Skip to main content
Top
Published in: Cardiovascular Toxicology 4/2014

01-12-2014

Serum–Glucocorticoid Regulated Kinase 1 Regulates Macrophage Recruitment and Activation Contributing to Monocrotaline-Induced Pulmonary Arterial Hypertension

Authors: Xin Xi, Shuang Liu, Hongtao Shi, Min Yang, Yongfen Qi, Jian Wang, Jie Du

Published in: Cardiovascular Toxicology | Issue 4/2014

Login to get access

Abstract

Sustained inflammation is associated with pulmonary vascular remodeling and arterial hypertension (PAH). Serum–glucocorticoid regulated kinase 1 (SGK1) has been shown to participate in vascular remodeling, but its role in inflammation-associated PAH remains unknown. In this study, the importance of SGK1 expression and activation was investigated on monocrotaline (MCT)-induced PAH, an inflammation-associated experimental model of PAH used in mice and rats. The expression of SGK1 in the lungs of rats with MCT-induced PAH was significantly increased. Furthermore, SGK1 knockout mice were resistant to MCT-induced PAH and showed less elevation of right ventricular systolic pressure and right ventricular hypertrophy and showed reduced pulmonary vascular remodeling in response to MCT injection. Administering the SGK1 inhibitor, EMD638683, to rats also prevented the development of MCT-induced PAH. The expression of SGK1 was shown to take place primarily in alveolar macrophages. EMD638683 treatment suppressed macrophage infiltration and inhibited the proliferation of pulmonary arterial smooth muscle cells (PASMCs) in the lungs of rats with MCT-induced PAH. Co-culture of bone marrow-derived macrophages (BMDMs) from wild-type (WT) mice promoted proliferation of PASMC in vitro, whereas BMDMs from either SGK1 knockout mice or WT mice with EMD638683 treatment failed to induce this response. Collectively, the present results demonstrated that SGK1 is important to the regulation of macrophage activation that contributes to the development of PAH; thus, SGK1 may be a potential therapeutic target for the treatment of PAH.
Literature
1.
go back to reference Schermuly, R. T., Ghofrani, H. A., Wilkins, M. R., & Grimminger, F. (2011). Mechanisms of disease: pulmonary arterial hypertension. Nature Review Cardiology, 8, 443–455.CrossRef Schermuly, R. T., Ghofrani, H. A., Wilkins, M. R., & Grimminger, F. (2011). Mechanisms of disease: pulmonary arterial hypertension. Nature Review Cardiology, 8, 443–455.CrossRef
2.
go back to reference Galie, N., Hoeper, M. M., Humbert, M., Torbicki, A., Vachiery, J. L., et al. (2009). Guidelines for the diagnosis and treatment of pulmonary hypertension. European Respiratory Journal, 34, 1219–1263.PubMedCrossRef Galie, N., Hoeper, M. M., Humbert, M., Torbicki, A., Vachiery, J. L., et al. (2009). Guidelines for the diagnosis and treatment of pulmonary hypertension. European Respiratory Journal, 34, 1219–1263.PubMedCrossRef
3.
go back to reference Galie, N., Palazzini, M., & Manes, A. (2010). Pulmonary arterial hypertension: From the kingdom of the near-dead to multiple clinical trial meta-analyses. European Heart Journal, 31, 2080–2086.PubMedCrossRefPubMedCentral Galie, N., Palazzini, M., & Manes, A. (2010). Pulmonary arterial hypertension: From the kingdom of the near-dead to multiple clinical trial meta-analyses. European Heart Journal, 31, 2080–2086.PubMedCrossRefPubMedCentral
4.
go back to reference Wilkins, M. R. (2012). Pulmonary hypertension: the science behind the disease spectrum. European Respiratory Reviews, 21, 19–26.CrossRef Wilkins, M. R. (2012). Pulmonary hypertension: the science behind the disease spectrum. European Respiratory Reviews, 21, 19–26.CrossRef
5.
go back to reference Stacher, E., Graham, B. B., Hunt, J. M., Gandjeva, A., Groshong, S. D., et al. (2012). Modern age pathology of pulmonary arterial hypertension. American Journal of Respiratory and Critical Care Medicine, 186, 261–272.PubMedCrossRefPubMedCentral Stacher, E., Graham, B. B., Hunt, J. M., Gandjeva, A., Groshong, S. D., et al. (2012). Modern age pathology of pulmonary arterial hypertension. American Journal of Respiratory and Critical Care Medicine, 186, 261–272.PubMedCrossRefPubMedCentral
6.
go back to reference Morrell, N. W., Adnot, S., Archer, S. L., Dupuis, J., Jones, P. L., et al. (2009). Cellular and molecular basis of pulmonary arterial hypertension. Journal of the American College of Cardiology, 54, S20–S31.PubMedCrossRefPubMedCentral Morrell, N. W., Adnot, S., Archer, S. L., Dupuis, J., Jones, P. L., et al. (2009). Cellular and molecular basis of pulmonary arterial hypertension. Journal of the American College of Cardiology, 54, S20–S31.PubMedCrossRefPubMedCentral
7.
go back to reference Archer, S. L., Weir, E. K., & Wilkins, M. R. (2010). Basic science of pulmonary arterial hypertension for clinicians: New concepts and experimental therapies. Circulation, 121, 2045–2066.PubMedCrossRefPubMedCentral Archer, S. L., Weir, E. K., & Wilkins, M. R. (2010). Basic science of pulmonary arterial hypertension for clinicians: New concepts and experimental therapies. Circulation, 121, 2045–2066.PubMedCrossRefPubMedCentral
8.
go back to reference El Chami, H., & Hassoun, P. M. (2012). Immune and inflammatory mechanisms in pulmonary arterial hypertension. Progress in Cardiovascular Diseases, 55, 218–228.PubMedCrossRefPubMedCentral El Chami, H., & Hassoun, P. M. (2012). Immune and inflammatory mechanisms in pulmonary arterial hypertension. Progress in Cardiovascular Diseases, 55, 218–228.PubMedCrossRefPubMedCentral
9.
go back to reference Marsboom, G., Toth, P. T., Ryan, J. J., Hong, Z., Wu, X., et al. (2012). Dynamin-related protein 1-mediated mitochondrial mitotic fission permits hyperproliferation of vascular smooth muscle cells and offers a novel therapeutic target in pulmonary hypertension. Circulation Research, 110, 1484–1497.PubMedCrossRefPubMedCentral Marsboom, G., Toth, P. T., Ryan, J. J., Hong, Z., Wu, X., et al. (2012). Dynamin-related protein 1-mediated mitochondrial mitotic fission permits hyperproliferation of vascular smooth muscle cells and offers a novel therapeutic target in pulmonary hypertension. Circulation Research, 110, 1484–1497.PubMedCrossRefPubMedCentral
10.
go back to reference Savai, R., Pullamsetti, S. S., Kolbe, J., Bieniek, E., Voswinckel, R., et al. (2012). Immune and inflammatory cell involvement in the pathology of idiopathic pulmonary arterial hypertension. American Journal of Respiratory and Critical Care Medicine, 186, 897–908.PubMedCrossRef Savai, R., Pullamsetti, S. S., Kolbe, J., Bieniek, E., Voswinckel, R., et al. (2012). Immune and inflammatory cell involvement in the pathology of idiopathic pulmonary arterial hypertension. American Journal of Respiratory and Critical Care Medicine, 186, 897–908.PubMedCrossRef
11.
