Skip to main content
Top
Published in: Journal of Cardiovascular Translational Research 4/2010

01-08-2010

Dichotomous Actions of NF-κB Signaling Pathways in Heart

Authors: Rimpy Dhingra, James A. Shaw, Yaron Aviv, Lorrie A. Kirshenbaum

Published in: Journal of Cardiovascular Translational Research | Issue 4/2010

Login to get access

Abstract

Despite the substantial progress in heart research over the past two decades heart failure still remains a major cause of morbidity and mortality in North America and is reaching pandemic proportions worldwide. Though the underlying causes are varied, the functional loss of contractile myocytes through apoptosis, necrosis, and autophagy has emerged a central unifying theme to explain diminished cardiac performance in individuals with heart failure. At the molecular level, there has been considerable interest in understanding the signaling pathways that regulate cell death in the heart with specific interest in the extrinsic and intrinsic cell death pathways. The cellular factor nuclear factor-κB (NF-κB) is a key transcription factor involved in the regulation of a wide range of genes involved in cellular process including inflammation, immune cell maturation, cell proliferation, and, most recently, cell survival. NF-κB signaling is important for the normal cellular growth and is a major target of inflammatory cytokines. Several studies have highlighted a protective role of NF-κB in the heart under certain circumstances including hypoxic or ischemic myocardial injury. The diverse nature and involvement of NF-κB in regulation of vital cellular processes including cell survival notably in the post-mitotic heart has sparked considerable interest in understanding the signaling pathways involved in regulating NF-κB in the heart under normal and pathological conditions. However, whether NF-κB is adaptive, maladaptive or is a homeostatic response to cardiac injury may simply depend on the context and timing of its activation. In this forum we discuss NF-κB signaling pathways and therapeutic opportunities to modulate NF-κB activity in heart failure.
Literature
1.
go back to reference Ashburner, B. P., Westerheide, S. D., & Baldwin, A. S., Jr. (2001). The p65 (RelA) subunit of NF-kappaB interacts with the histone deacetylase (HDAC) corepressors HDAC1 and HDAC2 to negatively regulate gene expression. Molecular and Cellular Biology, 21, 7065–7077.CrossRefPubMed Ashburner, B. P., Westerheide, S. D., & Baldwin, A. S., Jr. (2001). The p65 (RelA) subunit of NF-kappaB interacts with the histone deacetylase (HDAC) corepressors HDAC1 and HDAC2 to negatively regulate gene expression. Molecular and Cellular Biology, 21, 7065–7077.CrossRefPubMed
2.
go back to reference Baetu, T. M., Kwon, H., Sharma, S., Grandvaux, N., & Hiscott, J. (2001). Disruption of NF-kappaB signaling reveals a novel role for NF-kappaB in the regulation of TNF-related apoptosis-inducing ligand expression. Journal of Immunology, 167, 3164–3173. Baetu, T. M., Kwon, H., Sharma, S., Grandvaux, N., & Hiscott, J. (2001). Disruption of NF-kappaB signaling reveals a novel role for NF-kappaB in the regulation of TNF-related apoptosis-inducing ligand expression. Journal of Immunology, 167, 3164–3173.
3.
go back to reference Baetz, D., Regula, K. M., Ens, K., Shaw, J., Kothari, S., Yurkova, N., et al. (2005). Nuclear factor-kappaB-mediated cell survival involves transcriptional silencing of the mitochondrial death gene BNIP3 in ventricular myocytes. Circulation, 112, 3777–3785.CrossRefPubMed Baetz, D., Regula, K. M., Ens, K., Shaw, J., Kothari, S., Yurkova, N., et al. (2005). Nuclear factor-kappaB-mediated cell survival involves transcriptional silencing of the mitochondrial death gene BNIP3 in ventricular myocytes. Circulation, 112, 3777–3785.CrossRefPubMed
4.
go back to reference Baeuerle, P. A., & Baltimore, D. (1989). A 65-kappaD subunit of active NF-kappaB is required for inhibition of NF-kappaB by I kappaB. Genes & Development, 3, 1689–1698.CrossRef Baeuerle, P. A., & Baltimore, D. (1989). A 65-kappaD subunit of active NF-kappaB is required for inhibition of NF-kappaB by I kappaB. Genes & Development, 3, 1689–1698.CrossRef
6.
go back to reference Ballard, D. W., Dixon, E. P., Peffer, N. J., Bogerd, H., Doerre, S., Stein, B., et al. (1992). The 65-kDa subunit of human NF-kappa B functions as a potent transcriptional activator and a target for v-Rel-mediated repression. Proceedings of the National Academy of Sciences of the United States of America, 89, 1875–1879.CrossRefPubMed Ballard, D. W., Dixon, E. P., Peffer, N. J., Bogerd, H., Doerre, S., Stein, B., et al. (1992). The 65-kDa subunit of human NF-kappa B functions as a potent transcriptional activator and a target for v-Rel-mediated repression. Proceedings of the National Academy of Sciences of the United States of America, 89, 1875–1879.CrossRefPubMed
7.
go back to reference Beg, A. A., & Baltimore, D. (1996). An essential role for NF-kappaB in preventing TNF-alpha-induced cell death [see comments]. Science, 274, 782–784.CrossRefPubMed Beg, A. A., & Baltimore, D. (1996). An essential role for NF-kappaB in preventing TNF-alpha-induced cell death [see comments]. Science, 274, 782–784.CrossRefPubMed
8.
go back to reference Belosjorow, S., Bolle, I., Duschin, A., Heusch, G., & Schulz, R. (2003). TNF-alpha antibodies are as effective as ischemic preconditioning in reducing infarct size in rabbits. American Journal of Physiology. Heart and Circulatory Physiology, 284, H927–H930.PubMed Belosjorow, S., Bolle, I., Duschin, A., Heusch, G., & Schulz, R. (2003). TNF-alpha antibodies are as effective as ischemic preconditioning in reducing infarct size in rabbits. American Journal of Physiology. Heart and Circulatory Physiology, 284, H927–H930.PubMed
9.
go back to reference Bours, V., Azarenko, V., Dejardin, E., & Siebenlist, U. (1994). Human RelB (I-Rel) functions as a kappa B site-dependent transactivating member of the family of Rel-related proteins. Oncogene, 9, 1699–1702.PubMed Bours, V., Azarenko, V., Dejardin, E., & Siebenlist, U. (1994). Human RelB (I-Rel) functions as a kappa B site-dependent transactivating member of the family of Rel-related proteins. Oncogene, 9, 1699–1702.PubMed
10.
go back to reference Brown, K., Gerstberger, S., Carlson, L., Franzoso, G., & Siebenlist, U. (1995). Control of I kappa B-alpha proteolysis by site-specific, signal- induced phosphorylation. Science, 267, 1485–1488.CrossRefPubMed Brown, K., Gerstberger, S., Carlson, L., Franzoso, G., & Siebenlist, U. (1995). Control of I kappa B-alpha proteolysis by site-specific, signal- induced phosphorylation. Science, 267, 1485–1488.CrossRefPubMed
11.
go back to reference Brummelkamp, T. R., Nijman, S. M., Dirac, A. M., & Bernards, R. (2003). Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-kappaB. Nature, 424, 797–801.CrossRefPubMed Brummelkamp, T. R., Nijman, S. M., Dirac, A. M., & Bernards, R. (2003). Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-kappaB. Nature, 424, 797–801.CrossRefPubMed
12.
go back to reference Buss, H., Dorrie, A., Schmitz, M. L., Frank, R., Livingstone, M., Resch, K., et al. (2004). Phosphorylation of serine 468 by GSK-3beta negatively regulates basal p65 NF-kappaB activity. The Journal of Biological Chemistry, 279, 49571–49574.CrossRefPubMed Buss, H., Dorrie, A., Schmitz, M. L., Frank, R., Livingstone, M., Resch, K., et al. (2004). Phosphorylation of serine 468 by GSK-3beta negatively regulates basal p65 NF-kappaB activity. The Journal of Biological Chemistry, 279, 49571–49574.CrossRefPubMed
13.
go back to reference Cain, B. S., Meldrum, D. R., Dinarello, C. A., Meng, X., Joo, K. S., Banerjee, A., et al. (1999). Tumor necrosis factor-alpha and interleukin-1beta synergistically depress human myocardial function [In Process Citation]. Critical Care Medicine, 27, 1309–1318.CrossRefPubMed Cain, B. S., Meldrum, D. R., Dinarello, C. A., Meng, X., Joo, K. S., Banerjee, A., et al. (1999). Tumor necrosis factor-alpha and interleukin-1beta synergistically depress human myocardial function [In Process Citation]. Critical Care Medicine, 27, 1309–1318.CrossRefPubMed
14.
go back to reference Capobianco, A. J., Chang, D., Mosialos, G., & Gilmore, T. D. (1992). p105, the NF-kappa B p50 precursor protein, is one of the cellular proteins complexed with the v-Rel oncoprotein in transformed chicken spleen cells. Journal of Virology, 66, 3758–3767.PubMed Capobianco, A. J., Chang, D., Mosialos, G., & Gilmore, T. D. (1992). p105, the NF-kappa B p50 precursor protein, is one of the cellular proteins complexed with the v-Rel oncoprotein in transformed chicken spleen cells. Journal of Virology, 66, 3758–3767.PubMed
15.
go back to reference Carlotti, F., Dower, S. K., & Qwarnstrom, E. E. (2000). Dynamic shuttling of nuclear factor kappa B between the nucleus and cytoplasm as a consequence of inhibitor dissociation 9. The Journal of Biological Chemistry, 275, 41028–41034.CrossRefPubMed Carlotti, F., Dower, S. K., & Qwarnstrom, E. E. (2000). Dynamic shuttling of nuclear factor kappa B between the nucleus and cytoplasm as a consequence of inhibitor dissociation 9. The Journal of Biological Chemistry, 275, 41028–41034.CrossRefPubMed
16.
go back to reference Catz, S. D., & Johnson, J. L. (2001). Transcriptional regulation of bcl-2 by nuclear factor kappa B and its significance in prostate cancer. Oncogene, 20, 7342–7351.CrossRefPubMed Catz, S. D., & Johnson, J. L. (2001). Transcriptional regulation of bcl-2 by nuclear factor kappa B and its significance in prostate cancer. Oncogene, 20, 7342–7351.CrossRefPubMed
17.
go back to reference Chandrasekar, B., & Freeman, G. L. (1997). Induction of nuclear factor kappaB and activation protein 1 in postischemic myocardium. FEBS Letters, 401, 30–34.CrossRefPubMed Chandrasekar, B., & Freeman, G. L. (1997). Induction of nuclear factor kappaB and activation protein 1 in postischemic myocardium. FEBS Letters, 401, 30–34.CrossRefPubMed
18.
go back to reference Chandrasekar, B., Smith, J. B., & Freeman, G. L. (2001). Ischemia-reperfusion of rat myocardium activates nuclear factor-KappaB and induces neutrophil infiltration via lipopolysaccharide-induced CXC chemokine. Circulation, 103, 2296–2302.PubMed Chandrasekar, B., Smith, J. B., & Freeman, G. L. (2001). Ischemia-reperfusion of rat myocardium activates nuclear factor-KappaB and induces neutrophil infiltration via lipopolysaccharide-induced CXC chemokine. Circulation, 103, 2296–2302.PubMed
19.
go back to reference Chen, G., Cao, P., & Goeddel, D. V. (2002). TNF-induced recruitment and activation of the IKK complex require Cdc37 and Hsp90. Molecular Cell, 9, 401–410.CrossRefPubMed Chen, G., Cao, P., & Goeddel, D. V. (2002). TNF-induced recruitment and activation of the IKK complex require Cdc37 and Hsp90. Molecular Cell, 9, 401–410.CrossRefPubMed
20.
go back to reference Cleveland, J. L., & Ihle, J. N. (1995). Contenders in FasL/TNF death signaling. Cell, 81, 479–482.CrossRefPubMed Cleveland, J. L., & Ihle, J. N. (1995). Contenders in FasL/TNF death signaling. Cell, 81, 479–482.CrossRefPubMed
21.
go back to reference Cogswell, P. C., Scheinman, R. I., & Baldwin, A. S., Jr. (1993). Promoter of the human NF-kappa B p50/p105 gene. Regulation by NF-kappa B subunits and by c-REL. Journal of Immunology, 150, 2794–2804. Cogswell, P. C., Scheinman, R. I., & Baldwin, A. S., Jr. (1993). Promoter of the human NF-kappa B p50/p105 gene. Regulation by NF-kappa B subunits and by c-REL. Journal of Immunology, 150, 2794–2804.
22.
go back to reference Cosman, D. (1994). A family of ligands for the TNF receptor superfamily. Stem. Cells Dayt., 12, 440–455.CrossRefPubMed Cosman, D. (1994). A family of ligands for the TNF receptor superfamily. Stem. Cells Dayt., 12, 440–455.CrossRefPubMed
23.
go back to reference Das, K. C., Lewis-Molock, Y., & White, C. W. (1995). Activation of NF-kappa B and elevation of MnSOD gene expression by thiol reducing agents in lung adenocarcinoma (A549) cells. The American Journal of Physiology, 269, L588–L602.PubMed Das, K. C., Lewis-Molock, Y., & White, C. W. (1995). Activation of NF-kappa B and elevation of MnSOD gene expression by thiol reducing agents in lung adenocarcinoma (A549) cells. The American Journal of Physiology, 269, L588–L602.PubMed
24.
go back to reference Dawn, B., Xuan, Y. T., Marian, M., Flaherty, M. P., Murphree, S. S., Smith, T. L., et al. (2001). Cardiac-specific abrogation of NF- kappa B activation in mice by transdominant expression of a mutant I kappa B alpha 20. Journal of Molecular and Cellular Cardiology, 33, 161–173.CrossRefPubMed Dawn, B., Xuan, Y. T., Marian, M., Flaherty, M. P., Murphree, S. S., Smith, T. L., et al. (2001). Cardiac-specific abrogation of NF- kappa B activation in mice by transdominant expression of a mutant I kappa B alpha 20. Journal of Molecular and Cellular Cardiology, 33, 161–173.CrossRefPubMed
25.
