograde coronary venous delivery: implications for current clinical trials. Circulation, 112(9 Suppl), I150–I156.PubMed
32.
go back to reference Nabel, E. G. (2004). Gene transfer approaches for cardiovascular disease. In K. R. Chien (Ed.), Molecular basis of cardiovascular disease: a companion to Braunwald's heart disease (pp. 195–216). Philadelphia: Elsevier. Nabel, E. G. (2004). Gene transfer approaches for cardiovascular disease. In K. R. Chien (Ed.), Molecular basis of cardiovascular disease: a companion to Braunwald's heart disease (pp. 195–216). Philadelphia: Elsevier.
33.
go back to reference Parsa, C. J., et al. (2005). Catheter-mediated subselective intracoronary gene delivery to the rabbit heart: introduction of a novel method. Journal of Gene Medicine, 7(5), 595–603.CrossRefPubMed Parsa, C. J., et al. (2005). Catheter-mediated subselective intracoronary gene delivery to the rabbit heart: introduction of a novel method. Journal of Gene Medicine, 7(5), 595–603.CrossRefPubMed
34.
go back to reference Wright, M. J., et al. (2001). In vivo myocardial gene transfer: optimization and evaluation of intracoronary gene delivery in vivo. Gene Therapy, 8(24), 1833–1839.CrossRefPubMed Wright, M. J., et al. (2001). In vivo myocardial gene transfer: optimization and evaluation of intracoronary gene delivery in vivo. Gene Therapy, 8(24), 1833–1839.CrossRefPubMed
35.
go back to reference Emani, S. M., et al. (2003). Catheter-based intracoronary myocardial adenoviral gene delivery: importance of intraluminal seal and infusion flow rate. Molecular Therapy, 8(2), 306–313.CrossRefPubMed Emani, S. M., et al. (2003). Catheter-based intracoronary myocardial adenoviral gene delivery: importance of intraluminal seal and infusion flow rate. Molecular Therapy, 8(2), 306–313.CrossRefPubMed
36.
go back to reference Wilensky, R. L., et al. (1999). Increased intramural retention after local delivery of molecules with increased binding properties: implications for regional delivery of pharmacologic agents. J Cardiovascular Pharmacological Therapeutics, 4(2), 103–112.CrossRef Wilensky, R. L., et al. (1999). Increased intramural retention after local delivery of molecules with increased binding properties: implications for regional delivery of pharmacologic agents. J Cardiovascular Pharmacological Therapeutics, 4(2), 103–112.CrossRef
37.
go back to reference Sasano, T., et al. (2007). Targeted high-efficiency, homogeneous myocardial gene transfer. Journal of Molecular and Cellular Cardiology, 42(5), 954–961.CrossRefPubMed Sasano, T., et al. (2007). Targeted high-efficiency, homogeneous myocardial gene transfer. Journal of Molecular and Cellular Cardiology, 42(5), 954–961.CrossRefPubMed
38.
go back to reference Raake, P. W., et al. (2008). Cardio-specific long-term gene expression in a porcine model after selective pressure-regulated retroinfusion of adeno-associated viral (AAV) vectors. Gene Therapy, 15(1), 12–17.CrossRefPubMed Raake, P. W., et al. (2008). Cardio-specific long-term gene expression in a porcine model after selective pressure-regulated retroinfusion of adeno-associated viral (AAV) vectors. Gene Therapy, 15(1), 12–17.CrossRefPubMed
39.
go back to reference Donahue, J. K., et al. (1997). Ultrarapid, highly efficient viral gene transfer to the heart. Proceedings of the National Academy of Sciences of the United States of America, 94(9), 4664–4668.CrossRefPubMed Donahue, J. K., et al. (1997). Ultrarapid, highly efficient viral gene transfer to the heart. Proceedings of the National Academy of Sciences of the United States of America, 94(9), 4664–4668.CrossRefPubMed
40.
go back to reference Donahue, J. K., et al. (1998). Acceleration of widespread adenoviral gene transfer to intact rabbit hearts by coronary perfusion with low calcium and serotonin. Gene Therapy, 5(5), 630–634.CrossRefPubMed Donahue, J. K., et al. (1998). Acceleration of widespread adenoviral gene transfer to intact rabbit hearts by coronary perfusion with low calcium and serotonin. Gene Therapy, 5(5), 630–634.CrossRefPubMed
41.
go back to reference Assmus, B., et al. (2002). Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation, 106(24), 3009–3017.CrossRefPubMed Assmus, B., et al. (2002). Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation, 106(24), 3009–3017.CrossRefPubMed
42.
go back to reference Schachinger, V., et al. (2004). Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI Trial. Journal of the American College of Cardiology, 44(8), 1690–1699.CrossRefPubMed Schachinger, V., et al. (2004). Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI Trial. Journal of the American College of Cardiology, 44(8), 1690–1699.CrossRefPubMed
43.
go back to reference Schachinger, V., et al. (2006). Improved clinical outcome after intracoronary administration of bone-marrow-derived progenitor cells in acute myocardial infarction: final 1-year results of the REPAIR-AMI trial. European Heart Journal, 27(23), 2775–2783.CrossRefPubMed Schachinger, V., et al. (2006). Improved clinical outcome after intracoronary administration of bone-marrow-derived progenitor cells in acute myocardial infarction: final 1-year results of the REPAIR-AMI trial. European Heart Journal, 27(23), 2775–2783.CrossRefPubMed
44.
go back to reference Assmus, B., et al. (2006). Transcoronary transplantation of progenitor cells after myocardial infarction. New England Journal of Medicine, 355(12), 1222–1232.CrossRefPubMed Assmus, B., et al. (2006). Transcoronary transplantation of progenitor cells after myocardial infarction. New England Journal of Medicine, 355(12), 1222–1232.CrossRefPubMed
45.
go back to reference Meluzin, J., et al. (2009). Intracoronary delivery of bone marrow cells to the acutely infarcted myocardium. Optimization of the delivery technique. Cardiology, 112(2), 98–106.CrossRefPubMed Meluzin, J., et al. (2009). Intracoronary delivery of bone marrow cells to the acutely infarcted myocardium. Optimization of the delivery technique. Cardiology, 112(2), 98–106.CrossRefPubMed
46.
go back to reference Tossios, P., et al. (2008). Role of balloon occlusion for mononuclear bone marrow cell deposition after intracoronary injection in pigs with reperfused myocardial infarction. European Heart Journal, 29(15), 1911–1921.CrossRefPubMed Tossios, P., et al. (2008). Role of balloon occlusion for mononuclear bone marrow cell deposition after intracoronary injection in pigs with reperfused myocardial infarction. European Heart Journal, 29(15), 1911–1921.CrossRefPubMed
47.
go back to reference Mansour, S., et al. (2006). Intracoronary delivery of hematopoietic bone marrow stem cells and luminal loss of the infarct-related artery in patients with recent myocardial infarction. Journal of the American College of Cardiology, 47(8), 1727–1730.CrossRefPubMed Mansour, S., et al. (2006). Intracoronary delivery of hematopoietic bone marrow stem cells and luminal loss of the infarct-related artery in patients with recent myocardial infarction. Journal of the American College of Cardiology, 47(8), 1727–1730.CrossRefPubMed
48.
go back to reference Vulliet, P. R., et al. (2004). Intra-coronary arterial injection of mesenchymal stromal cells and microinfarction in dogs. Lancet, 363(9411), 783–784.CrossRefPubMed Vulliet, P. R., et al. (2004). Intra-coronary arterial injection of mesenchymal stromal cells and microinfarction in dogs. Lancet, 363(9411), 783–784.CrossRefPubMed
49.
go back to reference Hoshino, K., et al. (2006). Three catheter-based strategies for cardiac delivery of therapeutic gelatin microspheres. Gene Therapy, 13(18), 1320–1327.CrossRefPubMed Hoshino, K., et al. (2006). Three catheter-based strategies for cardiac delivery of therapeutic gelatin microspheres. Gene Therapy, 13(18), 1320–1327.CrossRefPubMed
50.
go back to reference Menasche, P., et al. (2001). Myoblast transplantation for heart failure. Lancet, 357(9252), 279–280.CrossRefPubMed Menasche, P., et al. (2001). Myoblast transplantation for heart failure. Lancet, 357(9252), 279–280.CrossRefPubMed
51.
go back to reference Ben-Haim, S. A., et al. (1996). Nonfluoroscopic, in vivo navigation and mapping technology. Nature Medicine, 2(12), 1393–1395.CrossRefPubMed Ben-Haim, S. A., et al. (1996). Nonfluoroscopic, in vivo navigation and mapping technology. Nature Medicine, 2(12), 1393–1395.CrossRefPubMed
52.
go back to reference Gepstein, L., Hayam, G., & Ben-Haim, S. A. (1997). A novel method for nonfluoroscopic catheter-based electroanatomical mapping of the heart. In vitro and in vivo accuracy results. Circulation, 95(6), 1611–1622.PubMed Gepstein, L., Hayam, G., & Ben-Haim, S. A. (1997). A novel method for nonfluoroscopic catheter-based electroanatomical mapping of the heart. In vitro and in vivo accuracy results. Circulation, 95(6), 1611–1622.PubMed
53.
go back to reference Fuchs, S., Battler, A., & Kornowski, R. (2007). Catheter-based stem cell and gene therapy for refractory myocardial ischemia. Nature Clinical Practise Cardiovascular Medicine, 4(Suppl 1), S89–S95.CrossRef Fuchs, S., Battler, A., & Kornowski, R. (2007). Catheter-based stem cell and gene therapy for refractory myocardial ischemia. Nature Clinical Practise Cardiovascular Medicine, 4(Suppl 1), S89–S95.CrossRef
54.
go back to reference Thompson, C. A., et al. (2003). Percutaneous transvenous cellular cardiomyoplasty: a novel nonsurgical approach for myocardial cell transplantation. Journal of the American College of Cardiology, 41(11), 1964–1971.CrossRefPubMed Thompson, C. A., et al. (2003). Percutaneous transvenous cellular cardiomyoplasty: a novel nonsurgical approach for myocardial cell transplantation. Journal of the American College of Cardiology, 41(11), 1964–1971.CrossRefPubMed
55.
go back to reference Siminiak, T., et al. (2005). Percutaneous trans-coronary-venous transplantation of autologous skeletal myoblasts in the treatment of post-infarction myocardial contractility impairment: the POZNAN trial. European Heart Journal, 26(12), 1188–1195.CrossRefPubMed Siminiak, T., et al. (2005). Percutaneous trans-coronary-venous transplantation of autologous skeletal myoblasts in the treatment of post-infarction myocardial contractility impairment: the POZNAN trial. European Heart Journal, 26(12), 1188–1195.CrossRefPubMed
56.
go back to reference Losordo, D. W., et al. (2007). Intramyocardial transplantation of autologous CD34+ stem cells for intractable angina: a phase I/IIa double-blind, randomized controlled trial. Circulation, 115(25), 3165–3172.CrossRefPubMed Losordo, D. W., et al. (2007). Intramyocardial transplantation of autologous CD34+ stem cells for intractable angina: a phase I/IIa double-blind, randomized controlled trial. Circulation, 115(25), 3165–3172.CrossRefPubMed
57.