go back to reference Burke, D. L., Frid, M. G., Kunrath, C. L., Karoor, V., Anwar, A., et al. (2009). Sustained hypoxia promotes the development of a pulmonary artery-specific chronic inflammatory microenvironment. American Journal of Physiology. Lung Cellular and Molecular Physiology, 297, L238–L250.PubMedCrossRefPubMedCentral Burke, D. L., Frid, M. G., Kunrath, C. L., Karoor, V., Anwar, A., et al. (2009). Sustained hypoxia promotes the development of a pulmonary artery-specific chronic inflammatory microenvironment. American Journal of Physiology. Lung Cellular and Molecular Physiology, 297, L238–L250.PubMedCrossRefPubMedCentral
12.
go back to reference Gomez-Arroyo, J. G., Farkas, L., Alhussaini, A. A., Farkas, D., Kraskauskas, D., et al. (2012). The monocrotaline model of pulmonary hypertension in perspective. American Journal of Physiology. Lung Cellular and Molecular Physiology, 302, L363–L369.PubMedCrossRef Gomez-Arroyo, J. G., Farkas, L., Alhussaini, A. A., Farkas, D., Kraskauskas, D., et al. (2012). The monocrotaline model of pulmonary hypertension in perspective. American Journal of Physiology. Lung Cellular and Molecular Physiology, 302, L363–L369.PubMedCrossRef
13.
go back to reference Pinto, R. F., Higuchi Mde, L., & Aiello, V. D. (2004). Decreased numbers of T-lymphocytes and predominance of recently recruited macrophages in the walls of peripheral pulmonary arteries from 26 patients with pulmonary hypertension secondary to congenital cardiac shunts. Cardiovascular Pathology, 13, 268–275.PubMedCrossRef Pinto, R. F., Higuchi Mde, L., & Aiello, V. D. (2004). Decreased numbers of T-lymphocytes and predominance of recently recruited macrophages in the walls of peripheral pulmonary arteries from 26 patients with pulmonary hypertension secondary to congenital cardiac shunts. Cardiovascular Pathology, 13, 268–275.PubMedCrossRef
14.
go back to reference Vergadi, E., Chang, M. S., Lee, C., Liang, O. D., Liu, X., et al. (2011). Early macrophage recruitment and alternative activation are critical for the later development of hypoxia-induced pulmonary hypertension. Circulation, 123, 1986–1995.PubMedCrossRefPubMedCentral Vergadi, E., Chang, M. S., Lee, C., Liang, O. D., Liu, X., et al. (2011). Early macrophage recruitment and alternative activation are critical for the later development of hypoxia-induced pulmonary hypertension. Circulation, 123, 1986–1995.PubMedCrossRefPubMedCentral
15.
go back to reference Sahara, M., Sata, M., Morita, T., Nakamura, K., Hirata, Y., et al. (2007). Diverse contribution of bone marrow-derived cells to vascular remodeling associated with pulmonary arterial hypertension and arterial neointimal formation. Circulation, 115, 509–517.PubMedCrossRef Sahara, M., Sata, M., Morita, T., Nakamura, K., Hirata, Y., et al. (2007). Diverse contribution of bone marrow-derived cells to vascular remodeling associated with pulmonary arterial hypertension and arterial neointimal formation. Circulation, 115, 509–517.PubMedCrossRef
16.
go back to reference Tian, W., Jiang, X., Tamosiuniene, R., Sung, Y. K., Qian, J., et al. (2013). Blocking macrophage leukotriene b4 prevents endothelial injury and reverses pulmonary hypertension. Science Translational Medicine, 5, 200ra117.PubMedCrossRefPubMedCentral Tian, W., Jiang, X., Tamosiuniene, R., Sung, Y. K., Qian, J., et al. (2013). Blocking macrophage leukotriene b4 prevents endothelial injury and reverses pulmonary hypertension. Science Translational Medicine, 5, 200ra117.PubMedCrossRefPubMedCentral
17.
go back to reference Talati, M., West, J., Blackwell, T. R., Loyd, J. E., & Meyrick, B. (2010). BMPR2 mutation alters the lung macrophage endothelin-1 cascade in a mouse model and patients with heritable pulmonary artery hypertension. American Journal of Physiology. Lung Cellular and Molecular Physiology, 299, L363–L373.PubMedCrossRefPubMedCentral Talati, M., West, J., Blackwell, T. R., Loyd, J. E., & Meyrick, B. (2010). BMPR2 mutation alters the lung macrophage endothelin-1 cascade in a mouse model and patients with heritable pulmonary artery hypertension. American Journal of Physiology. Lung Cellular and Molecular Physiology, 299, L363–L373.PubMedCrossRefPubMedCentral
18.
go back to reference Frid, M. G., Brunetti, J. A., Burke, D. L., Carpenter, T. C., Davie, N. J., et al. (2006). Hypoxia-induced pulmonary vascular remodeling requires recruitment of circulating mesenchymal precursors of a monocyte/macrophage lineage. American Journal of Pathology, 168, 659–669.PubMedCrossRefPubMedCentral Frid, M. G., Brunetti, J. A., Burke, D. L., Carpenter, T. C., Davie, N. J., et al. (2006). Hypoxia-induced pulmonary vascular remodeling requires recruitment of circulating mesenchymal precursors of a monocyte/macrophage lineage. American Journal of Pathology, 168, 659–669.PubMedCrossRefPubMedCentral
19.
go back to reference Chung, J. H., Jeon, H. J., Hong, S. Y., da Lee, L., Lee, K. H., et al. (2012). Palmitate promotes the paracrine effects of macrophages on vascular smooth muscle cells: The role of bone morphogenetic proteins. PLoS ONE, 7, e29100.PubMedCrossRefPubMedCentral Chung, J. H., Jeon, H. J., Hong, S. Y., da Lee, L., Lee, K. H., et al. (2012). Palmitate promotes the paracrine effects of macrophages on vascular smooth muscle cells: The role of bone morphogenetic proteins. PLoS ONE, 7, e29100.PubMedCrossRefPubMedCentral
20.
go back to reference Lee, M. J., Kim, M. Y., Heo, S. C., Kwon, Y. W., Kim, Y. M., et al. (2012). Macrophages regulate smooth muscle differentiation of mesenchymal stem cells via a prostaglandin F(2)alpha-mediated paracrine mechanism. Arteriosclerosis, Thrombosis, and Vascular Biology, 32, 2733–2740.PubMedCrossRef Lee, M. J., Kim, M. Y., Heo, S. C., Kwon, Y. W., Kim, Y. M., et al. (2012). Macrophages regulate smooth muscle differentiation of mesenchymal stem cells via a prostaglandin F(2)alpha-mediated paracrine mechanism. Arteriosclerosis, Thrombosis, and Vascular Biology, 32, 2733–2740.PubMedCrossRef
21.
go back to reference Webster, M. K., Goya, L., Ge, Y., Maiyar, A. C., & Firestone, G. L. (1993). Characterization of sgk, a novel member of the serine/threonine protein kinase gene family which is transcriptionally induced by glucocorticoids and serum. Molecular and Cellular Biology, 13, 2031–2040.PubMedPubMedCentral Webster, M. K., Goya, L., Ge, Y., Maiyar, A. C., & Firestone, G. L. (1993). Characterization of sgk, a novel member of the serine/threonine protein kinase gene family which is transcriptionally induced by glucocorticoids and serum. Molecular and Cellular Biology, 13, 2031–2040.PubMedPubMedCentral
22.
go back to reference Lang, F., Artunc, F., & Vallon, V. (2009). The physiological impact of the serum and glucocorticoid-inducible kinase SGK1. Current Opinion in Nephrology and Hypertension, 18, 439–448.PubMedCrossRefPubMedCentral Lang, F., Artunc, F., & Vallon, V. (2009). The physiological impact of the serum and glucocorticoid-inducible kinase SGK1. Current Opinion in Nephrology and Hypertension, 18, 439–448.PubMedCrossRefPubMedCentral
23.
