Skip to main content
Top
Published in: Journal of Cardiovascular Translational Research 4/2010

01-08-2010

Nifedipine Inhibits Cardiac Hypertrophy and Left Ventricular Dysfunction in Response to Pressure Overload

Authors: Tetsuro Ago, Yanfei Yang, Peiyong Zhai, Junichi Sadoshima

Published in: Journal of Cardiovascular Translational Research | Issue 4/2010

Login to get access

Abstract

Pathological hypertrophy is commonly induced by activation of protein kinases phosphorylating class II histone deacetylases (HDACs) and desuppression of transcription factors, such as nuclear factor of activated T cell (NFAT). We hypothesized that nifedipine, an L-type Ca2+ channel blocker, inhibits Ca2+ calmodulin-dependent kinase II (CaMKII) and NFAT, thereby inhibiting pathological hypertrophy. Mice were subjected to sham operation or transverse aortic constriction (TAC) for 2 weeks with or without nifedipine (10 mg/kg/day). Nifedipine did not significantly alter blood pressure or the pressure gradient across the TAC. Nifedipine significantly suppressed TAC-induced increases in left ventricular (LV) weight/body weight (BW; 5.09 ± 0.80 vs. 4.16 ± 0.29 mg/g, TAC without and with nifedipine, n = 6,6, p < 0.05), myocyte cross-sectional area (1,681 ± 285 vs. 1,434 ± 197 arbitrary units, p < 0.05), and expression of fetal-type genes, including atrial natriuretic factor (35. 9 ± 6.4 vs. 8.6 ± 3.3 arbitrary units, p < 0.05). TAC-induced increases in lung weight/BW (7.7 ± 0.9 vs. 5.5 ± 0.5 mg/g, p < 0.05) and decreases in LV ejection fraction (65.5 ± 3.1% vs. 75.7 ± 3.3%, p < 0.05) were attenuated by nifedipine. Nifedipine caused significant inhibition of TAC-induced activation of NFAT-mediated transcription, which was accompanied by suppression of Thr 286 phosphorylation in CaMKII. Nifedipine inhibited activation of CaMKII and NFAT by phenylephrine, accompanied by suppression of Ser 632 phosphorylation and nuclear exit of HDAC4 in cardiac myocytes. These results suggest that a subpressor dose of nifedipine inhibits pathological hypertrophy in the heart by inhibiting activation of CaMKII and NFAT, a signaling mechanism commonly activated in pathological hypertrophy.
Literature
1.
go back to reference Backs, J., & Olson, E. N. (2006). Control of cardiac growth by histone acetylation/deacetylation. Circulation Research, 98(1), 15–24.CrossRefPubMed Backs, J., & Olson, E. N. (2006). Control of cardiac growth by histone acetylation/deacetylation. Circulation Research, 98(1), 15–24.CrossRefPubMed
2.
go back to reference Strauer, B. E., Atef Mahmoud, M., Bayer, F., Bohn, I., Motz, U., & Suppl F. (1984). Reversal of left ventricular hypertrophy and improvement of cardiac function in man by nifedipine. European Heart Journal, 5, 53–60.PubMed Strauer, B. E., Atef Mahmoud, M., Bayer, F., Bohn, I., Motz, U., & Suppl F. (1984). Reversal of left ventricular hypertrophy and improvement of cardiac function in man by nifedipine. European Heart Journal, 5, 53–60.PubMed
3.
go back to reference Zou, Y., Yamazaki, T., Nakagawa, K., Yamada, H., Iriguchi, N., Toko, H., et al. (2002). Continuous blockade of L-type Ca2+ channels suppresses activation of calcineurin and development of cardiac hypertrophy in spontaneously hypertensive rats. Hypertension Research, 25(1), 117–124.CrossRefPubMed Zou, Y., Yamazaki, T., Nakagawa, K., Yamada, H., Iriguchi, N., Toko, H., et al. (2002). Continuous blockade of L-type Ca2+ channels suppresses activation of calcineurin and development of cardiac hypertrophy in spontaneously hypertensive rats. Hypertension Research, 25(1), 117–124.CrossRefPubMed
4.
