Skip to main content
Top
Published in: Journal of Cardiovascular Translational Research 4/2010

01-08-2010

Mitochondrial Pruning by Nix and BNip3: An Essential Function for Cardiac-Expressed Death Factors

Author: Gerald W. Dorn II

Published in: Journal of Cardiovascular Translational Research | Issue 4/2010

Login to get access

Abstract

Programmed cardiac myocyte death via the intrinsic, or mitochondrial, pathway is a mechanism of pathological ventricular remodeling after myocardial infarction and during chronic pressure overload hypertrophy. Transcriptional upregulation of the closely related proapoptotic Bcl2 family members BNip3 in ischemic myocardium and Nix in hypertrophied myocardium suggested a molecular mechanism by which programmed cell death can be initiated by cardiac stress and lead to dilated cardiomyopathy. Studies using transgenic and gene knockout mice subsequently demonstrated that expression of BNip3 and Nix is both sufficient for cardiomyopathy development and necessary for cardiac remodeling after reversible coronary occlusion and transverse aortic banding, respectively. Here, these data are reviewed in the context of recent findings showing that Nix not only stimulates cardiomyocyte apoptosis but also induces mitochondrial autophagy (mitophagy) and indirectly activates the mitochondrial permeability transition pore, causing cell necrosis. New findings are presented suggesting that Nix and BNip3 have an essential function, “mitochondrial pruning,” that restrains mitochondrial proliferation in cardiomyocytes and without which an age-dependent mitochondrial cardiomyopathy develops.
Literature
1.
go back to reference Diwan, A., & Dorn, G. W., II. (2007). Decompensation of cardiac hypertrophy: Cellular mechanisms and novel therapeutic targets. Physiology (Bethesda), 22, 56–64. Diwan, A., & Dorn, G. W., II. (2007). Decompensation of cardiac hypertrophy: Cellular mechanisms and novel therapeutic targets. Physiology (Bethesda), 22, 56–64.
2.
go back to reference Berry, J. J., Hoffman, J. M., Steenbergen, C., Baker, J. A., Floyd, C., Van Trigt, P., et al. (1993). Human pathologic correlation with PET in ischemic and nonischemic cardiomyopathy. Journal of Nuclear Medicine, 34, 39–47.PubMed Berry, J. J., Hoffman, J. M., Steenbergen, C., Baker, J. A., Floyd, C., Van Trigt, P., et al. (1993). Human pathologic correlation with PET in ischemic and nonischemic cardiomyopathy. Journal of Nuclear Medicine, 34, 39–47.PubMed
3.
go back to reference Olivetti, G., Abbi, R., Quaini, F., Kajstura, J., Cheng, W., Nitahara, J. A., et al. (1997). Apoptosis in the failing human heart. Journal of Nuclear Medicine, 336, 1131–1141. Olivetti, G., Abbi, R., Quaini, F., Kajstura, J., Cheng, W., Nitahara, J. A., et al. (1997). Apoptosis in the failing human heart. Journal of Nuclear Medicine, 336, 1131–1141.
4.
go back to reference Francis, G. S. (1998). Changing the remodeling process in heart failure: Basic mechanisms and laboratory results. Current Opinion in Cardiology, 13, 156–161.PubMed Francis, G. S. (1998). Changing the remodeling process in heart failure: Basic mechanisms and laboratory results. Current Opinion in Cardiology, 13, 156–161.PubMed
5.
go back to reference Olivetti, G., Capasso, J. M., Sonnenblick, E. H., & Anversa, P. (1990). Side-to-side slippage of myocytes participates in ventricular wall remodeling acutely after myocardial infarction in rats. Circulation Research, 67, 23–34.PubMed Olivetti, G., Capasso, J. M., Sonnenblick, E. H., & Anversa, P. (1990). Side-to-side slippage of myocytes participates in ventricular wall remodeling acutely after myocardial infarction in rats. Circulation Research, 67, 23–34.PubMed
6.
