Skip to main content
Top
Published in: Cardiovascular Toxicology 4/2014

01-12-2014

Suppression of Placental Metallothionein 1 and Zinc Transporter 1 mRNA Expressions Contributes to Fetal Heart Malformations Caused by Maternal Zinc Deficiency

Authors: Chaobin Liu, Xiaoyu He, Xinru Hong, Fenhong Kang, Suqing Chen, Qing Wang, Xiaoqiu Chen, Dian Hu, Qinghua Sun

Published in: Cardiovascular Toxicology | Issue 4/2014

Login to get access

Abstract

Zinc has been implicated to have a protective role against heart malformations during fetal development. Metallothionein 1 (MT-1) and zinc transporter 1 (ZnT-1) are two major metabolic factors that are associated with zinc metabolism. The present work aimed to investigate the association of placental MT-1 and ZnT-1 expressions with fetal heart malformations resulting from maternal zinc deficiency. Sprague–Dawley female rats were randomly divided into five groups of extremely low-zinc, low-zinc, moderately low-zinc, marginally low-zinc and normal zinc (n = 9–12), and were fed diets with controlled zinc content at 1.0 ± 0.3, 8.4 ± 1.8, 15.4 ± 2.8, 22.4 ± 4.1 and 29.4 ± 5.3 [mean ± standard deviation (SD)] mg of zinc/kg, respectively, from day 25 of preconception until day 19 of gestation. The female rats were bred, their fetuses were harvested at day 19 of gestation after killing the dams, and fetal hearts were morphologically examined. Zinc concentration and alkaline phosphatase (ALP) activity in maternal venous blood sera were tested, and MT-1 and ZnT-1 mRNA expressions in the placenta were assayed. Zinc concentrations and ALP activities in the blood were low in all zinc-deficient diet groups in a dose-dependent fashion. The incidences of heart malformations were increased, and the levels of placental MT-1 and ZnT-1 mRNA expressions were decreased in the extremely low-zinc, low-zinc and moderately low-zinc groups compared with the normal zinc group. Specifically, mRNA levels of placental MT-1 or ZnT-1 were significantly decreased and were lower than the specific threshold values in the fetuses with heart malformations but not in the fetuses without heart malformations in all the groups. These data indicate that maternal zinc deficiency resulted in an elevated incidence of fetal heart malformations, which was associated with significant decreases in placental MT-1 and ZnT-1 mRNA expressions to the levels below the threshold values that may be a crucial factor to determine the presence of fetal heart malformations.
Literature
1.
go back to reference Bentham, J., & Bhattacharya, S. (2008). Genetic mechanisms controlling cardiovascular development. Annals of the New York Academy of Sciences, 1123, 10–19.PubMedCrossRef Bentham, J., & Bhattacharya, S. (2008). Genetic mechanisms controlling cardiovascular development. Annals of the New York Academy of Sciences, 1123, 10–19.PubMedCrossRef
2.
go back to reference Tennstedt, C., Chaoui, R., Korner, H., & Dietel, M. (1999). Spectrum of congenital heart defects and extracardiac malformations associated with chromosomal abnormalities: Results of a seven year necropsy study. Heart, 82, 34–39.PubMedCrossRefPubMedCentral Tennstedt, C., Chaoui, R., Korner, H., & Dietel, M. (1999). Spectrum of congenital heart defects and extracardiac malformations associated with chromosomal abnormalities: Results of a seven year necropsy study. Heart, 82, 34–39.PubMedCrossRefPubMedCentral
3.
go back to reference Botto, L. D., & Correa, A. (2003). