Skip to main content
Top
Published in: Cardiovascular Toxicology 4/2014

01-12-2014

The Effect of Myocardial Infarct Size on Cardiac Reserve in Rhesus Monkeys

Authors: Jindan Cai, Xiaorong Sun, Pengfei Han, Ying Xiao, Xin Fan, Yanwen Shang, Y. James Kang

Published in: Cardiovascular Toxicology | Issue 4/2014

Login to get access

Abstract

Evaluation of cardiac reserve under myocardial infarction in patients is important for prognosis. However, this evaluation is difficult to be done due to high risk for mortality in patients with severe myocardial infarction. The present study was undertaken using non-human primate model as a substitute for humans to investigate the relationship between cardiac reserve and myocardial infarct size. Rhesus monkeys of 2–3 years old (n = 27) were subjected to left anterior descending artery ligation to introduce acute myocardial infarction. By altering the ligation position along the artery, varying sizes of myocardial infarction were generated, from 20 to 58 % of the total myocardium mass. These subjects were divided into 4 groups based on the infarct size: below 25 %, between 25 and 35 %, between 35 and 45 %, and above 45 % of the total mass. Changes in cardiac contractility were determined by echocardiography along with the development of myocardial infarction, and by invasive hemodynamic measurement at the end of the experiment. Correlation analysis revealed that hearts with infarct sizes <25 % of the total mass fully responded to the increase in the load generated by heart rate escalation. Hearts with infarct sizes between 25 and 45 % responded the load increase with gradient decline in the maximum contractility. Hearts with infarct sizes more than 45 % failed to respond to the increase in the load. Therefore, we consider myocardial infarct size <25 % of the total mass as compensable injury, between 25 and 45 % as depleting injury, and more than 45 % as exhausted injury with regard to cardiac reserve. This would serve as a surrogate model for patients with myocardial infarction.
Literature
1.
go back to reference Iwasaka, T., Takahashi, N., Nakamura, S., Sugiura, T., Tarumi, N., Kimura, Y., et al. (1992). Residual left ventricular pump function after acute myocardial infarction in NIDDM patients. Diabetes Care, 15, 1522–1526.PubMedCrossRef Iwasaka, T., Takahashi, N., Nakamura, S., Sugiura, T., Tarumi, N., Kimura, Y., et al. (1992). Residual left ventricular pump function after acute myocardial infarction in NIDDM patients. Diabetes Care, 15, 1522–1526.PubMedCrossRef
2.
go back to reference Fincke, R., Hochman, J. S., Lowe, A. M., Menon, V., Slater, J. N., Webb, J. G., et al. (2004). Cardiac power is the strongest hemodynamic correlate of mortality in cardiogenic shock: A report from the SHOCK trial registry. Journal of the American College of Cardiology, 44, 340–348.PubMedCrossRef Fincke, R., Hochman, J. S., Lowe, A. M., Menon, V., Slater, J. N., Webb, J. G., et al. (2004). Cardiac power is the strongest hemodynamic correlate of mortality in cardiogenic shock: A report from the SHOCK trial registry. Journal of the American College of Cardiology, 44, 340–348.PubMedCrossRef
3.
go back to reference Weber, K. T., Janicki, J. S., Russell, R. O., Rackley, C. E., Swan, H., Resnekov, L., et al. (1978). Identification of high risk subsets of acute myocardial infarction: Derived from the myocardial infarction research units cooperative study data bank. American Journal of Cardiology, 41, 197–203.PubMedCrossRef Weber, K. T., Janicki, J. S., Russell, R. O., Rackley, C. E., Swan, H., Resnekov, L., et al. (1978). Identification of high risk subsets of acute myocardial infarction: Derived from the myocardial infarction research units cooperative study data bank. American Journal of Cardiology, 41, 197–203.PubMedCrossRef
4.