go back to reference Rubart, M., & Field, L. J. (2006). Cardiac regeneration: Repopulating the heart. Annual Review of Physiology, 68, 29–49.CrossRefPubMed Rubart, M., & Field, L. J. (2006). Cardiac regeneration: Repopulating the heart. Annual Review of Physiology, 68, 29–49.CrossRefPubMed
7.
go back to reference Hayakawa, Y., Chandra, M., Miao, W., Shirani, J., Brown, J. H., Dorn, G. W., II, et al. (2003). Inhibition of cardiac myocyte apoptosis improves cardiac function and abolishes mortality in the peripartum cardiomyopathy of Galpha(q) transgenic mice. Circulation, 108, 3036–3041.CrossRefPubMed Hayakawa, Y., Chandra, M., Miao, W., Shirani, J., Brown, J. H., Dorn, G. W., II, et al. (2003). Inhibition of cardiac myocyte apoptosis improves cardiac function and abolishes mortality in the peripartum cardiomyopathy of Galpha(q) transgenic mice. Circulation, 108, 3036–3041.CrossRefPubMed
8.
go back to reference Foo, R. S., Mani, K., & Kitsis, R. N. (2005). Death begets failure in the heart. Journal of Clinical Investigation, 115, 565–571.PubMed Foo, R. S., Mani, K., & Kitsis, R. N. (2005). Death begets failure in the heart. Journal of Clinical Investigation, 115, 565–571.PubMed
9.
go back to reference Dorn, G. W., II. (2009). Apoptotic and non-apoptotic programmed cardiomyocyte death in ventricular remodelling. Cardiovascular Research, 81, 465–473.CrossRefPubMed Dorn, G. W., II. (2009). Apoptotic and non-apoptotic programmed cardiomyocyte death in ventricular remodelling. Cardiovascular Research, 81, 465–473.CrossRefPubMed
10.
go back to reference Youle, R. J., & Strasser, A. (2008). The BCL-2 protein family: Opposing activities that mediate cell death. Nature Reviews. Molecular Cell Biology, 9, 47–59.CrossRefPubMed Youle, R. J., & Strasser, A. (2008). The BCL-2 protein family: Opposing activities that mediate cell death. Nature Reviews. Molecular Cell Biology, 9, 47–59.CrossRefPubMed
11.
go back to reference Chen, Z., Chua, C. C., Ho, Y. S., Hamdy, R. C., & Chua, B. H. (2001). Overexpression of Bcl-2 attenuates apoptosis and protects against myocardial I/R injury in transgenic mice. American Journal of Physiology. Heart and Circulatory Physiology, 280, H2313–H2320.PubMed Chen, Z., Chua, C. C., Ho, Y. S., Hamdy, R. C., & Chua, B. H. (2001). Overexpression of Bcl-2 attenuates apoptosis and protects against myocardial I/R injury in transgenic mice. American Journal of Physiology. Heart and Circulatory Physiology, 280, H2313–H2320.PubMed
12.
go back to reference Condorelli, G., Morisco, C., Stassi, G., Notte, A., Farina, F., Sgaramella, G., et al. (1999). Increased cardiomyocyte apoptosis and changes in proapoptotic and antiapoptotic genes bax and bcl-2 during left ventricular adaptations to chronic pressure overload in the rat. Circulation, 99, 3071–3078.PubMed Condorelli, G., Morisco, C., Stassi, G., Notte, A., Farina, F., Sgaramella, G., et al. (1999). Increased cardiomyocyte apoptosis and changes in proapoptotic and antiapoptotic genes bax and bcl-2 during left ventricular adaptations to chronic pressure overload in the rat. Circulation, 99, 3071–3078.PubMed
13.