go back to reference de Moissac, D., Mustapha, S., Greenberg, A. H., & Kirshenbaum, L. A. (1998). Bcl-2 activates the transcription factor NFkappaB through the degradation of the cytoplasmic inhibitor IkappaBalpha. The Journal of Biological Chemistry, 273, 23946–23951.CrossRefPubMed de Moissac, D., Mustapha, S., Greenberg, A. H., & Kirshenbaum, L. A. (1998). Bcl-2 activates the transcription factor NFkappaB through the degradation of the cytoplasmic inhibitor IkappaBalpha. The Journal of Biological Chemistry, 273, 23946–23951.CrossRefPubMed
26.
go back to reference de Moissac, D., Zheng, H., & Kirshenbaum, L. A. (1999). Linkage of the BH4 domain of Bcl-2 and the nuclear factor kappaB signaling pathway for suppression of apoptosis. The Journal of Biological Chemistry, 274, 29505–29509.CrossRefPubMed de Moissac, D., Zheng, H., & Kirshenbaum, L. A. (1999). Linkage of the BH4 domain of Bcl-2 and the nuclear factor kappaB signaling pathway for suppression of apoptosis. The Journal of Biological Chemistry, 274, 29505–29509.CrossRefPubMed
27.
go back to reference Dejardin, E. (2006). The alternative NF-kappaB pathway from biochemistry to biology: Pitfalls and promises for future drug development. Biochemical Pharmacology, 72, 1161–1179.CrossRefPubMed Dejardin, E. (2006). The alternative NF-kappaB pathway from biochemistry to biology: Pitfalls and promises for future drug development. Biochemical Pharmacology, 72, 1161–1179.CrossRefPubMed
28.
go back to reference Demaria, S., Pikarsky, E., Karin, M., Coussens, L. M., Chen, Y. C., El-Omar, E. M., et al. (2010). Cancer and inflammation: Promise for biologic therapy. Journal of Immunotherapy, 33, 335–351.CrossRefPubMed Demaria, S., Pikarsky, E., Karin, M., Coussens, L. M., Chen, Y. C., El-Omar, E. M., et al. (2010). Cancer and inflammation: Promise for biologic therapy. Journal of Immunotherapy, 33, 335–351.CrossRefPubMed
29.
go back to reference Dorn, G. W., & Kirshenbaum, L. A. (2008). Cardiac reanimation: Targeting cardiomyocyte death by BNIP3 and NIX/BNIP3L. Oncogene, 27(Suppl 1), S158–S167.CrossRefPubMed Dorn, G. W., & Kirshenbaum, L. A. (2008). Cardiac reanimation: Targeting cardiomyocyte death by BNIP3 and NIX/BNIP3L. Oncogene, 27(Suppl 1), S158–S167.CrossRefPubMed
30.
go back to reference Ellinger Ziegelbauer, H., Brown, K., Kelly, K., & Siebenlist, U. (1997). Direct activation of the stress-activated protein kinase (SAPK) and extracellular signal-regulated protein kinase (ERK) pathways by an inducible mitogen-activated protein Kinase/ERK kinase kinase 3 (MEKK) derivative. The Journal of Biological Chemistry, 272, 2668–2674.CrossRefPubMed Ellinger Ziegelbauer, H., Brown, K., Kelly, K., & Siebenlist, U. (1997). Direct activation of the stress-activated protein kinase (SAPK) and extracellular signal-regulated protein kinase (ERK) pathways by an inducible mitogen-activated protein Kinase/ERK kinase kinase 3 (MEKK) derivative. The Journal of Biological Chemistry, 272, 2668–2674.CrossRefPubMed
31.
go back to reference Ganchi, P. A., Sun, S. C., Greene, W. C., & Ballard, D. W. (1992). I kappa B/MAD-3 masks the nuclear localization signal of NF-kappa B p65 and requires the transactivation domain to inhibit NF- kappa B p65 DNA binding. Molecular Biology of the Cell, 3, 1339–1352.PubMed Ganchi, P. A., Sun, S. C., Greene, W. C., & Ballard, D. W. (1992). I kappa B/MAD-3 masks the nuclear localization signal of NF-kappa B p65 and requires the transactivation domain to inhibit NF- kappa B p65 DNA binding. Molecular Biology of the Cell, 3, 1339–1352.PubMed
32.
33.
go back to reference Gilmore, T. D., & Morin, P. J. (1993). The I kappa B proteins: Members of a multifunctional family. Trends in Genetics, 9, 427–433.CrossRefPubMed Gilmore, T. D., & Morin, P. J. (1993). The I kappa B proteins: Members of a multifunctional family. Trends in Genetics, 9, 427–433.CrossRefPubMed
34.
go back to reference Hall, J. L., Wang, X., Van, A., Zhao, Y., & Gibbons, G. H. (2001). Overexpression of Ref-1 inhibits hypoxia and tumor necrosis factor-induced endothelial cell apoptosis through nuclear factor-kappab-independent and -dependent pathways. Circulation Research, 88, 1247–1253.CrossRefPubMed Hall, J. L., Wang, X., Van, A., Zhao, Y., & Gibbons, G. H. (2001). Overexpression of Ref-1 inhibits hypoxia and tumor necrosis factor-induced endothelial cell apoptosis through nuclear factor-kappab-independent and -dependent pathways. Circulation Research, 88, 1247–1253.CrossRefPubMed
35.
go back to reference Hamid, T., Gu, Y., Ortines, R. V., Bhattacharya, C., Wang, G., Xuan, Y. T., et al. (2009). Divergent tumor necrosis factor receptor-related remodeling responses in heart failure: Role of nuclear factor-kappaB and inflammatory activation. Circulation, 119, 1386–1397.CrossRefPubMed Hamid, T., Gu, Y., Ortines, R. V., Bhattacharya, C., Wang, G., Xuan, Y. T., et al. (2009). Divergent tumor necrosis factor receptor-related remodeling responses in heart failure: Role of nuclear factor-kappaB and inflammatory activation. Circulation, 119, 1386–1397.CrossRefPubMed
36.
go back to reference Haudek, S. B., Spencer, E., Bryant, D. D., White, D. J., Maass, D., Horton, J. W., et al. (2001). Overexpression of cardiac I-kappaBalpha prevents endotoxin-induced myocardial dysfunction. American Journal of Physiology. Heart and Circulatory Physiology, 280, H962–H968.PubMed Haudek, S. B., Spencer, E., Bryant, D. D., White, D. J., Maass, D., Horton, J. W., et al. (2001). Overexpression of cardiac I-kappaBalpha prevents endotoxin-induced myocardial dysfunction. American Journal of Physiology. Heart and Circulatory Physiology, 280, H962–H968.PubMed
37.
go back to reference Hayakawa, Y., Chandra, M., Miao, W., Shirani, J., Brown, J. H., Dorn, G. W., et al. (2003). Inhibition of cardiac myocyte apoptosis improves cardiac function and abolishes mortality in the peripartum cardiomyopathy of Galpha(q) transgenic mice. Circulation, 108, 3036–3041.CrossRefPubMed Hayakawa, Y., Chandra, M., Miao, W., Shirani, J., Brown, J. H., Dorn, G. W., et al. (2003). Inhibition of cardiac myocyte apoptosis improves cardiac function and abolishes mortality in the peripartum cardiomyopathy of Galpha(q) transgenic mice. Circulation, 108, 3036–3041.CrossRefPubMed
38.
go back to reference Hayden, M. S., & Ghosh, S. (2004). Signaling to NF-kappaB. Genes & Development, 18, 2195–2224.CrossRef Hayden, M. S., & Ghosh, S. (2004). Signaling to NF-kappaB. Genes & Development, 18, 2195–2224.CrossRef
39.
go back to reference Herskowitz, A., Choi, S., Ansari, A. A., & Wesselingh, S. (1995). Cytokine mRNA expression in postischemic/reperfused myocardium. The American Journal of Pathology, 146, 419–428.PubMed Herskowitz, A., Choi, S., Ansari, A. A., & Wesselingh, S. (1995). Cytokine mRNA expression in postischemic/reperfused myocardium. The American Journal of Pathology, 146, 419–428.PubMed
40.
go back to reference Hoffmann, A., & Baltimore, D. (2006). Circuitry of nuclear factor kappaB signaling. Immunological Reviews, 210, 171–186.CrossRefPubMed Hoffmann, A., & Baltimore, D. (2006). Circuitry of nuclear factor kappaB signaling. Immunological Reviews, 210, 171–186.CrossRefPubMed
41.
go back to reference Hoffmann, A., Natoli, G., & Ghosh, G. (2006). Transcriptional regulation via the NF-kappaB signaling module. Oncogene, 25, 6706–6716.CrossRefPubMed Hoffmann, A., Natoli, G., & Ghosh, G. (2006). Transcriptional regulation via the NF-kappaB signaling module. Oncogene, 25, 6706–6716.CrossRefPubMed
42.
go back to reference Hsu, H., Shu, H. B., Pan, M. G., & Goeddel, D. V. (1996). TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell, 84, 299–308.CrossRefPubMed Hsu, H., Shu, H. B., Pan, M. G., & Goeddel, D. V. (1996). TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell, 84, 299–308.CrossRefPubMed
43.
go back to reference Hsu, H., Xiong, J., & Goeddel, D. V. (1995). The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation. Cell, 81, 495–504.CrossRefPubMed Hsu, H., Xiong, J., & Goeddel, D. V. (1995). The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation. Cell, 81, 495–504.CrossRefPubMed
44.
go back to reference Hu, Y., Baud, V., Oga, T., Kim, K. I., Yoshida, K., & Karin, M. (2001). IKKalpha controls formation of the epidermis independently of NF-kappaB. Nature, 410, 710–714.CrossRefPubMed Hu, Y., Baud, V., Oga, T., Kim, K. I., Yoshida, K., & Karin, M. (2001). IKKalpha controls formation of the epidermis independently of NF-kappaB. Nature, 410, 710–714.CrossRefPubMed
45.
go back to reference Karin, M. (2009). NF-kappaB as a critical link between inflammation and cancer. Cold Spring Harb Perspect Biol, 1, a000141.CrossRefPubMed Karin, M. (2009). NF-kappaB as a critical link between inflammation and cancer. Cold Spring Harb Perspect Biol, 1, a000141.CrossRefPubMed
46.
go back to reference Karin, M., & Lin, A. (2002). NF-kappaB at the crossroads of life and death. Nature Immunology, 3, 221–227.CrossRefPubMed Karin, M., & Lin, A. (2002). NF-kappaB at the crossroads of life and death. Nature Immunology, 3, 221–227.CrossRefPubMed
47.
go back to reference Kasibhatla, S., Genestier, L., & Green, D. R. (1999). Regulation of fas-ligand expression during activation-induced cell death in T lymphocytes via nuclear factor kappaB. The Journal of Biological Chemistry, 274, 987–992.CrossRefPubMed Kasibhatla, S., Genestier, L., & Green, D. R. (1999). Regulation of fas-ligand expression during activation-induced cell death in T lymphocytes via nuclear factor kappaB. The Journal of Biological Chemistry, 274, 987–992.CrossRefPubMed
48.
go back to reference Kurrelmeyer, K. M., Michael, L. H., Baumgarten, G., Taffet, G. E., Peschon, J. J., Sivasubramanian, N., et al. (2000). Endogenous tumor necrosis factor protects the adult cardiac myocyte against ischemic-induced apoptosis in a murine model of acute myocardial infarction. Proceedings of the National Academy of Sciences of the United States of America, 97, 5456–5461.CrossRefPubMed Kurrelmeyer, K. M., Michael, L. H., Baumgarten, G., Taffet, G. E., Peschon, J. J., Sivasubramanian, N., et al. (2000). Endogenous tumor necrosis factor protects the adult cardiac myocyte against ischemic-induced apoptosis in a murine model of acute myocardial infarction. Proceedings of the National Academy of Sciences of the United States of America, 97, 5456–5461.CrossRefPubMed
49.
go back to reference Li, X., He, D., Zhang, L., Xue, Y., Cheng, X., & Luo, Y. (2007). Pyrrolidine dithiocarbamate attenuate shock wave induced MDCK cells injury via inhibiting nuclear factor-kappa B activation. Urological Research, 35, 193–199.CrossRefPubMed Li, X., He, D., Zhang, L., Xue, Y., Cheng, X., & Luo, Y. (2007). Pyrrolidine dithiocarbamate attenuate shock wave induced MDCK cells injury via inhibiting nuclear factor-kappa B activation. Urological Research, 35, 193–199.CrossRefPubMed
50.
go back to reference Libermann, T. A., & Baltimore, D. (1990). Activation of interleukin-6 gene expression through the NF-kappa B transcription factor. Molecular and Cellular Biology, 10, 2327–2334.PubMed Libermann, T. A., & Baltimore, D. (1990). Activation of interleukin-6 gene expression through the NF-kappa B transcription factor. Molecular and Cellular Biology, 10, 2327–2334.PubMed
51.
go back to reference Luss, H., Schmitz, W., & Neumann, J. (2002). A proteasome inhibitor confers cardioprotection. Cardiovascular Research, 54, 140–151.CrossRefPubMed Luss, H., Schmitz, W., & Neumann, J. (2002). A proteasome inhibitor confers cardioprotection. Cardiovascular Research, 54, 140–151.CrossRefPubMed
52.