go back to reference Cheng, J., Wang, Y., Ma, Y., Chan, B. T., Yang, M., et al. (2010). The mechanical stress-activated serum-, glucocorticoid-regulated kinase 1 contributes to neointima formation in vein grafts. Circulation Research, 107, 1265–1274.PubMedCrossRef Cheng, J., Wang, Y., Ma, Y., Chan, B. T., Yang, M., et al. (2010). The mechanical stress-activated serum-, glucocorticoid-regulated kinase 1 contributes to neointima formation in vein grafts. Circulation Research, 107, 1265–1274.PubMedCrossRef
24.
go back to reference Yang, M., Zheng, J., Miao, Y., Wang, Y., Cui, W., et al. (2012). Serum–glucocorticoid regulated kinase 1 regulates alternatively activated macrophage polarization contributing to angiotensin II-induced inflammation and cardiac fibrosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 32, 1675–1686.PubMedCrossRef Yang, M., Zheng, J., Miao, Y., Wang, Y., Cui, W., et al. (2012). Serum–glucocorticoid regulated kinase 1 regulates alternatively activated macrophage polarization contributing to angiotensin II-induced inflammation and cardiac fibrosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 32, 1675–1686.PubMedCrossRef
25.
go back to reference BelAiba, R. S., Djordjevic, T., Bonello, S., Artunc, F., Lang, F., et al. (2006). The serum- and glucocorticoid-inducible kinase Sgk-1 is involved in pulmonary vascular remodeling: Role in redox-sensitive regulation of tissue factor by thrombin. Circulation Research, 98, 828–836.PubMedCrossRef BelAiba, R. S., Djordjevic, T., Bonello, S., Artunc, F., Lang, F., et al. (2006). The serum- and glucocorticoid-inducible kinase Sgk-1 is involved in pulmonary vascular remodeling: Role in redox-sensitive regulation of tissue factor by thrombin. Circulation Research, 98, 828–836.PubMedCrossRef
26.
go back to reference Ackermann, T. F., Boini, K. M., Beier, N., Scholz, W., Fuchss, T., et al. (2011). EMD638683, a novel SGK inhibitor with antihypertensive potency. Cellular Physiology and Biochemistry, 28, 137–146.PubMedCrossRef Ackermann, T. F., Boini, K. M., Beier, N., Scholz, W., Fuchss, T., et al. (2011). EMD638683, a novel SGK inhibitor with antihypertensive potency. Cellular Physiology and Biochemistry, 28, 137–146.PubMedCrossRef
27.
go back to reference Schermuly, R. T., Dony, E., Ghofrani, H. A., Pullamsetti, S., Savai, R., et al. (2005). Reversal of experimental pulmonary hypertension by PDGF inhibition. Journal of Clinical Investigation, 115, 2811–2821.PubMedCrossRefPubMedCentral Schermuly, R. T., Dony, E., Ghofrani, H. A., Pullamsetti, S., Savai, R., et al. (2005). Reversal of experimental pulmonary hypertension by PDGF inhibition. Journal of Clinical Investigation, 115, 2811–2821.PubMedCrossRefPubMedCentral
28.
go back to reference Yamazato, Y., Ferreira, A. J., Hong, K. H., Sriramula, S., Francis, J., et al. (2009). Prevention of pulmonary hypertension by angiotensin-converting enzyme 2 gene transfer. Hypertension, 54, 365–371.PubMedCrossRefPubMedCentral Yamazato, Y., Ferreira, A. J., Hong, K. H., Sriramula, S., Francis, J., et al. (2009). Prevention of pulmonary hypertension by angiotensin-converting enzyme 2 gene transfer. Hypertension, 54, 365–371.PubMedCrossRefPubMedCentral
29.