go back to reference Yussman, M. G., Toyokawa, T., Odley, A., Lynch, R. A., Wu, G., Colbert, M. C., et al. (2002). Mitochondrial death protein Nix is induced in cardiac hypertrophy and triggers apoptotic cardiomyopathy. Nature Medicine, 8, 725–730.PubMed Yussman, M. G., Toyokawa, T., Odley, A., Lynch, R. A., Wu, G., Colbert, M. C., et al. (2002). Mitochondrial death protein Nix is induced in cardiac hypertrophy and triggers apoptotic cardiomyopathy. Nature Medicine, 8, 725–730.PubMed
14.
go back to reference Regula, K. M., Ens, K., & Kirshenbaum, L. A. (2002). Inducible expression of BNIP3 provokes mitochondrial defects and hypoxia-mediated cell death of ventricular myocytes. Circulation Research, 91, 226–231.CrossRefPubMed Regula, K. M., Ens, K., & Kirshenbaum, L. A. (2002). Inducible expression of BNIP3 provokes mitochondrial defects and hypoxia-mediated cell death of ventricular myocytes. Circulation Research, 91, 226–231.CrossRefPubMed
15.
go back to reference Galvez, A. S., Brunskill, E. W., Marreez, Y., Benner, B. J., Regula, K. M., Kirschenbaum, L. A., et al. (2006). Distinct pathways regulate proapoptotic Nix and BNip3 in cardiac stress. Journal of Biological Chemistry, 281, 1442–1448.CrossRefPubMed Galvez, A. S., Brunskill, E. W., Marreez, Y., Benner, B. J., Regula, K. M., Kirschenbaum, L. A., et al. (2006). Distinct pathways regulate proapoptotic Nix and BNip3 in cardiac stress. Journal of Biological Chemistry, 281, 1442–1448.CrossRefPubMed
16.
go back to reference Yurkova, N., Shaw, J., Blackie, K., Weidman, D., Jayas, R., Flynn, B., et al. (2008). The cell cycle factor E2F-1 activates Bnip3 and the intrinsic death pathway in ventricular myocytes. Circulation Research, 102, 472–479.CrossRefPubMed Yurkova, N., Shaw, J., Blackie, K., Weidman, D., Jayas, R., Flynn, B., et al. (2008). The cell cycle factor E2F-1 activates Bnip3 and the intrinsic death pathway in ventricular myocytes. Circulation Research, 102, 472–479.CrossRefPubMed
17.
go back to reference Bruick, R. K. (2000). Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia. Proceedings of the National Academy of Sciences of the United States of America, 97, 9082–9087.CrossRefPubMed Bruick, R. K. (2000). Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia. Proceedings of the National Academy of Sciences of the United States of America, 97, 9082–9087.CrossRefPubMed
18.
go back to reference Sowter, H. M., Ratcliffe, P. J., Watson, P., Greenberg, A. H., & Harris, A. L. (2001). HIF-1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors. Cancer Research, 61, 6669–6673.PubMed Sowter, H. M., Ratcliffe, P. J., Watson, P., Greenberg, A. H., & Harris, A. L. (2001). HIF-1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors. Cancer Research, 61, 6669–6673.PubMed
19.
go back to reference Birse-Archbold, J. L., Kerr, L. E., Jones, P. A., McCulloch, J., & Sharkey, J. (2005). Differential profile of Nix upregulation and traslocation during hypxia/ischaemia in vivo versus in vitro. Journal of Cerebral Blood Flow and Metabolism, 25, 1356–1365.CrossRefPubMed Birse-Archbold, J. L., Kerr, L. E., Jones, P. A., McCulloch, J., & Sharkey, J. (2005). Differential profile of Nix upregulation and traslocation during hypxia/ischaemia in vivo versus in vitro. Journal of Cerebral Blood Flow and Metabolism, 25, 1356–1365.CrossRefPubMed
20.