go back to reference Madrid, L. V., Wang, C. Y., Guttridge, D. C., Schottelius, A. J., Baldwin, A. S., Jr., & Mayo, M. W. (2000). Akt suppresses apoptosis by stimulating the transactivation potential of the RelA/p65 subunit of NF-kappaB. Molecular and Cellular Biology, 20, 1626–1638.CrossRefPubMed Madrid, L. V., Wang, C. Y., Guttridge, D. C., Schottelius, A. J., Baldwin, A. S., Jr., & Mayo, M. W. (2000). Akt suppresses apoptosis by stimulating the transactivation potential of the RelA/p65 subunit of NF-kappaB. Molecular and Cellular Biology, 20, 1626–1638.CrossRefPubMed
53.
go back to reference Maekawa, N., Wada, H., Kanda, T., Niwa, T., Yamada, Y., Saito, K., et al. (2002). Improved myocardial ischemia/reperfusion injury in mice lacking tumor necrosis factor-alpha. Journal of the American College of Cardiology, 39, 1229–1235.CrossRefPubMed Maekawa, N., Wada, H., Kanda, T., Niwa, T., Yamada, Y., Saito, K., et al. (2002). Improved myocardial ischemia/reperfusion injury in mice lacking tumor necrosis factor-alpha. Journal of the American College of Cardiology, 39, 1229–1235.CrossRefPubMed
54.
go back to reference Matsui, T., Li, L., del, M., Fukui, Y., Franke, T. F., Hajjar, R. J., et al. (1999). Adenoviral gene transfer of activated phosphatidylinositol 3'-kinase and Akt inhibits apoptosis of hypoxic cardiomyocytes in vitro. Circulation, 100, 2373–2379.PubMed Matsui, T., Li, L., del, M., Fukui, Y., Franke, T. F., Hajjar, R. J., et al. (1999). Adenoviral gene transfer of activated phosphatidylinositol 3'-kinase and Akt inhibits apoptosis of hypoxic cardiomyocytes in vitro. Circulation, 100, 2373–2379.PubMed
55.
go back to reference Matsushita, H., Morishita, R., Nata, T., Aoki, M., Nakagami, H., Taniyama, Y., et al. (2000). Hypoxia-induced endothelial apoptosis through nuclear factor-kappaB (NF-kappaB)-mediated bcl-2 suppression: In vivo evidence of the importance of NF-kappaB in endothelial cell regulation. Circulation Research, 86, 974–981.PubMed Matsushita, H., Morishita, R., Nata, T., Aoki, M., Nakagami, H., Taniyama, Y., et al. (2000). Hypoxia-induced endothelial apoptosis through nuclear factor-kappaB (NF-kappaB)-mediated bcl-2 suppression: In vivo evidence of the importance of NF-kappaB in endothelial cell regulation. Circulation Research, 86, 974–981.PubMed
56.
go back to reference McKinsey, T. A., Chu, Z. L., & Ballard, D. W. (1997). Phosphorylation of the PEST domain of IkappaBbeta regulates the function of NF-kappaB/IkappaBbeta complexes. The Journal of Biological Chemistry, 272, 22377–22380.CrossRefPubMed McKinsey, T. A., Chu, Z. L., & Ballard, D. W. (1997). Phosphorylation of the PEST domain of IkappaBbeta regulates the function of NF-kappaB/IkappaBbeta complexes. The Journal of Biological Chemistry, 272, 22377–22380.CrossRefPubMed
57.
go back to reference Meldrum, D. R., Meng, X., Dinarello, C. A., Ayala, A., Cain, B. S., Shames, B. D., et al. (1998). Human myocardial tissue TNFalpha expression following acute global ischemia in vivo. Journal of Molecular and Cellular Cardiology, 30, 1683–1689.CrossRefPubMed Meldrum, D. R., Meng, X., Dinarello, C. A., Ayala, A., Cain, B. S., Shames, B. D., et al. (1998). Human myocardial tissue TNFalpha expression following acute global ischemia in vivo. Journal of Molecular and Cellular Cardiology, 30, 1683–1689.CrossRefPubMed
58.
go back to reference Micheau, O., Lens, S., Gaide, O., Alevizopoulos, K., & Tschopp, J. (2001). NF-kappaB signals induce the expression of c-FLIP. Molecular and Cellular Biology, 21, 5299–5305.CrossRefPubMed Micheau, O., Lens, S., Gaide, O., Alevizopoulos, K., & Tschopp, J. (2001). NF-kappaB signals induce the expression of c-FLIP. Molecular and Cellular Biology, 21, 5299–5305.CrossRefPubMed
59.
go back to reference Misra, A., Haudek, S. B., Knuefermann, P., Vallejo, J. G., Chen, Z. J., Michael, L. H., et al. (2003). Nuclear factor-kappaB protects the adult cardiac myocyte against ischemia-induced apoptosis in a murine model of acute myocardial infarction 1. Circulation, 108, 3075–3078.CrossRefPubMed Misra, A., Haudek, S. B., Knuefermann, P., Vallejo, J. G., Chen, Z. J., Michael, L. H., et al. (2003). Nuclear factor-kappaB protects the adult cardiac myocyte against ischemia-induced apoptosis in a murine model of acute myocardial infarction 1. Circulation, 108, 3075–3078.CrossRefPubMed
60.
go back to reference Moss, N. C., Stansfield, W. E., Willis, M. S., Tang, R. H., & Selzman, C. H. (2007). IKKbeta inhibition attenuates myocardial injury and dysfunction following acute ischemia-reperfusion injury. American Journal of Physiology. Heart and Circulatory Physiology, 293, H2248–H2253.CrossRefPubMed Moss, N. C., Stansfield, W. E., Willis, M. S., Tang, R. H., & Selzman, C. H. (2007). IKKbeta inhibition attenuates myocardial injury and dysfunction following acute ischemia-reperfusion injury. American Journal of Physiology. Heart and Circulatory Physiology, 293, H2248–H2253.CrossRefPubMed
61.
go back to reference Mustapha, S., Kirshner, A., de Moissac, D., & Kirshenbaum, L. A. (2000). A direct requirement of nuclear factor-kappa B for suppression of apoptosis in ventricular myocytes. American Journal of Physiology. Heart and Circulatory Physiology, 279, H939–H945.PubMed Mustapha, S., Kirshner, A., de Moissac, D., & Kirshenbaum, L. A. (2000). A direct requirement of nuclear factor-kappa B for suppression of apoptosis in ventricular myocytes. American Journal of Physiology. Heart and Circulatory Physiology, 279, H939–H945.PubMed
62.
go back to reference Nadal-Ginard, B. (1978). Commitment, fusion and biochemical differentiation of a myogenic cell line in the absence of DNA synthesis 1. Cell, 15, 855–864.CrossRefPubMed Nadal-Ginard, B. (1978). Commitment, fusion and biochemical differentiation of a myogenic cell line in the absence of DNA synthesis 1. Cell, 15, 855–864.CrossRefPubMed
63.
go back to reference Nakano, M., Knowlton, A. A., Dibbs, Z., & Mann, D. L. (1998). Tumor necrosis factor-alpha confers resistance to hypoxic injury in the adult mammalian cardiac myocyte. Circulation, 97, 1392–1400.PubMed Nakano, M., Knowlton, A. A., Dibbs, Z., & Mann, D. L. (1998). Tumor necrosis factor-alpha confers resistance to hypoxic injury in the adult mammalian cardiac myocyte. Circulation, 97, 1392–1400.PubMed
64.