go back to reference Swan, H., Forrester, J. S., Diamond, G., Chatterjee, K., & Parmley, W. W. (1972). Hemodynamic spectrum of myocardial infarction and cardiogenic shock a conceptual model. Circulation, 45, 1097–1110.PubMedCrossRef Swan, H., Forrester, J. S., Diamond, G., Chatterjee, K., & Parmley, W. W. (1972). Hemodynamic spectrum of myocardial infarction and cardiogenic shock a conceptual model. Circulation, 45, 1097–1110.PubMedCrossRef
5.
go back to reference Page, D. L., Caulfield, J. B., Kastor, J. A., DeSanctis, R. W., & Sanders, C. A. (1971). Myocardial changes associated with cardiogenic shock. New England Journal of Medicine, 285, 133–137.PubMedCrossRef Page, D. L., Caulfield, J. B., Kastor, J. A., DeSanctis, R. W., & Sanders, C. A. (1971). Myocardial changes associated with cardiogenic shock. New England Journal of Medicine, 285, 133–137.PubMedCrossRef
6.
go back to reference Erlebacher, J. A., Weiss, J. L., Weisfeldt, M. L., & Bulkley, B. H. (1984). Early dilation of the infarcted segment in acute transmural myocardial infarction: Role of infarct expansion in acute left ventricular enlargement. Journal of the American College of Cardiology, 4, 201–208.PubMedCrossRef Erlebacher, J. A., Weiss, J. L., Weisfeldt, M. L., & Bulkley, B. H. (1984). Early dilation of the infarcted segment in acute transmural myocardial infarction: Role of infarct expansion in acute left ventricular enlargement. Journal of the American College of Cardiology, 4, 201–208.PubMedCrossRef
7.
go back to reference Rubin, S. A., Fishbein, M. C., & Swan, H. (1983). Compensatory hypertrophy in the heart after myocardial infarction in the rat. Journal of the American College of Cardiology, 1, 1435–1441.PubMedCrossRef Rubin, S. A., Fishbein, M. C., & Swan, H. (1983). Compensatory hypertrophy in the heart after myocardial infarction in the rat. Journal of the American College of Cardiology, 1, 1435–1441.PubMedCrossRef
8.
go back to reference Tsutsui, J. M., Elhendy, A., Anderson, J. R., Xie, F., McGrain, A. C., & Porter, T. R. (2005). Prognostic value of dobutamine stress myocardial contrast perfusion echocardiography. Circulation, 112, 1444–1450.PubMedCrossRef Tsutsui, J. M., Elhendy, A., Anderson, J. R., Xie, F., McGrain, A. C., & Porter, T. R. (2005). Prognostic value of dobutamine stress myocardial contrast perfusion echocardiography. Circulation, 112, 1444–1450.PubMedCrossRef
9.
go back to reference Bountioukos, M., Elhendy, A., Van Domburg, R., Schinkel, A., Bax, J., Krenning, B., et al. (2004). Prognostic value of dobutamine stress echocardiography in patients with previous coronary revascularisation. Heart, 90, 1031–1035.PubMedCrossRefPubMedCentral Bountioukos, M., Elhendy, A., Van Domburg, R., Schinkel, A., Bax, J., Krenning, B., et al. (2004). Prognostic value of dobutamine stress echocardiography in patients with previous coronary revascularisation. Heart, 90, 1031–1035.PubMedCrossRefPubMedCentral
10.
go back to reference Nagel, E., Lehmkuhl, H. B., Bocksch, W., Klein, C., Vogel, U., Frantz, E., et al. (1999). Noninvasive diagnosis of ischemia-induced wall motion abnormalities with the use of high-dose dobutamine stress MRI comparison with dobutamine stress echocardiography. Circulation, 99, 763–770.PubMedCrossRef Nagel, E., Lehmkuhl, H. B., Bocksch, W., Klein, C., Vogel, U., Frantz, E., et al. (1999). Noninvasive diagnosis of ischemia-induced wall motion abnormalities with the use of high-dose dobutamine stress MRI comparison with dobutamine stress echocardiography. Circulation, 99, 763–770.PubMedCrossRef
11.