go back to reference Syed, F., Odley, A., Hahn, H. S., Brunskill, E. W., Lynch, R. A., Marreez, Y., et al. (2004). Physiological growth synergizes with pathological genes in experimental cardiomyopathy. Circulation Research, 95, 1200–1206.CrossRefPubMed Syed, F., Odley, A., Hahn, H. S., Brunskill, E. W., Lynch, R. A., Marreez, Y., et al. (2004). Physiological growth synergizes with pathological genes in experimental cardiomyopathy. Circulation Research, 95, 1200–1206.CrossRefPubMed
21.
go back to reference Dorn, G. W., II. (2005). Physiologic growth and pathologic genes in cardiac development and cardiomyopathy. Trends in Cardiovascular Medicine, 15, 185–189.CrossRefPubMed Dorn, G. W., II. (2005). Physiologic growth and pathologic genes in cardiac development and cardiomyopathy. Trends in Cardiovascular Medicine, 15, 185–189.CrossRefPubMed
22.
go back to reference Diwan, A., Krenz, M., Syed, F. M., Wansapura, J., Ren, X., Koesters, A. G., et al. (2007). Inhibition of ischemic cardiomyocyte apoptosis through targeted ablation of Bnip3 restrains postinfarction remodeling in mice. Journal of Clinical Investigation, 117, 2825–2833.CrossRefPubMed Diwan, A., Krenz, M., Syed, F. M., Wansapura, J., Ren, X., Koesters, A. G., et al. (2007). Inhibition of ischemic cardiomyocyte apoptosis through targeted ablation of Bnip3 restrains postinfarction remodeling in mice. Journal of Clinical Investigation, 117, 2825–2833.CrossRefPubMed
23.
go back to reference Kubasiak, L. A., Hernandez, O. M., Bishopric, N. H., & Webster, K. A. (2002). Hypoxia and acidosis activate cardiac myocyte death through the Bcl-2 family protein BNIP3. Proceedings of the National Academy of Sciences of the United States of America, 99, 12825–12830.CrossRefPubMed Kubasiak, L. A., Hernandez, O. M., Bishopric, N. H., & Webster, K. A. (2002). Hypoxia and acidosis activate cardiac myocyte death through the Bcl-2 family protein BNIP3. Proceedings of the National Academy of Sciences of the United States of America, 99, 12825–12830.CrossRefPubMed
24.
go back to reference Kubli, D. A., Quinsay, M. N., Huang, C., Lee, Y., & Gustafsson, A. B. (2008). Bnip3 functions as a mitochondrial sensor of oxidative stress during myocardial ischemia and reperfusion. American Journal of Physiology. Heart and Circulatory Physiology, 295, H2025–H2031.CrossRefPubMed Kubli, D. A., Quinsay, M. N., Huang, C., Lee, Y., & Gustafsson, A. B. (2008). Bnip3 functions as a mitochondrial sensor of oxidative stress during myocardial ischemia and reperfusion. American Journal of Physiology. Heart and Circulatory Physiology, 295, H2025–H2031.CrossRefPubMed
25.
go back to reference Schmidt-Kastner, R., Aguirre-Chen, C., Kietzmann, T., Saul, I., Busto, R., & Ginsberg, M. D. (2004). Nuclear localization of the hypoxia-regulated pro-apoptotic protein BNIP3 after global brain ischemia in the rat hippocampus. Brain Research, 1001, 133–142.CrossRefPubMed Schmidt-Kastner, R., Aguirre-Chen, C., Kietzmann, T., Saul, I., Busto, R., & Ginsberg, M. D. (2004). Nuclear localization of the hypoxia-regulated pro-apoptotic protein BNIP3 after global brain ischemia in the rat hippocampus. Brain Research, 1001, 133–142.CrossRefPubMed
26.
go back to reference Burton, T. R., Henson, E. S., Baijal, P., Eisenstat, D. D., & Gibson, S. B. (2005). The pro-cell death Bcl-2 family member, BNIP3, is localized to the nucleus of human glial cells: Implications for glioblastoma multiforme tumor cell survivial under hypoxia. International Journal of Cancer, 118, 1660–1669.CrossRef Burton, T. R., Henson, E. S., Baijal, P., Eisenstat, D. D., & Gibson, S. B. (2005). The pro-cell death Bcl-2 family member, BNIP3, is localized to the nucleus of human glial cells: Implications for glioblastoma multiforme tumor cell survivial under hypoxia. International Journal of Cancer, 118, 1660–1669.CrossRef
27.