go back to reference Lubsen, J., Wagener, G., Kirwan, B. A., de Brouwer, S., & Poole-Wilson, P. A. (2005). Effect of long-acting nifedipine on mortality and cardiovascular morbidity in patients with symptomatic stable angina and hypertension: The ACTION trial. Journal of Hypertension, 23(3), 641–648.CrossRefPubMed Lubsen, J., Wagener, G., Kirwan, B. A., de Brouwer, S., & Poole-Wilson, P. A. (2005). Effect of long-acting nifedipine on mortality and cardiovascular morbidity in patients with symptomatic stable angina and hypertension: The ACTION trial. Journal of Hypertension, 23(3), 641–648.CrossRefPubMed
5.
go back to reference Liang, Q., Bueno, O. F., Wilkins, B. J., Kuan, C. Y., Xia, Y., & Molkentin, J. D. (2003). c-Jun N-terminal kinases (JNK) antagonize cardiac growth through cross-talk with calcineurin-NFAT signaling. EMBO Journal, 22(19), 5079–5089.CrossRefPubMed Liang, Q., Bueno, O. F., Wilkins, B. J., Kuan, C. Y., Xia, Y., & Molkentin, J. D. (2003). c-Jun N-terminal kinases (JNK) antagonize cardiac growth through cross-talk with calcineurin-NFAT signaling. EMBO Journal, 22(19), 5079–5089.CrossRefPubMed
6.
go back to reference Morisco, C., Seta, K., Hardt, S. E., Lee, Y., Vatner, S. F., & Sadoshima, J. (2001). Glycogen synthase kinase 3beta regulates GATA4 in cardiac myocytes. Journal of Biological Chemistry, 276(30), 28586–28597.CrossRefPubMed Morisco, C., Seta, K., Hardt, S. E., Lee, Y., Vatner, S. F., & Sadoshima, J. (2001). Glycogen synthase kinase 3beta regulates GATA4 in cardiac myocytes. Journal of Biological Chemistry, 276(30), 28586–28597.CrossRefPubMed
7.
go back to reference Sadoshima, J., Montagne, O., Wang, Q., Yang, G., Warden, J., Liu, J., et al. (2002). The MEKK1-JNK pathway plays a protective role in pressure overload but does not mediate cardiac hypertrophy. Journal of Clinical Investigation, 110(2), 271–279.PubMed Sadoshima, J., Montagne, O., Wang, Q., Yang, G., Warden, J., Liu, J., et al. (2002). The MEKK1-JNK pathway plays a protective role in pressure overload but does not mediate cardiac hypertrophy. Journal of Clinical Investigation, 110(2), 271–279.PubMed
8.
go back to reference Matsui, Y., Nakano, N., Shao, D., Gao, S., Luo, W., Hong, C., et al. (2008). Lats2 is a negative regulator of myocyte size in the heart. Circulation Research, 103(11), 1309–1318.CrossRefPubMed Matsui, Y., Nakano, N., Shao, D., Gao, S., Luo, W., Hong, C., et al. (2008). Lats2 is a negative regulator of myocyte size in the heart. Circulation Research, 103(11), 1309–1318.CrossRefPubMed
9.
go back to reference Yamagishi, S., Nakamura, K., & Matsui, T. (2008). Role of oxidative stress in the development of vascular injury and its therapeutic intervention by nifedipine. Current Medicinal Chemistry, 15(2), 172–177.CrossRefPubMed Yamagishi, S., Nakamura, K., & Matsui, T. (2008). Role of oxidative stress in the development of vascular injury and its therapeutic intervention by nifedipine. Current Medicinal Chemistry, 15(2), 172–177.CrossRefPubMed
10.
go back to reference Neal, J. W., & Clipstone, N. A. (2001). Glycogen synthase kinase-3 inhibits the DNA binding activity of NFATc. Journal of Biological Chemistry, 276(5), 3666–3673.CrossRefPubMed Neal, J. W., & Clipstone, N. A. (2001). Glycogen synthase kinase-3 inhibits the DNA binding activity of NFATc. Journal of Biological Chemistry, 276(5), 3666–3673.CrossRefPubMed
11.
go back to reference Dai, Y. S., Xu, J., & Molkentin, J. D. (2005). The DnaJ-related factor Mrj interacts with nuclear factor of activated T cells c3 and mediates transcriptional repression through class II histone deacetylase recruitment. Molecular and Cellular Biology, 25(22), 9936–9948.CrossRefPubMed Dai, Y. S., Xu, J., & Molkentin, J. D. (2005). The DnaJ-related factor Mrj interacts with nuclear factor of activated T cells c3 and mediates transcriptional repression through class II histone deacetylase recruitment. Molecular and Cellular Biology, 25(22), 9936–9948.CrossRefPubMed