go back to reference Narula, J., Haider, N., Virmani, R., DiSalvo, T. G., Kolodgie, F. D., Hajjar, R. J., et al. (1996). Apoptosis in myocytes in end-stage heart failure [see comments]. The New England Journal of Medicine, 335, 1182–1189.CrossRefPubMed Narula, J., Haider, N., Virmani, R., DiSalvo, T. G., Kolodgie, F. D., Hajjar, R. J., et al. (1996). Apoptosis in myocytes in end-stage heart failure [see comments]. The New England Journal of Medicine, 335, 1182–1189.CrossRefPubMed
65.
go back to reference Neumann, F. J., Ott, I., Gawaz, M., Richardt, G., Holzapfel, H., Jochum, M., et al. (1995). Cardiac release of cytokines and inflammatory responses in acute myocardial infarction. Circulation, 92, 748–755.PubMed Neumann, F. J., Ott, I., Gawaz, M., Richardt, G., Holzapfel, H., Jochum, M., et al. (1995). Cardiac release of cytokines and inflammatory responses in acute myocardial infarction. Circulation, 92, 748–755.PubMed
66.
go back to reference Olivetti, G., Abbi, R., Quaini, F., Kajstura, J., Cheng, W., Nitahara, J. A., et al. (1997). Apoptosis in the failing human heart. The New England Journal of Medicine, 336, 1131–1141.CrossRefPubMed Olivetti, G., Abbi, R., Quaini, F., Kajstura, J., Cheng, W., Nitahara, J. A., et al. (1997). Apoptosis in the failing human heart. The New England Journal of Medicine, 336, 1131–1141.CrossRefPubMed
67.
go back to reference Opipari, A. W., Jr., Hu, H. M., Yabkowitz, R., & Dixit, V. M. (1992). The A20 zinc finger protein protects cells from tumor necrosis factor cytotoxicity. The Journal of Biological Chemistry, 267, 12424–12427.PubMed Opipari, A. W., Jr., Hu, H. M., Yabkowitz, R., & Dixit, V. M. (1992). The A20 zinc finger protein protects cells from tumor necrosis factor cytotoxicity. The Journal of Biological Chemistry, 267, 12424–12427.PubMed
68.
go back to reference Polunovsky, V. A., Wendt, C. H., Ingbar, D. H., Peterson, M. S., & Bitterman, P. B. (1994). Induction of endothelial cell apoptosis by TNF alpha: Modulation by inhibitors of protein synthesis. Experimental Cell Research, 214, 584–594.CrossRefPubMed Polunovsky, V. A., Wendt, C. H., Ingbar, D. H., Peterson, M. S., & Bitterman, P. B. (1994). Induction of endothelial cell apoptosis by TNF alpha: Modulation by inhibitors of protein synthesis. Experimental Cell Research, 214, 584–594.CrossRefPubMed
69.
go back to reference Poyet, J. L., Srinivasula, S. M., Lin, J. H., Fernandes-Alnemri, T., Yamaoka, S., Tsichlis, P. N., et al. (2000). Activation of the Ikappa B kinases by RIP via IKKgamma/NEMO-mediated oligomerization. The Journal of Biological Chemistry, 275, 37966–37977.CrossRefPubMed Poyet, J. L., Srinivasula, S. M., Lin, J. H., Fernandes-Alnemri, T., Yamaoka, S., Tsichlis, P. N., et al. (2000). Activation of the Ikappa B kinases by RIP via IKKgamma/NEMO-mediated oligomerization. The Journal of Biological Chemistry, 275, 37966–37977.CrossRefPubMed
70.
go back to reference Purcell, N. H., Tang, G., Yu, C., Mercurio, F., DiDonato, J. A., & Lin, A. (2001). Activation of NF-kappa B is required for hypertrophic growth of primary rat neonatal ventricular cardiomyocytes. Proceedings of the National Academy of Sciences of the United States of America, 98, 6668–6673.CrossRefPubMed Purcell, N. H., Tang, G., Yu, C., Mercurio, F., DiDonato, J. A., & Lin, A. (2001). Activation of NF-kappa B is required for hypertrophic growth of primary rat neonatal ventricular cardiomyocytes. Proceedings of the National Academy of Sciences of the United States of America, 98, 6668–6673.CrossRefPubMed
71.
go back to reference Pye, J., Ardeshirpour, F., McCain, A., Bellinger, D. A., Merricks, E., Adams, J., et al. (2003). Proteasome inhibition ablates activation of NF-kappa B in myocardial reperfusion and reduces reperfusion injury. American Journal of Physiology. Heart and Circulatory Physiology, 284, H919–H926.PubMed Pye, J., Ardeshirpour, F., McCain, A., Bellinger, D. A., Merricks, E., Adams, J., et al. (2003). Proteasome inhibition ablates activation of NF-kappa B in myocardial reperfusion and reduces reperfusion injury. American Journal of Physiology. Heart and Circulatory Physiology, 284, H919–H926.PubMed
72.
go back to reference Regula, K. M., Baetz, D., & Kirshenbaum, L. A. (2004). Nuclear factor-kappaB represses hypoxia-induced mitochondrial defects and cell death of ventricular myocytes 2. Circulation, 110, 3795–3802.CrossRefPubMed Regula, K. M., Baetz, D., & Kirshenbaum, L. A. (2004). Nuclear factor-kappaB represses hypoxia-induced mitochondrial defects and cell death of ventricular myocytes 2. Circulation, 110, 3795–3802.CrossRefPubMed
73.
go back to reference Rius, J., Guma, M., Schachtrup, C., Akassoglou, K., Zinkernagel, A. S., Nizet, V., et al. (2008). NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature, 453, 807–811.CrossRefPubMed Rius, J., Guma, M., Schachtrup, C., Akassoglou, K., Zinkernagel, A. S., Nizet, V., et al. (2008). NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature, 453, 807–811.CrossRefPubMed
74.
go back to reference Robaye, B., Mosselmans, R., Fiers, W., Dumont, J. E., & Galand, P. (1991). Tumor necrosis factor induces apoptosis (programmed cell death) in normal endothelial cells in vitro. The American Journal of Pathology, 138, 447–453.PubMed Robaye, B., Mosselmans, R., Fiers, W., Dumont, J. E., & Galand, P. (1991). Tumor necrosis factor induces apoptosis (programmed cell death) in normal endothelial cells in vitro. The American Journal of Pathology, 138, 447–453.PubMed
75.
go back to reference Sen, R., & Baltimore, D. (1986). Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell, 46, 705–716.CrossRefPubMed Sen, R., & Baltimore, D. (1986). Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell, 46, 705–716.CrossRefPubMed
76.