go back to reference Diwan, A., Koesters, A. G., Odley, A. M., Pushkaran, S., Baines, C. P., Spike, B. T., et al. (2007). Unrestrained erythroblast development in Nix−/− mice reveals a mechanism for apoptotic modulation of erythropoiesis. Proceedings of the National Academy of Sciences of the United States of America, 104, 6794–6799.CrossRefPubMed Diwan, A., Koesters, A. G., Odley, A. M., Pushkaran, S., Baines, C. P., Spike, B. T., et al. (2007). Unrestrained erythroblast development in Nix−/− mice reveals a mechanism for apoptotic modulation of erythropoiesis. Proceedings of the National Academy of Sciences of the United States of America, 104, 6794–6799.CrossRefPubMed
28.
go back to reference Schweers, R. L., Zhang, J., Randall, M. S., Loyd, M. R., Li, W., Dorsey, F. C., et al. (2007). NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proceedings of the National Academy of Sciences of the United States of America, 104, 19500–19505.CrossRefPubMed Schweers, R. L., Zhang, J., Randall, M. S., Loyd, M. R., Li, W., Dorsey, F. C., et al. (2007). NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proceedings of the National Academy of Sciences of the United States of America, 104, 19500–19505.CrossRefPubMed
29.
go back to reference Sandoval, H., Thiagarajan, P., Dasgupta, S. K., Schumacher, A., Prchal, J. T., Chen, M., et al. (2008). Essential role for Nix in autophagic maturation of erythroid cells. Nature, 454, 232–235.CrossRefPubMed Sandoval, H., Thiagarajan, P., Dasgupta, S. K., Schumacher, A., Prchal, J. T., Chen, M., et al. (2008). Essential role for Nix in autophagic maturation of erythroid cells. Nature, 454, 232–235.CrossRefPubMed
30.
go back to reference Diwan, A., Wansapura, J., Syed, F. M., Matkovich, S. J., Lorenz, J. N., & Dorn, G. W., II. (2008). Nix-mediated apoptosis links myocardial fibrosis, cardiac remodeling, and hypertrophy decompensation. Circulation, 117, 396–404.CrossRefPubMed Diwan, A., Wansapura, J., Syed, F. M., Matkovich, S. J., Lorenz, J. N., & Dorn, G. W., II. (2008). Nix-mediated apoptosis links myocardial fibrosis, cardiac remodeling, and hypertrophy decompensation. Circulation, 117, 396–404.CrossRefPubMed
31.
go back to reference Diwan, A., Matkovich, S. J., Yuan, Q., Zhao, W., Yatani, A., Brown, J. H., et al. (2009). Endoplasmic reticulum-mitochondria crosstalk in NIX-mediated murine cell death. Journal of Clinical Investigation, 119, 203–212.PubMed Diwan, A., Matkovich, S. J., Yuan, Q., Zhao, W., Yatani, A., Brown, J. H., et al. (2009). Endoplasmic reticulum-mitochondria crosstalk in NIX-mediated murine cell death. Journal of Clinical Investigation, 119, 203–212.PubMed
32.
go back to reference Foyouzi-Youssefi, R., Arnaudeau, S., Borner, C., Kelley, W. L., Tschopp, J., Lew, D. P., et al. (2000). Bcl-2 decreases the free Ca2+ concentration within the endoplasmic reticulum. Proceedings of the National Academy of Sciences of the United States of America, 97, 5723–5728.CrossRefPubMed Foyouzi-Youssefi, R., Arnaudeau, S., Borner, C., Kelley, W. L., Tschopp, J., Lew, D. P., et al. (2000). Bcl-2 decreases the free Ca2+ concentration within the endoplasmic reticulum. Proceedings of the National Academy of Sciences of the United States of America, 97, 5723–5728.CrossRefPubMed
33.