go back to reference Jahnke, C., Nagel, E., Gebker, R., Kokocinski, T., Kelle, S., Manka, R., et al. (2007). Prognostic value of cardiac magnetic resonance stress tests adenosine stress perfusion and dobutamine stress wall motion imaging. Circulation, 115, 1769–1776.PubMedCrossRef Jahnke, C., Nagel, E., Gebker, R., Kokocinski, T., Kelle, S., Manka, R., et al. (2007). Prognostic value of cardiac magnetic resonance stress tests adenosine stress perfusion and dobutamine stress wall motion imaging. Circulation, 115, 1769–1776.PubMedCrossRef
12.
go back to reference Klein, C., Nekolla, S. G., Bengel, F. M., Momose, M., Sammer, A., Haas, F., et al. (2002). Assessment of myocardial viability with contrast-enhanced magnetic resonance imaging comparison with positron emission tomography. Circulation, 105, 162–167.PubMedCrossRef Klein, C., Nekolla, S. G., Bengel, F. M., Momose, M., Sammer, A., Haas, F., et al. (2002). Assessment of myocardial viability with contrast-enhanced magnetic resonance imaging comparison with positron emission tomography. Circulation, 105, 162–167.PubMedCrossRef
13.
go back to reference Wagner, A., Mahrholdt, H., Holly, T. A., Elliott, M. D., Regenfus, M., Parker, M., et al. (2003). Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. The Lancet, 361, 374–379.CrossRef Wagner, A., Mahrholdt, H., Holly, T. A., Elliott, M. D., Regenfus, M., Parker, M., et al. (2003). Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. The Lancet, 361, 374–379.CrossRef
14.
go back to reference Patterson, J. A., Naughton, J., Pietras, R. J., & Gunnar, R. M. (1972). Treadmill exercise in assessment of the functional capacity of patients with cardiac disease. American Journal of Cardiology, 30, 757–762.PubMedCrossRef Patterson, J. A., Naughton, J., Pietras, R. J., & Gunnar, R. M. (1972). Treadmill exercise in assessment of the functional capacity of patients with cardiac disease. American Journal of Cardiology, 30, 757–762.PubMedCrossRef
15.
go back to reference Rerych, S. K., Scholz, P. M., Newman, G. E., Sabiston, D. C, Jr, & Jones, R. H. (1978). Cardiac function at rest and during exercise in normals and in patients with coronary heart disease: Evaluation by radionuclide angiocardiography. Annals of Surgery, 187, 449.PubMedCrossRefPubMedCentral Rerych, S. K., Scholz, P. M., Newman, G. E., Sabiston, D. C, Jr, & Jones, R. H. (1978). Cardiac function at rest and during exercise in normals and in patients with coronary heart disease: Evaluation by radionuclide angiocardiography. Annals of Surgery, 187, 449.PubMedCrossRefPubMedCentral
16.
go back to reference Anversa, P., Beghi, C., Kikkawa, Y., & Olivetti, G. (1986). Myocardial infarction in rats. Infarct size, myocyte hypertrophy, and capillary growth. Circulation Research, 58, 26–37.PubMedCrossRef Anversa, P., Beghi, C., Kikkawa, Y., & Olivetti, G. (1986). Myocardial infarction in rats. Infarct size, myocyte hypertrophy, and capillary growth. Circulation Research, 58, 26–37.PubMedCrossRef
17.
go back to reference Sobel, B. (1976). Infarct size, prognosis, and causal contiguity. Circulation, 53, I146.PubMed Sobel, B. (1976). Infarct size, prognosis, and causal contiguity. Circulation, 53, I146.PubMed
18.
go back to reference Pfeffer, M. A., Pfeffer, J. M., Fishbein, M. C., Fletcher, P. J., Spadaro, J., Kloner, R. A., et al. (1979). Myocardial infarct size and ventricular function in rats. Circulation Research, 44, 503–512.PubMedCrossRef Pfeffer, M. A., Pfeffer, J. M., Fishbein, M. C., Fletcher, P. J., Spadaro, J., Kloner, R. A., et al. (1979). Myocardial infarct size and ventricular function in rats. Circulation Research, 44, 503–512.PubMedCrossRef
19.