go back to reference Deglurkar, I., et al. (2006). Mechanical and electrical effects of cell-based gene therapy for ischemic cardiomyopathy are independent. Human Gene Therapy, 17(11), 1144–1151.CrossRefPubMed Deglurkar, I., et al. (2006). Mechanical and electrical effects of cell-based gene therapy for ischemic cardiomyopathy are independent. Human Gene Therapy, 17(11), 1144–1151.CrossRefPubMed
58.
go back to reference Fouts, K., et al. (2006). Electrophysiological consequence of skeletal myoblast transplantation in normal and infarcted canine myocardium. Heart Rhythm, 3(4), 452–461.CrossRefPubMed Fouts, K., et al. (2006). Electrophysiological consequence of skeletal myoblast transplantation in normal and infarcted canine myocardium. Heart Rhythm, 3(4), 452–461.CrossRefPubMed
59.
go back to reference Fukushima, S., et al. (2007). Direct intramyocardial but not intracoronary injection of bone marrow cells induces ventricular arrhythmias in a rat chronic ischemic heart failure model. Circulation, 115(17), 2254–2261.CrossRefPubMed Fukushima, S., et al. (2007). Direct intramyocardial but not intracoronary injection of bone marrow cells induces ventricular arrhythmias in a rat chronic ischemic heart failure model. Circulation, 115(17), 2254–2261.CrossRefPubMed
60.
go back to reference Beeres, S. L., et al. (2007). Electrophysiological and arrhythmogenic effects of intramyocardial bone marrow cell injection in patients with chronic ischemic heart disease. Heart Rhythm, 4(3), 257–265.CrossRefPubMed Beeres, S. L., et al. (2007). Electrophysiological and arrhythmogenic effects of intramyocardial bone marrow cell injection in patients with chronic ischemic heart disease. Heart Rhythm, 4(3), 257–265.CrossRefPubMed
61.
go back to reference Reinecke, H., et al. (2000). Electromechanical coupling between skeletal and cardiac muscle. Implications for infarct repair. Journal of Cell Biology, 149(3), 731–740.CrossRefPubMed Reinecke, H., et al. (2000). Electromechanical coupling between skeletal and cardiac muscle. Implications for infarct repair. Journal of Cell Biology, 149(3), 731–740.CrossRefPubMed
62.
go back to reference Bel, A., et al. (2003). Transplantation of autologous fresh bone marrow into infarcted myocardium: a word of caution. Circulation, 108(90101), 247–252.CrossRef Bel, A., et al. (2003). Transplantation of autologous fresh bone marrow into infarcted myocardium: a word of caution. Circulation, 108(90101), 247–252.CrossRef
63.
go back to reference Menasche, P. (2009). Stem cell therapy for heart failure: are arrhythmias a real safety concern? Circulation, 119(20), 2735–2740.CrossRefPubMed Menasche, P. (2009). Stem cell therapy for heart failure: are arrhythmias a real safety concern? Circulation, 119(20), 2735–2740.CrossRefPubMed
64.
go back to reference Tran, N., et al. (2006). Short-term heart retention and distribution of intramyocardial delivered mesenchymal cells within necrotic or intact myocardium. Cell Transplantation, 15(4), 351–358.CrossRefPubMed Tran, N., et al. (2006). Short-term heart retention and distribution of intramyocardial delivered mesenchymal cells within necrotic or intact myocardium. Cell Transplantation, 15(4), 351–358.CrossRefPubMed
65.
go back to reference Teng, C. J., et al. (2006). Massive mechanical loss of microspheres with direct intramyocardial injection in the beating heart: implications for cellular cardiomyoplasty. Journal of Thoracic and Cardiovascular Surgery, 132(3), 628–632.CrossRefPubMed Teng, C. J., et al. (2006). Massive mechanical loss of microspheres with direct intramyocardial injection in the beating heart: implications for cellular cardiomyoplasty. Journal of Thoracic and Cardiovascular Surgery, 132(3), 628–632.CrossRefPubMed
66.