go back to reference Nutt, L. K., Pataer, A., Pahler, J., Fang, B., Roth, J., McConkey, D. J., et al. (2002). Bax and Bak promote apoptosis by modulating endoplasmic reticular and mitochondrial Ca2+ stores. Journal of Biological Chemistry, 277, 9219–9225.CrossRefPubMed Nutt, L. K., Pataer, A., Pahler, J., Fang, B., Roth, J., McConkey, D. J., et al. (2002). Bax and Bak promote apoptosis by modulating endoplasmic reticular and mitochondrial Ca2+ stores. Journal of Biological Chemistry, 277, 9219–9225.CrossRefPubMed
34.
go back to reference Scorrano, L., Oakes, S. A., Opferman, J. T., Cheng, E. H., Sorcinelli, M. D., Pozzan, T., et al. (2003). BAX and BAK regulation of endoplasmic reticulum Ca2+: A control point for apoptosis. Science, 300, 135–139.CrossRefPubMed Scorrano, L., Oakes, S. A., Opferman, J. T., Cheng, E. H., Sorcinelli, M. D., Pozzan, T., et al. (2003). BAX and BAK regulation of endoplasmic reticulum Ca2+: A control point for apoptosis. Science, 300, 135–139.CrossRefPubMed
35.
go back to reference Rizzuto, R., & Pozzan, T. (2006). Microdomains of intracellular Ca2+: Molecular determinants and functional consequences. Physiological Reviews, 86, 369–408.CrossRefPubMed Rizzuto, R., & Pozzan, T. (2006). Microdomains of intracellular Ca2+: Molecular determinants and functional consequences. Physiological Reviews, 86, 369–408.CrossRefPubMed
36.
go back to reference Henriquez, M., Armisen, R., Stutzin, A., & Quest, A. F. G. (2008). Cell death by necrosis, a regulated way to go. Current Molecular Medicine, 8, 187–206.CrossRefPubMed Henriquez, M., Armisen, R., Stutzin, A., & Quest, A. F. G. (2008). Cell death by necrosis, a regulated way to go. Current Molecular Medicine, 8, 187–206.CrossRefPubMed
37.
go back to reference Nakayama, H., Chen, X., Baines, C. P., Klevitsky, R., Zhang, X., Zhang, H., et al. (2007). Ca2+- and mitochondrial-dependent cardiomyocyte necrosis as a primary mediator of heart failure. Journal of Clinical Investigation, 117, 2431–2444.CrossRefPubMed Nakayama, H., Chen, X., Baines, C. P., Klevitsky, R., Zhang, X., Zhang, H., et al. (2007). Ca2+- and mitochondrial-dependent cardiomyocyte necrosis as a primary mediator of heart failure. Journal of Clinical Investigation, 117, 2431–2444.CrossRefPubMed
38.
go back to reference Dorn, G. W., II, & Kirshenbaum, L. A. (2008). Cardiac reanimation: Targeting cardiomyocyte death by BNIP3 and NIX/BNIP3L. Oncogene, 27(Suppl 1), S158–S167.CrossRefPubMed Dorn, G. W., II, & Kirshenbaum, L. A. (2008). Cardiac reanimation: Targeting cardiomyocyte death by BNIP3 and NIX/BNIP3L. Oncogene, 27(Suppl 1), S158–S167.CrossRefPubMed
39.
go back to reference Zhang, J., & Ney, P. A. (2009). Role of BNIP3 and NIX in cell death, autophagy, and mitophagy. Cell Death and Differentiation, 16, 939–946.CrossRefPubMed Zhang, J., & Ney, P. A. (2009). Role of BNIP3 and NIX in cell death, autophagy, and mitophagy. Cell Death and Differentiation, 16, 939–946.CrossRefPubMed
40.