12.
go back to reference Morisco, C., Sadoshima, J., Trimarco, B., Arora, R., Vatner, D. E., & Vatner, S. F. (2003). Is treating cardiac hypertrophy salutary or detrimental: The two faces of Janus. American Journal of Physiology. Heart and Circulatory Physiology, 284(4), H1043–H1047.PubMed Morisco, C., Sadoshima, J., Trimarco, B., Arora, R., Vatner, D. E., & Vatner, S. F. (2003). Is treating cardiac hypertrophy salutary or detrimental: The two faces of Janus. American Journal of Physiology. Heart and Circulatory Physiology, 284(4), H1043–H1047.PubMed
13.
go back to reference Esposito, G., Rapacciuolo, A., Naga Prasad, S. V., Takaoka, H., Thomas, S. A., Koch, W. J., et al. (2002). Genetic alterations that inhibit in vivo pressure-overload hypertrophy prevent cardiac dysfunction despite increased wall stress. Circulation, 105(1), 85–92.CrossRefPubMed Esposito, G., Rapacciuolo, A., Naga Prasad, S. V., Takaoka, H., Thomas, S. A., Koch, W. J., et al. (2002). Genetic alterations that inhibit in vivo pressure-overload hypertrophy prevent cardiac dysfunction despite increased wall stress. Circulation, 105(1), 85–92.CrossRefPubMed
14.
go back to reference Diwan, A., & Dorn, G. W., 2nd. (2007). Decompensation of cardiac hypertrophy: Cellular mechanisms and novel therapeutic targets. Physiology (Bethesda), 22, 56–64. Diwan, A., & Dorn, G. W., 2nd. (2007). Decompensation of cardiac hypertrophy: Cellular mechanisms and novel therapeutic targets. Physiology (Bethesda), 22, 56–64.
15.
go back to reference Wilkins, B. J., Dai, Y. S., Bueno, O. F., Parsons, S. A., Xu, J., Plank, D. M., et al. (2004). Calcineurin/NFAT coupling participates in pathological, but not physiological, cardiac hypertrophy. Circulation Research, 94(1), 110–118.CrossRefPubMed Wilkins, B. J., Dai, Y. S., Bueno, O. F., Parsons, S. A., Xu, J., Plank, D. M., et al. (2004). Calcineurin/NFAT coupling participates in pathological, but not physiological, cardiac hypertrophy. Circulation Research, 94(1), 110–118.CrossRefPubMed
16.
go back to reference Zhang, T., & Brown, J. H. (2004). Role of Ca2+/calmodulin-dependent protein kinase II in cardiac hypertrophy and heart failure. Cardiovascular Research, 63(3), 476–486.CrossRefPubMed Zhang, T., & Brown, J. H. (2004). Role of Ca2+/calmodulin-dependent protein kinase II in cardiac hypertrophy and heart failure. Cardiovascular Research, 63(3), 476–486.CrossRefPubMed
17.
go back to reference Zhang, T., Kohlhaas, M., Backs, J., Mishra, S., Phillips, W., Dybkova, N., et al. (2007). CaMKIIdelta isoforms differentially affect calcium handling but similarly regulate HDAC/MEF2 transcriptional responses. Journal of Biological Chemistry, 282(48), 35078–35087.CrossRefPubMed Zhang, T., Kohlhaas, M., Backs, J., Mishra, S., Phillips, W., Dybkova, N., et al. (2007). CaMKIIdelta isoforms differentially affect calcium handling but similarly regulate HDAC/MEF2 transcriptional responses. Journal of Biological Chemistry, 282(48), 35078–35087.CrossRefPubMed
18.
go back to reference Zhang, T., Maier, L. S., Dalton, N. D., Miyamoto, S., Ross, J., Jr., Bers, D. M., et al. (2003). The deltaC isoform of CaMKII is activated in cardiac hypertrophy and induces dilated cardiomyopathy and heart failure. Circulation Research, 92(8), 912–919.CrossRefPubMed Zhang, T., Maier, L. S., Dalton, N. D., Miyamoto, S., Ross, J., Jr., Bers, D. M., et al. (2003). The deltaC isoform of CaMKII is activated in cardiac hypertrophy and induces dilated cardiomyopathy and heart failure. Circulation Research, 92(8), 912–919.CrossRefPubMed
19.