go back to reference Grossman, P. M., et al. (2002). Incomplete retention after direct myocardial injection. Catheter Cardiovasc Interv, 55(3), 392–397.CrossRefPubMed Grossman, P. M., et al. (2002). Incomplete retention after direct myocardial injection. Catheter Cardiovasc Interv, 55(3), 392–397.CrossRefPubMed
67.
go back to reference Smits, P. C., et al. (2003). Catheter-based intramyocardial injection of autologous skeletal myoblasts as a primary treatment of ischemic heart failure: clinical experience with six-month follow-up. Journal of the American College of Cardiology, 42(12), 2063–2069.CrossRefPubMed Smits, P. C., et al. (2003). Catheter-based intramyocardial injection of autologous skeletal myoblasts as a primary treatment of ischemic heart failure: clinical experience with six-month follow-up. Journal of the American College of Cardiology, 42(12), 2063–2069.CrossRefPubMed
68.
go back to reference Fuchs, S., et al. (2006). Safety and feasibility of transendocardial autologous bone marrow cell transplantation in patients with advanced heart disease. American Journal of Cardiology, 97(6), 823–829.CrossRefPubMed Fuchs, S., et al. (2006). Safety and feasibility of transendocardial autologous bone marrow cell transplantation in patients with advanced heart disease. American Journal of Cardiology, 97(6), 823–829.CrossRefPubMed
69.
go back to reference Perin, E. C., et al. (2003). Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation, 107(18), 2294–2302.CrossRefPubMed Perin, E. C., et al. (2003). Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation, 107(18), 2294–2302.CrossRefPubMed
70.
go back to reference Baldazzi F et al. (2008) Release of biomarkers of myocardial damage after direct intramyocardial injection of genes and stem cells via the percutaneous transluminal route. European Heart Journal, 29(15), 1819–1826 Baldazzi F et al. (2008) Release of biomarkers of myocardial damage after direct intramyocardial injection of genes and stem cells via the percutaneous transluminal route. European Heart Journal, 29(15), 1819–1826
71.
go back to reference Mohl, W. (1987). Retrograde cardioplegia via the coronary sinus. Annales Chirurgiae et Gynaecologiae, 76(1), 61–67.PubMed Mohl, W. (1987). Retrograde cardioplegia via the coronary sinus. Annales Chirurgiae et Gynaecologiae, 76(1), 61–67.PubMed
72.
go back to reference Mohl, W. (1988). The momentum of coronary sinus interventions clinically. Circulation, 77(1), 6–12.PubMed Mohl, W. (1988). The momentum of coronary sinus interventions clinically. Circulation, 77(1), 6–12.PubMed
73.
go back to reference Hessel, E. A., II, & Edmunds, L. H., Jr. (2003). Extracorporeal circulation: perfusion systems. In L. H. Cohn & L. H. Edmunds Jr. (Eds.), Cardiac surgery in the adult (pp. 317–338). New York: McGraw-Hill. Hessel, E. A., II, & Edmunds, L. H., Jr. (2003). Extracorporeal circulation: perfusion systems. In L. H. Cohn & L. H. Edmunds Jr. (Eds.), Cardiac surgery in the adult (pp. 317–338). New York: McGraw-Hill.
74.
go back to reference Allen, B. S., et al. (1995). Retrograde cardioplegia does not adequately perfuse the right ventricle. Journal of Thoracic and Cardiovascular Surgery, 109(6), 1116–1124. discussion 1124–6.CrossRefPubMed Allen, B. S., et al. (1995). Retrograde cardioplegia does not adequately perfuse the right ventricle. Journal of Thoracic and Cardiovascular Surgery, 109(6), 1116–1124. discussion 1124–6.CrossRefPubMed
75.
go back to reference Mariani, J. A., et al. (2006). Cardiac resynchronisation therapy for heart failure. Internal Medicine Journal, 36(2), 114–123.CrossRefPubMed Mariani, J. A., et al. (2006). Cardiac resynchronisation therapy for heart failure. Internal Medicine Journal, 36(2), 114–123.CrossRefPubMed
76.