go back to reference Lehman, J. J., Barger, P. M., Kovacs, A., Saffitz, J. E., Medeiros, D., & Kelly, D. P. (2000). PPARg coactivator-1 (PGC-1) promotes cardiac mitochondrial biogenesis. Journal of Clinical Investigation, 106, 847–856.CrossRefPubMed Lehman, J. J., Barger, P. M., Kovacs, A., Saffitz, J. E., Medeiros, D., & Kelly, D. P. (2000). PPARg coactivator-1 (PGC-1) promotes cardiac mitochondrial biogenesis. Journal of Clinical Investigation, 106, 847–856.CrossRefPubMed
41.
go back to reference Russell, L. K., Mansfield, C. M., Lehman, J. J., Kovacs, A., Courtois, M., Saffitz, J. E., et al. (2004). Cardiac-specific induction of the transcriptional coactivator peroxisome proliferator-activated receptor g coactivator-1a promotes mitochondrial biogenesis and reversible cardiomyopathy in a developmental stage-dependent manner. Circulation Research, 94, 525–533.CrossRefPubMed Russell, L. K., Mansfield, C. M., Lehman, J. J., Kovacs, A., Courtois, M., Saffitz, J. E., et al. (2004). Cardiac-specific induction of the transcriptional coactivator peroxisome proliferator-activated receptor g coactivator-1a promotes mitochondrial biogenesis and reversible cardiomyopathy in a developmental stage-dependent manner. Circulation Research, 94, 525–533.CrossRefPubMed
42.
go back to reference Zhang, J., & Ney, P. A. (2008). NIX induces mitochondrial autophagy in reticulocytes. Autophagy, 4, 354–356.PubMed Zhang, J., & Ney, P. A. (2008). NIX induces mitochondrial autophagy in reticulocytes. Autophagy, 4, 354–356.PubMed
43.
go back to reference Schwarten, M., Mohrluder, J., Ma, P., Stoldt, M., Thielmann, Y., Stangler, T., et al. (2009). Nix directly binds to GABARAP: A possible crosstalk between apoptosis and autophagy. Autophagy, 5, 690–698.CrossRefPubMed Schwarten, M., Mohrluder, J., Ma, P., Stoldt, M., Thielmann, Y., Stangler, T., et al. (2009). Nix directly binds to GABARAP: A possible crosstalk between apoptosis and autophagy. Autophagy, 5, 690–698.CrossRefPubMed
44.
go back to reference Novak, I., Kirkin, V., McEwan, D. G., Zhang, J., Wild, P., Rozenknop, A., et al. (2010). Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep, 11, 45–51.CrossRefPubMed Novak, I., Kirkin, V., McEwan, D. G., Zhang, J., Wild, P., Rozenknop, A., et al. (2010). Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep, 11, 45–51.CrossRefPubMed
45.
go back to reference Goffart, S., Kleist-Retzow, J. C., & Wiesner, R. J. (2004). Regulation of mitochondrial proliferation in the heart: Power-plant failure contributes to cardiac failure in hypertrophy. Cardiovascular Research, 64, 198–207.CrossRefPubMed Goffart, S., Kleist-Retzow, J. C., & Wiesner, R. J. (2004). Regulation of mitochondrial proliferation in the heart: Power-plant failure contributes to cardiac failure in hypertrophy. Cardiovascular Research, 64, 198–207.CrossRefPubMed
Metadata
Title
Mitochondrial Pruning by Nix and BNip3: An Essential Function for Cardiac-Expressed Death Factors
Author
Gerald W. Dorn II
Publication date
01-08-2010
Publisher
Springer US
Published in
Journal of Cardiovascular Translational Research / Issue 4/2010
Print ISSN: 1937-5387
Electronic ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-010-9174-x

Other articles of this Issue 4/2010

Journal of Cardiovascular Translational Research 4/2010 Go to the issue