go back to reference Vega, R. B., Harrison, B. C., Meadows, E., Roberts, C. R., Papst, P. J., Olson, E. N., et al. (2004). Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5. Molecular and Cellular Biology, 24(19), 8374–8385.CrossRefPubMed Vega, R. B., Harrison, B. C., Meadows, E., Roberts, C. R., Papst, P. J., Olson, E. N., et al. (2004). Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5. Molecular and Cellular Biology, 24(19), 8374–8385.CrossRefPubMed
20.
go back to reference Martini, J. S., Raake, P., Vinge, L. E., DeGeorge, B., Jr., Chuprun, J. K., Harris, D. M., et al. (2008). Uncovering G protein-coupled receptor kinase-5 as a histone deacetylase kinase in the nucleus of cardiomyocytes. Proceedings of the National Academy of Sciences of the United States of America, 105(34), 12457–12462.CrossRefPubMed Martini, J. S., Raake, P., Vinge, L. E., DeGeorge, B., Jr., Chuprun, J. K., Harris, D. M., et al. (2008). Uncovering G protein-coupled receptor kinase-5 as a histone deacetylase kinase in the nucleus of cardiomyocytes. Proceedings of the National Academy of Sciences of the United States of America, 105(34), 12457–12462.CrossRefPubMed
21.
go back to reference Berdeaux, R., Goebel, N., Banaszynski, L., Takemori, H., Wandless, T., Shelton, G. D., et al. (2007). SIK1 is a class II HDAC kinase that promotes survival of skeletal myocytes. Nature Medicine, 13(5), 597–603.CrossRefPubMed Berdeaux, R., Goebel, N., Banaszynski, L., Takemori, H., Wandless, T., Shelton, G. D., et al. (2007). SIK1 is a class II HDAC kinase that promotes survival of skeletal myocytes. Nature Medicine, 13(5), 597–603.CrossRefPubMed
22.
go back to reference Chang, S., Bezprozvannaya, S., Li, S., & Olson, E. N. (2005). An expression screen reveals modulators of class II histone deacetylase phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 102(23), 8120–8125.CrossRefPubMed Chang, S., Bezprozvannaya, S., Li, S., & Olson, E. N. (2005). An expression screen reveals modulators of class II histone deacetylase phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 102(23), 8120–8125.CrossRefPubMed
23.
go back to reference Molkentin, J. D. (2006). Dichotomy of Ca2+ in the heart: Contraction versus intracellular signaling. Journal of Clinical Investigation, 116(3), 623–626.CrossRefPubMed Molkentin, J. D. (2006). Dichotomy of Ca2+ in the heart: Contraction versus intracellular signaling. Journal of Clinical Investigation, 116(3), 623–626.CrossRefPubMed
24.
go back to reference Ago, T., Liu, T., Zhai, P., Chen, W., Li, H., Molkentin, J. D., et al. (2008). A redox-dependent pathway for regulating class II HDACs and cardiac hypertrophy. Cell, 133(6), 978–993.CrossRefPubMed Ago, T., Liu, T., Zhai, P., Chen, W., Li, H., Molkentin, J. D., et al. (2008). A redox-dependent pathway for regulating class II HDACs and cardiac hypertrophy. Cell, 133(6), 978–993.CrossRefPubMed
25.
go back to reference Erickson, J. R., Joiner, M. L., Guan, X., Kutschke, W., Yang, J., Oddis, C. V., et al. (2008). A dynamic pathway for calcium-independent activation of CaMKII by methionine oxidation. Cell, 133(3), 462–474.CrossRefPubMed Erickson, J. R., Joiner, M. L., Guan, X., Kutschke, W., Yang, J., Oddis, C. V., et al. (2008). A dynamic pathway for calcium-independent activation of CaMKII by methionine oxidation. Cell, 133(3), 462–474.CrossRefPubMed
Metadata
Title
Nifedipine Inhibits Cardiac Hypertrophy and Left Ventricular Dysfunction in Response to Pressure Overload
Authors
Tetsuro Ago
Yanfei Yang
Peiyong Zhai
Junichi Sadoshima
Publication date
01-08-2010
Publisher
Springer US
Published in
Journal of Cardiovascular Translational Research / Issue 4/2010
Print ISSN: 1937-5387
Electronic ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-010-9182-x

Other articles of this Issue 4/2010

Journal of Cardiovascular Translational Research 4/2010 Go to the issue