go back to reference Boekstegers, P., & Kupatt, C. (2004). Current concepts and applications of coronary venous retroinfusion. Basic Research in Cardiology, 99(6), 373–381.CrossRefPubMed Boekstegers, P., & Kupatt, C. (2004). Current concepts and applications of coronary venous retroinfusion. Basic Research in Cardiology, 99(6), 373–381.CrossRefPubMed
77.
go back to reference von Degenfeld, G., et al. (2003). Selective pressure-regulated retroinfusion of fibroblast growth factor-2 into the coronary vein enhances regional myocardial blood flow and function in pigs with chronic myocardial ischemia. Journal of the American College of Cardiology, 42(6), 1120–1128.CrossRef von Degenfeld, G., et al. (2003). Selective pressure-regulated retroinfusion of fibroblast growth factor-2 into the coronary vein enhances regional myocardial blood flow and function in pigs with chronic myocardial ischemia. Journal of the American College of Cardiology, 42(6), 1120–1128.CrossRef
78.
go back to reference Fearon, W. F., et al. (2004). Evaluation of high-pressure retrograde coronary venous delivery of FGF-2 protein. Catheterization and Cardiovascular Interventions, 61(3), 422–428.CrossRefPubMed Fearon, W. F., et al. (2004). Evaluation of high-pressure retrograde coronary venous delivery of FGF-2 protein. Catheterization and Cardiovascular Interventions, 61(3), 422–428.CrossRefPubMed
79.
go back to reference Suzuki, K., et al. (2004). Targeted cell delivery into infarcted rat hearts by retrograde intracoronary infusion: distribution, dynamics, and influence on cardiac function. Circulation, 110(11 Suppl 1), 225–230. Suzuki, K., et al. (2004). Targeted cell delivery into infarcted rat hearts by retrograde intracoronary infusion: distribution, dynamics, and influence on cardiac function. Circulation, 110(11 Suppl 1), 225–230.
80.
go back to reference Raake, P., et al. (2004). Myocardial gene transfer by selective pressure-regulated retroinfusion of coronary veins: comparison with surgical and percutaneous intramyocardial gene delivery. Journal of the American College of Cardiology, 44(5), 1124–1129.CrossRefPubMed Raake, P., et al. (2004). Myocardial gene transfer by selective pressure-regulated retroinfusion of coronary veins: comparison with surgical and percutaneous intramyocardial gene delivery. Journal of the American College of Cardiology, 44(5), 1124–1129.CrossRefPubMed
81.
go back to reference Raake, P. W., et al. (2008). Cardio-specific long-term gene expression in a porcine model after selective pressure-regulated retroinfusion of adeno-associated viral (AAV) vectors. Gene Therapy, 15(1), 12–17.CrossRefPubMed Raake, P. W., et al. (2008). Cardio-specific long-term gene expression in a porcine model after selective pressure-regulated retroinfusion of adeno-associated viral (AAV) vectors. Gene Therapy, 15(1), 12–17.CrossRefPubMed
82.
go back to reference Spodick, D. H. (2000). Intrapericardial therapeutics and diagnostics. American Journal of Cardiology, 85(8), 1012–1014.CrossRefPubMed Spodick, D. H. (2000). Intrapericardial therapeutics and diagnostics. American Journal of Cardiology, 85(8), 1012–1014.CrossRefPubMed
83.
go back to reference Tio, R. A., et al. (2002). Thoracoscopic monitoring for pericardial application of local drug or gene therapy. International Journal of Cardiology, 82(2), 117–121.CrossRefPubMed Tio, R. A., et al. (2002). Thoracoscopic monitoring for pericardial application of local drug or gene therapy. International Journal of Cardiology, 82(2), 117–121.CrossRefPubMed
84.
go back to reference Lamping, K. G., et al. (1997). Intrapericardial administration of adenovirus for gene transfer. American Journal of Physiology-Heart and Circulatory Physiology, 272(1 Part 2), H310–H317. Lamping, K. G., et al. (1997). Intrapericardial administration of adenovirus for gene transfer. American Journal of Physiology-Heart and Circulatory Physiology, 272(1 Part 2), H310–H317.