go back to reference Caulfield, J., Leinbach, R., & Gold, H. (1976). The relationship of myocardial infarct size and prognosis. Circulation, 53, I141–I144.PubMed Caulfield, J., Leinbach, R., & Gold, H. (1976). The relationship of myocardial infarct size and prognosis. Circulation, 53, I141–I144.PubMed
20.
go back to reference Kupper, W., Bleifeld, W., Hanrath, P., Mathey, D., & Effert, S. (1977). Left ventricular hemodynamics and function in acute myocardial infarction: Studies during the acute phase, convalescence and late recovery. American Journal of Cardiology, 40, 900–905.PubMedCrossRef Kupper, W., Bleifeld, W., Hanrath, P., Mathey, D., & Effert, S. (1977). Left ventricular hemodynamics and function in acute myocardial infarction: Studies during the acute phase, convalescence and late recovery. American Journal of Cardiology, 40, 900–905.PubMedCrossRef
21.
go back to reference Teofilovski-Parapid, G., & Kredovitć, G. (1998). Coronary artery distribution in Macaca fascicularis (Cynomolgus). Laboratory Animals, 32, 200–205.PubMedCrossRef Teofilovski-Parapid, G., & Kredovitć, G. (1998). Coronary artery distribution in Macaca fascicularis (Cynomolgus). Laboratory Animals, 32, 200–205.PubMedCrossRef
22.
go back to reference Buss, D. D., Hyde, D. M., & Poulos, P. W. (1982). Coronary artery distribution in bonnet monkeys (Macaca radiata). The Anatomical Record, 203, 411–417.PubMedCrossRef Buss, D. D., Hyde, D. M., & Poulos, P. W. (1982). Coronary artery distribution in bonnet monkeys (Macaca radiata). The Anatomical Record, 203, 411–417.PubMedCrossRef
23.
go back to reference Tohno, Y., Tohno, S., Laleva, L., Ongkana, N., Minami, T., Satoh, H., et al. (2008). Age-related changes of elements in the coronary arteries of monkeys in comparison with those of humans. Biological Trace Element Research, 125, 141–153.PubMedCrossRef Tohno, Y., Tohno, S., Laleva, L., Ongkana, N., Minami, T., Satoh, H., et al. (2008). Age-related changes of elements in the coronary arteries of monkeys in comparison with those of humans. Biological Trace Element Research, 125, 141–153.PubMedCrossRef
24.
go back to reference Banka, N., Anand, I., Nirankari, O., Gulati, S., Sharma, P., Chakravarti, R., et al. (1982). Macroscopic and microscopic measurement of myocardial infarct size. Research in Experimental Medicine, 181, 125–133.PubMedCrossRef Banka, N., Anand, I., Nirankari, O., Gulati, S., Sharma, P., Chakravarti, R., et al. (1982). Macroscopic and microscopic measurement of myocardial infarct size. Research in Experimental Medicine, 181, 125–133.PubMedCrossRef
25.
go back to reference Flameng, W., Lesaffre, E., & Vanhaecke, J. (1990). Determinants of infarct size in non-human primates. Basic Research in Cardiology, 85, 392–403.PubMedCrossRef Flameng, W., Lesaffre, E., & Vanhaecke, J. (1990). Determinants of infarct size in non-human primates. Basic Research in Cardiology, 85, 392–403.PubMedCrossRef
26.
go back to reference Sun, X., Cai, J., Fan, X., Han, P., Xie, Y., Chen, J., et al. (2013). Decreases in electrocardiographic r-wave amplitude and QT interval predict myocardial ischemic infarction in Rhesus monkeys with left anterior descending artery ligation. PLoS One, 8, e71876.PubMedCrossRefPubMedCentral Sun, X., Cai, J., Fan, X., Han, P., Xie, Y., Chen, J., et al. (2013). Decreases in electrocardiographic r-wave amplitude and QT interval predict myocardial ischemic infarction in Rhesus monkeys with left anterior descending artery ligation. PLoS One, 8, e71876.PubMedCrossRefPubMedCentral
27.