go back to reference Senftleben, U., Cao, Y., Xiao, G., Greten, F. R., Krahn, G., Bonizzi, G., et al. (2001). Activation by IKKalpha of a second, evolutionary conserved, NF-kappa B signaling pathway. Science, 293, 1495–1499.CrossRefPubMed Senftleben, U., Cao, Y., Xiao, G., Greten, F. R., Krahn, G., Bonizzi, G., et al. (2001). Activation by IKKalpha of a second, evolutionary conserved, NF-kappa B signaling pathway. Science, 293, 1495–1499.CrossRefPubMed
77.
go back to reference Shaw, J., Yurkova, N., Zhang, T., Gang, H., Aguilar, F., Weidman, D., et al. (2008). Antagonism of E2F-1 regulated Bnip3 transcription by NF-kappaB is essential for basal cell survival. Proceedings of the National Academy of Sciences of the United States of America, 105, 20734–20739.CrossRefPubMed Shaw, J., Yurkova, N., Zhang, T., Gang, H., Aguilar, F., Weidman, D., et al. (2008). Antagonism of E2F-1 regulated Bnip3 transcription by NF-kappaB is essential for basal cell survival. Proceedings of the National Academy of Sciences of the United States of America, 105, 20734–20739.CrossRefPubMed
78.
go back to reference Shimizu, M., Tamamori-Adachi, M., Arai, H., Tabuchi, N., Tanaka, H., & Sunamori, M. (2002). Lipopolysaccharide pretreatment attenuates myocardial infarct size: A possible mechanism involving heat shock protein 70-inhibitory kappaBalpha complex and attenuation of nuclear factor kappaB. The Journal of Thoracic and Cardiovascular Surgery, 124, 933–941.CrossRefPubMed Shimizu, M., Tamamori-Adachi, M., Arai, H., Tabuchi, N., Tanaka, H., & Sunamori, M. (2002). Lipopolysaccharide pretreatment attenuates myocardial infarct size: A possible mechanism involving heat shock protein 70-inhibitory kappaBalpha complex and attenuation of nuclear factor kappaB. The Journal of Thoracic and Cardiovascular Surgery, 124, 933–941.CrossRefPubMed
79.
go back to reference Sif, S., & Gilmore, T. D. (1993). NF-kappa B p100 is one of the high-molecular-weight proteins complexed with the v-Rel oncoprotein in transformed chicken spleen cells. Journal of Virology, 67, 7612–7617.PubMed Sif, S., & Gilmore, T. D. (1993). NF-kappa B p100 is one of the high-molecular-weight proteins complexed with the v-Rel oncoprotein in transformed chicken spleen cells. Journal of Virology, 67, 7612–7617.PubMed
80.
go back to reference Song, H. Y., Rothe, M., & Goeddel, D. V. (1996). The tumor necrosis factor-inducible zinc finger protein A20 interacts with TRAF1/TRAF2 and inhibits NF-kappaB activation. Proceedings of the National Academy of Sciences of the United States of America, 93, 6721–6725.CrossRefPubMed Song, H. Y., Rothe, M., & Goeddel, D. V. (1996). The tumor necrosis factor-inducible zinc finger protein A20 interacts with TRAF1/TRAF2 and inhibits NF-kappaB activation. Proceedings of the National Academy of Sciences of the United States of America, 93, 6721–6725.CrossRefPubMed
81.
go back to reference Sun, S. C., Ganchi, P. A., Ballard, D. W., & Greene, W. C. (1993). NF-kappa B controls expression of inhibitor I kappa B alpha: Evidence for an inducible autoregulatory pathway. Science, 259, 1912–1915.CrossRefPubMed Sun, S. C., Ganchi, P. A., Ballard, D. W., & Greene, W. C. (1993). NF-kappa B controls expression of inhibitor I kappa B alpha: Evidence for an inducible autoregulatory pathway. Science, 259, 1912–1915.CrossRefPubMed
82.
go back to reference Takeda, K., Takeuchi, O., Tsujimura, T., Itami, S., Adachi, O., Kawai, T., et al. (1999). Limb and skin abnormalities in mice lacking IKKalpha. Science, 284, 313–316.CrossRefPubMed Takeda, K., Takeuchi, O., Tsujimura, T., Itami, S., Adachi, O., Kawai, T., et al. (1999). Limb and skin abnormalities in mice lacking IKKalpha. Science, 284, 313–316.CrossRefPubMed
83.
go back to reference Tanaka, M., Fuentes, M. E., Yamaguchi, K., Durnin, M. H., Dalrymple, S. A., Hardy, K. L., et al. (1999). Embryonic lethality, liver degeneration, and impaired NF-kappa B activation in IKK-beta-deficient mice. Immunity, 10, 421–429.CrossRefPubMed Tanaka, M., Fuentes, M. E., Yamaguchi, K., Durnin, M. H., Dalrymple, S. A., Hardy, K. L., et al. (1999). Embryonic lethality, liver degeneration, and impaired NF-kappa B activation in IKK-beta-deficient mice. Immunity, 10, 421–429.CrossRefPubMed
84.
go back to reference Torre-Amione, G., Kapadia, S., Benedict, C., Oral, H., Young, J. B., & Mann, D. L. (1996). Proinflammatory cytokine levels in patients with depressed left ventricular ejection fraction: A report from the Studies of Left Ventricular Dysfunction (SOLVD). Journal of the American College of Cardiology, 27, 1201–1206.CrossRefPubMed Torre-Amione, G., Kapadia, S., Benedict, C., Oral, H., Young, J. B., & Mann, D. L. (1996). Proinflammatory cytokine levels in patients with depressed left ventricular ejection fraction: A report from the Studies of Left Ventricular Dysfunction (SOLVD). Journal of the American College of Cardiology, 27, 1201–1206.CrossRefPubMed
85.
go back to reference Torre-Amione, G., Kapadia, S., Lee, J., Durand, J. B., Bies, R. D., Young, J. B., et al. (1996). Tumor necrosis factor-alpha and tumor necrosis factor receptors in the failing human heart. Circulation, 93, 704–711.PubMed Torre-Amione, G., Kapadia, S., Lee, J., Durand, J. B., Bies, R. D., Young, J. B., et al. (1996). Tumor necrosis factor-alpha and tumor necrosis factor receptors in the failing human heart. Circulation, 93, 704–711.PubMed
86.
go back to reference Van Antwerp, D. J., Martin, S. J., Kafri, T., Green, D. R., & Verma, I. M. (1996). Suppression of TNF-alpha-induced apoptosis by NF-kappaB [see comments]. Science, 274, 787–789.CrossRefPubMed Van Antwerp, D. J., Martin, S. J., Kafri, T., Green, D. R., & Verma, I. M. (1996). Suppression of TNF-alpha-induced apoptosis by NF-kappaB [see comments]. Science, 274, 787–789.CrossRefPubMed
87.
go back to reference Van Antwerp, D. J., & Verma, I. M. (1996). Signal-induced degradation of I(kappa)B(alpha): Association with NF-kappaB and the PEST sequence in I(kappa)B(alpha) are not required. Molecular and Cellular Biology, 16, 6037–6045.PubMed Van Antwerp, D. J., & Verma, I. M. (1996). Signal-induced degradation of I(kappa)B(alpha): Association with NF-kappaB and the PEST sequence in I(kappa)B(alpha) are not required. Molecular and Cellular Biology, 16, 6037–6045.PubMed
88.