go back to reference Wang, J., Jiang, Q., Wan, L., Yang, K., Zhang, Y., et al. (2013). Sodium tanshinone IIA sulfonate inhibits canonical transient receptor potential expression in pulmonary arterial smooth muscle from pulmonary hypertensive rats. American Journal of Respiratory Cell and Molecular Biology, 48, 125–134.PubMedCrossRefPubMedCentral Wang, J., Jiang, Q., Wan, L., Yang, K., Zhang, Y., et al. (2013). Sodium tanshinone IIA sulfonate inhibits canonical transient receptor potential expression in pulmonary arterial smooth muscle from pulmonary hypertensive rats. American Journal of Respiratory Cell and Molecular Biology, 48, 125–134.PubMedCrossRefPubMedCentral
30.
go back to reference Li, Y., Zhang, C., Wu, Y., Han, Y., Cui, W., et al. (2012). Interleukin-12p35 deletion promotes CD4 T-cell-dependent macrophage differentiation and enhances angiotensin II-Induced cardiac fibrosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 32, 1662–1674.PubMedCrossRef Li, Y., Zhang, C., Wu, Y., Han, Y., Cui, W., et al. (2012). Interleukin-12p35 deletion promotes CD4 T-cell-dependent macrophage differentiation and enhances angiotensin II-Induced cardiac fibrosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 32, 1662–1674.PubMedCrossRef
31.
go back to reference Zhang, Y., Wang, Y., Liu, Y., Wang, N., Qi, Y., et al. (2013). Kruppel-like factor 4 transcriptionally regulates TGF-beta1 and contributes to cardiac myofibroblast differentiation. PLoS ONE, 8, e63424.PubMedCrossRefPubMedCentral Zhang, Y., Wang, Y., Liu, Y., Wang, N., Qi, Y., et al. (2013). Kruppel-like factor 4 transcriptionally regulates TGF-beta1 and contributes to cardiac myofibroblast differentiation. PLoS ONE, 8, e63424.PubMedCrossRefPubMedCentral
32.
go back to reference Price, L. C., Wort, S. J., Perros, F., Dorfmuller, P., Huertas, A., et al. (2012). Inflammation in pulmonary arterial hypertension. Chest, 141, 210–221.PubMedCrossRef Price, L. C., Wort, S. J., Perros, F., Dorfmuller, P., Huertas, A., et al. (2012). Inflammation in pulmonary arterial hypertension. Chest, 141, 210–221.PubMedCrossRef
33.
go back to reference Meng, F., Yamagiwa, Y., Taffetani, S., Han, J., & Patel, T. (2005). IL-6 activates serum and glucocorticoid kinase via p38alpha mitogen-activated protein kinase pathway. American Journal of Physiology. Cell Physiology, 289, C971–C981.PubMedCrossRefPubMedCentral Meng, F., Yamagiwa, Y., Taffetani, S., Han, J., & Patel, T. (2005). IL-6 activates serum and glucocorticoid kinase via p38alpha mitogen-activated protein kinase pathway. American Journal of Physiology. Cell Physiology, 289, C971–C981.PubMedCrossRefPubMedCentral
34.
go back to reference Saad, S., Agapiou, D. J., Chen, X. M., Stevens, V., & Pollock, C. A. (2009). The role of Sgk-1 in the upregulation of transport proteins by PPAR-{gamma} agonists in human proximal tubule cells. Nephrology, Dialysis, Transplantation, 24, 1130–1141.PubMedCrossRef Saad, S., Agapiou, D. J., Chen, X. M., Stevens, V., & Pollock, C. A. (2009). The role of Sgk-1 in the upregulation of transport proteins by PPAR-{gamma} agonists in human proximal tubule cells. Nephrology, Dialysis, Transplantation, 24, 1130–1141.PubMedCrossRef
35.
go back to reference Waerntges, S., Klingel, K., Weigert, C., Fillon, S., Buck, M., et al. (2002). Excessive transcription of the human serum and glucocorticoid dependent kinase hSGK1 in lung fibrosis. Cellular Physiology and Biochemistry, 12, 135–142.PubMedCrossRef Waerntges, S., Klingel, K., Weigert, C., Fillon, S., Buck, M., et al. (2002). Excessive transcription of the human serum and glucocorticoid dependent kinase hSGK1 in lung fibrosis. Cellular Physiology and Biochemistry, 12, 135–142.PubMedCrossRef
36.