go back to reference Yang, P., Han, P., Hou, J., Zhang, L., Song, H., Xie, Y., et al. (2011). Electrocardiographic characterization of Rhesus monkey model of ischemic myocardial infarction induced by left anterior descending artery ligation. Cardiovascular Toxicology, 11, 365–372.PubMedCrossRef Yang, P., Han, P., Hou, J., Zhang, L., Song, H., Xie, Y., et al. (2011). Electrocardiographic characterization of Rhesus monkey model of ischemic myocardial infarction induced by left anterior descending artery ligation. Cardiovascular Toxicology, 11, 365–372.PubMedCrossRef
28.
go back to reference Tan, L.-B., & Littler, W. A. (1990). Measurement of cardiac reserve in cardiogenic shock: Implications for prognosis and management. British Heart Journal, 64, 121–128.PubMedCrossRefPubMedCentral Tan, L.-B., & Littler, W. A. (1990). Measurement of cardiac reserve in cardiogenic shock: Implications for prognosis and management. British Heart Journal, 64, 121–128.PubMedCrossRefPubMedCentral
29.
go back to reference Xie, Y., Chen, J., Han, P., Yang, P., Hou, J., & Kang, Y. J. (2012). Immunohistochemical detection of differentially localized up-regulation of lysyl oxidase and down-regulation of matrix metalloproteinase-1 in Rhesus monkey model of chronic myocardial infarction. Experimental Biology and Medicine, 237, 853–859.PubMedCrossRef Xie, Y., Chen, J., Han, P., Yang, P., Hou, J., & Kang, Y. J. (2012). Immunohistochemical detection of differentially localized up-regulation of lysyl oxidase and down-regulation of matrix metalloproteinase-1 in Rhesus monkey model of chronic myocardial infarction. Experimental Biology and Medicine, 237, 853–859.PubMedCrossRef
30.
go back to reference Takagawa, J., Zhang, Y., Wong, M. L., Sievers, R. E., Kapasi, N. K., Wang, Y., et al. (2007). Myocardial infarct size measurement in the mouse chronic infarction model: Comparison of area- and length-based approaches. Journal of Applied Physiology, 102, 2104–2111.PubMedCrossRefPubMedCentral Takagawa, J., Zhang, Y., Wong, M. L., Sievers, R. E., Kapasi, N. K., Wang, Y., et al. (2007). Myocardial infarct size measurement in the mouse chronic infarction model: Comparison of area- and length-based approaches. Journal of Applied Physiology, 102, 2104–2111.PubMedCrossRefPubMedCentral
31.
go back to reference Wang, T–. T., Wang, Y.-Z., & Wang, J. (2008). A new best fit approximation method of soil test data. Journal of Experimental Mechanics, 3, 003. Wang, T–. T., Wang, Y.-Z., & Wang, J. (2008). A new best fit approximation method of soil test data. Journal of Experimental Mechanics, 3, 003.
32.
go back to reference Durrleman, S., & Simon, R. (1989). Flexible regression models with cubic splines. Statistics in Medicine, 8, 551–561.PubMedCrossRef Durrleman, S., & Simon, R. (1989). Flexible regression models with cubic splines. Statistics in Medicine, 8, 551–561.PubMedCrossRef
33.
go back to reference Mizutani, Y., Nakano, S., Iwase, T., Samoto, T., & Fujinami, T. (1982). Evaluation of cardiac reserve in patients with angina pectoris by dynamic exercise echocardiography]. Journal of Cardiography, 12, 83.PubMed Mizutani, Y., Nakano, S., Iwase, T., Samoto, T., & Fujinami, T. (1982). Evaluation of cardiac reserve in patients with angina pectoris by dynamic exercise echocardiography]. Journal of Cardiography, 12, 83.PubMed
34.