go back to reference van, U. P., Kenneth, N. S., & Rocha, S. (2008). Regulation of hypoxia-inducible factor-1alpha by NF-kappaB. The Biochemical Journal, 412, 477–484.CrossRef van, U. P., Kenneth, N. S., & Rocha, S. (2008). Regulation of hypoxia-inducible factor-1alpha by NF-kappaB. The Biochemical Journal, 412, 477–484.CrossRef
89.
go back to reference Verma, I. M., Stevenson, J. K., Schwarz, E. M., Van Antwerp, D., & Miyamoto, S. (1995). Rel/NF-kappa B/I kappa B family: Intimate tales of association and dissociation. Genes & Development, 9, 2723–2735.CrossRef Verma, I. M., Stevenson, J. K., Schwarz, E. M., Van Antwerp, D., & Miyamoto, S. (1995). Rel/NF-kappa B/I kappa B family: Intimate tales of association and dissociation. Genes & Development, 9, 2723–2735.CrossRef
90.
go back to reference Wang, C. Y., Guttridge, D. C., Mayo, M. W., & Baldwin, A. S., Jr. (1999). NF-kappaB induces expression of the bcl-2 homologue A1/Bfl-1 to preferentially suppress chemotherapy-induced apoptosis [In Process Citation]. Molecular and Cellular Biology, 19, 5923–5929.PubMed Wang, C. Y., Guttridge, D. C., Mayo, M. W., & Baldwin, A. S., Jr. (1999). NF-kappaB induces expression of the bcl-2 homologue A1/Bfl-1 to preferentially suppress chemotherapy-induced apoptosis [In Process Citation]. Molecular and Cellular Biology, 19, 5923–5929.PubMed
91.
go back to reference Wang, C. Y., Mayo, M. W., & Baldwin, A. S., Jr. (1996). TNF- and cancer therapy-induced apoptosis: Potentiation by inhibition of NF-kappaB [see comments]. Science, 274, 784–787.CrossRefPubMed Wang, C. Y., Mayo, M. W., & Baldwin, A. S., Jr. (1996). TNF- and cancer therapy-induced apoptosis: Potentiation by inhibition of NF-kappaB [see comments]. Science, 274, 784–787.CrossRefPubMed
92.
go back to reference Wang, C. Y., Mayo, M. W., Korneluk, R. G., Goeddel, D. V., & Baldwin, A. S., Jr. (1998). NF-kappaB antiapoptosis: Induction of TRAF1 and TRAF2 and c-IAP1 and c- IAP2 to suppress caspase-8 activation. Science, 281, 1680–1683.CrossRefPubMed Wang, C. Y., Mayo, M. W., Korneluk, R. G., Goeddel, D. V., & Baldwin, A. S., Jr. (1998). NF-kappaB antiapoptosis: Induction of TRAF1 and TRAF2 and c-IAP1 and c- IAP2 to suppress caspase-8 activation. Science, 281, 1680–1683.CrossRefPubMed
93.
go back to reference Wencker, D., Chandra, M., Nguyen, K., Miao, W., Garantziotis, S., Factor, S. M., et al. (2003). A mechanistic role for cardiac myocyte apoptosis in heart failure. Journal of Clinical Investigation, 111, 1497–1504.PubMed Wencker, D., Chandra, M., Nguyen, K., Miao, W., Garantziotis, S., Factor, S. M., et al. (2003). A mechanistic role for cardiac myocyte apoptosis in heart failure. Journal of Clinical Investigation, 111, 1497–1504.PubMed
94.
go back to reference Wertz, I. E., O'Rourke, K. M., Zhou, H., Eby, M., Aravind, L., Seshagiri, S., et al. (2004). De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature, 430, 694–699.CrossRefPubMed Wertz, I. E., O'Rourke, K. M., Zhou, H., Eby, M., Aravind, L., Seshagiri, S., et al. (2004). De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature, 430, 694–699.CrossRefPubMed
95.
go back to reference Wong, S. C., Fukuchi, M., Melnyk, P., Rodger, I., & Giaid, A. (1998). Induction of cyclooxygenase-2 and activation of nuclear factor-kappaB in myocardium of patients with congestive heart failure. Circulation, 98, 100–103.PubMed Wong, S. C., Fukuchi, M., Melnyk, P., Rodger, I., & Giaid, A. (1998). Induction of cyclooxygenase-2 and activation of nuclear factor-kappaB in myocardium of patients with congestive heart failure. Circulation, 98, 100–103.PubMed
96.
go back to reference Wu, X., & Levine, A. J. (1994). p53 and E2F-1 cooperate to mediate apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 91, 3602–3606.CrossRefPubMed Wu, X., & Levine, A. J. (1994). p53 and E2F-1 cooperate to mediate apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 91, 3602–3606.CrossRefPubMed
97.
go back to reference Yin, M. J., Yamamoto, Y., & Gaynor, R. B. (1998). The anti-inflammatory agents aspirin and salicylate inhibit the activity of I(kappa)B kinase-beta. Nature, 396, 77–80.CrossRefPubMed Yin, M. J., Yamamoto, Y., & Gaynor, R. B. (1998). The anti-inflammatory agents aspirin and salicylate inhibit the activity of I(kappa)B kinase-beta. Nature, 396, 77–80.CrossRefPubMed
98.
go back to reference Zak, R. (1974). Development and proliferative capacity of cardiac muscle cells. Circulation Research, 2, 17–26. Zak, R. (1974). Development and proliferative capacity of cardiac muscle cells. Circulation Research, 2, 17–26.
99.
go back to reference Zhang, J., Ping, P., Vondriska, T. M., Tang, X. L., Wang, G. W., Cardwell, E. M., et al. (2003). Cardioprotection involves activation of NF-kappa B via PKC-dependent tyrosine and serine phosphorylation of I kappa B-alpha. American Journal of Physiology. Heart and Circulatory Physiology, 285, H1753–H1758.PubMed Zhang, J., Ping, P., Vondriska, T. M., Tang, X. L., Wang, G. W., Cardwell, E. M., et al. (2003). Cardioprotection involves activation of NF-kappa B via PKC-dependent tyrosine and serine phosphorylation of I kappa B-alpha. American Journal of Physiology. Heart and Circulatory Physiology, 285, H1753–H1758.PubMed
Metadata
Title
Dichotomous Actions of NF-κB Signaling Pathways in Heart
Authors
Rimpy Dhingra
James A. Shaw
Yaron Aviv
Lorrie A. Kirshenbaum
Publication date
01-08-2010
Publisher
Springer US
Published in
Journal of Cardiovascular Translational Research / Issue 4/2010
Print ISSN: 1937-5387
Electronic ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-010-9195-5

Other articles of this Issue 4/2010

Journal of Cardiovascular Translational Research 4/2010 Go to the issue