go back to reference Voelkl, J., Pasham, V., Ahmed, M. S., Walker, B., Szteyn, K., et al. (2013). Sgk1-dependent stimulation of cardiac Na+/H+ exchanger Nhe1 by dexamethasone. Cellular Physiology and Biochemistry, 32, 25–38.PubMedCrossRef Voelkl, J., Pasham, V., Ahmed, M. S., Walker, B., Szteyn, K., et al. (2013). Sgk1-dependent stimulation of cardiac Na+/H+ exchanger Nhe1 by dexamethasone. Cellular Physiology and Biochemistry, 32, 25–38.PubMedCrossRef
37.
go back to reference Towhid, S. T., Liu, G. L., Ackermann, T. F., Beier, N., Scholz, W., et al. (2013). Inhibition of colonic tumor growth by the selective SGK inhibitor EMD638683. Cellular Physiology and Biochemistry, 32, 838–848.PubMedCrossRef Towhid, S. T., Liu, G. L., Ackermann, T. F., Beier, N., Scholz, W., et al. (2013). Inhibition of colonic tumor growth by the selective SGK inhibitor EMD638683. Cellular Physiology and Biochemistry, 32, 838–848.PubMedCrossRef
38.
go back to reference Liu, G., Alzoubi, K., Umbach, A. T., Pelzl, L., Borst, O., et al. (2014). Upregulation of store operated ca channel orai1, stimulation of Ca entry and triggering of cell membrane scrambling in platelets by mineralocorticoid DOCA. Kidney and Blood Pressure Research, 38, 21–30.CrossRef Liu, G., Alzoubi, K., Umbach, A. T., Pelzl, L., Borst, O., et al. (2014). Upregulation of store operated ca channel orai1, stimulation of Ca entry and triggering of cell membrane scrambling in platelets by mineralocorticoid DOCA. Kidney and Blood Pressure Research, 38, 21–30.CrossRef
39.
go back to reference Lang, F., Bohmer, C., Palmada, M., Seebohm, G., Strutz-Seebohm, N., et al. (2006). (Patho)physiological significance of the serum- and glucocorticoid-inducible kinase isoforms. Physiological Reviews, 86, 1151–1178.PubMedCrossRef Lang, F., Bohmer, C., Palmada, M., Seebohm, G., Strutz-Seebohm, N., et al. (2006). (Patho)physiological significance of the serum- and glucocorticoid-inducible kinase isoforms. Physiological Reviews, 86, 1151–1178.PubMedCrossRef
40.
go back to reference Zhang, L., Cui, R., Cheng, X., & Du, J. (2005). Antiapoptotic effect of serum and glucocorticoid-inducible protein kinase is mediated by novel mechanism activating I[kgr]B kinase. Cancer Research, 65, 457–464.PubMed Zhang, L., Cui, R., Cheng, X., & Du, J. (2005). Antiapoptotic effect of serum and glucocorticoid-inducible protein kinase is mediated by novel mechanism activating I[kgr]B kinase. Cancer Research, 65, 457–464.PubMed
Metadata
Title
Serum–Glucocorticoid Regulated Kinase 1 Regulates Macrophage Recruitment and Activation Contributing to Monocrotaline-Induced Pulmonary Arterial Hypertension
Authors
Xin Xi
Shuang Liu
Hongtao Shi
Min Yang
Yongfen Qi
Jian Wang
Jie Du
Publication date
01-12-2014
Publisher
Springer US
Published in
Cardiovascular Toxicology / Issue 4/2014
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-014-9260-4

Other articles of this Issue 4/2014

Cardiovascular Toxicology 4/2014 Go to the issue