35.
go back to reference Cooke, G., Marshall, P., Al-Timman, J., Wright, D., Riley, R., Hainsworth, R., et al. (1998). Physiological cardiac reserve: Development of a non-invasive method and first estimates in man. Heart, 79, 289–294.PubMedCrossRefPubMedCentral Cooke, G., Marshall, P., Al-Timman, J., Wright, D., Riley, R., Hainsworth, R., et al. (1998). Physiological cardiac reserve: Development of a non-invasive method and first estimates in man. Heart, 79, 289–294.PubMedCrossRefPubMedCentral
36.
go back to reference Sobel, B. E., Bresnahan, G. F., Shell, W. E., & Yoder, R. D. (1972). Estimation of infarct size in man and its relation to prognosis. Circulation, 46, 640–648.PubMedCrossRef Sobel, B. E., Bresnahan, G. F., Shell, W. E., & Yoder, R. D. (1972). Estimation of infarct size in man and its relation to prognosis. Circulation, 46, 640–648.PubMedCrossRef
37.
go back to reference Norris, R. M., Whitlock, R. M., Barratt-Boyes, C., & Small, C. (1975). Clinical measurement of myocardial infarct size. Modification of a method for the estimation of total creatine phosphokinase release after myocardial infarction. Circulation, 51, 614–620.PubMedCrossRef Norris, R. M., Whitlock, R. M., Barratt-Boyes, C., & Small, C. (1975). Clinical measurement of myocardial infarct size. Modification of a method for the estimation of total creatine phosphokinase release after myocardial infarction. Circulation, 51, 614–620.PubMedCrossRef
38.
go back to reference Grande, P., Hansen, B. F., Christiansen, C., & Naestoft, J. (1982). Estimation of acute myocardial infarct size in man by serum CK-MB measurements. Circulation, 65, 756–764.PubMedCrossRef Grande, P., Hansen, B. F., Christiansen, C., & Naestoft, J. (1982). Estimation of acute myocardial infarct size in man by serum CK-MB measurements. Circulation, 65, 756–764.PubMedCrossRef
39.
go back to reference Holman, B. L., Goldhaber, S. Z., Kirsch, C.-M., Polak, J. F., Friedman, B. J., English, R. J., et al. (1982). Measurement of infarct size using single photon emission computed tomography and technetium-99 m pyrophosphate: A description of the method and comparison with patient prognosis. American Journal of Cardiology, 50, 503–511.PubMedCrossRef Holman, B. L., Goldhaber, S. Z., Kirsch, C.-M., Polak, J. F., Friedman, B. J., English, R. J., et al. (1982). Measurement of infarct size using single photon emission computed tomography and technetium-99 m pyrophosphate: A description of the method and comparison with patient prognosis. American Journal of Cardiology, 50, 503–511.PubMedCrossRef
40.
go back to reference Yusuf, S., Lopez, R., Maddison, A., Maw, P., Ray, N., McMillan, S., et al. (1979). Value of electrocardiogram in predicting and estimating infarct size in man. British Heart Journal, 42, 286–293.PubMedCrossRefPubMedCentral Yusuf, S., Lopez, R., Maddison, A., Maw, P., Ray, N., McMillan, S., et al. (1979). Value of electrocardiogram in predicting and estimating infarct size in man. British Heart Journal, 42, 286–293.PubMedCrossRefPubMedCentral
Metadata
Title
The Effect of Myocardial Infarct Size on Cardiac Reserve in Rhesus Monkeys
Authors
Jindan Cai
Xiaorong Sun
Pengfei Han
Ying Xiao
Xin Fan
Yanwen Shang
Y. James Kang
Publication date
01-12-2014
Publisher
Springer US
Published in
Cardiovascular Toxicology / Issue 4/2014
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-014-9253-3

Other articles of this Issue 4/2014

Cardiovascular Toxicology 4/2014 Go to the issue