85.
go back to reference Lazarous, D. F., et al. (1999). Adenoviral-mediated gene transfer induces sustained pericardial VEGF expression in dogs: effect on myocardial angiogenesis. Cardiovascular Research, 44(2), 294–302.CrossRefPubMed Lazarous, D. F., et al. (1999). Adenoviral-mediated gene transfer induces sustained pericardial VEGF expression in dogs: effect on myocardial angiogenesis. Cardiovascular Research, 44(2), 294–302.CrossRefPubMed
86.
go back to reference Fromes, Y., et al. (1999). Gene delivery to the myocardium by intrapericardial injection. Gene Therapy, 6(4), 683–688.CrossRefPubMed Fromes, Y., et al. (1999). Gene delivery to the myocardium by intrapericardial injection. Gene Therapy, 6(4), 683–688.CrossRefPubMed
87.
go back to reference Davidson, M. J., et al. (2001). Cardiac gene delivery with cardiopulmonary bypass. Circulation, 104(2), 131–133.PubMed Davidson, M. J., et al. (2001). Cardiac gene delivery with cardiopulmonary bypass. Circulation, 104(2), 131–133.PubMed
88.
go back to reference Bridges, C. R., et al. (2002). Global cardiac-specific transgene expression using cardiopulmonary bypass with cardiac isolation. Annals of Thoracic Surgery, 73(6), 1939–1946.CrossRefPubMed Bridges, C. R., et al. (2002). Global cardiac-specific transgene expression using cardiopulmonary bypass with cardiac isolation. Annals of Thoracic Surgery, 73(6), 1939–1946.CrossRefPubMed
89.
go back to reference Bridges, C. R., et al. (2005). Efficient myocyte gene delivery with complete cardiac surgical isolation in situ. Journal of Thoracic and Cardiovascular Surgery, 130(5), 1364.CrossRefPubMed Bridges, C. R., et al. (2005). Efficient myocyte gene delivery with complete cardiac surgical isolation in situ. Journal of Thoracic and Cardiovascular Surgery, 130(5), 1364.CrossRefPubMed
90.
go back to reference Hayase, M., et al. (2005). Catheter-based antegrade intracoronary viral gene delivery with coronary venous blockade. American Journal of Physiology-Heart and Circulatory Physiology, 288(6), H2995–H3000.CrossRefPubMed Hayase, M., et al. (2005). Catheter-based antegrade intracoronary viral gene delivery with coronary venous blockade. American Journal of Physiology-Heart and Circulatory Physiology, 288(6), H2995–H3000.CrossRefPubMed
91.
go back to reference Brunskill, S. J., et al. (2009). Route of delivery and baseline left ventricular ejection fraction, key factors of bone-marrow-derived cell therapy for ischaemic heart disease. European Journal of Heart Failure, 11(9), 887–896.CrossRefPubMed Brunskill, S. J., et al. (2009). Route of delivery and baseline left ventricular ejection fraction, key factors of bone-marrow-derived cell therapy for ischaemic heart disease. European Journal of Heart Failure, 11(9), 887–896.CrossRefPubMed
Metadata
Title
Delivery of Gene and Cellular Therapies for Heart Disease
Authors
Justin A. Mariani
David M. Kaye
Publication date
01-08-2010
Publisher
Springer US
Published in
Journal of Cardiovascular Translational Research / Issue 4/2010
Print ISSN: 1937-5387
Electronic ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-010-9190-x

Other articles of this Issue 4/2010

Journal of Cardiovascular Translational Research 4/2010 Go to the issue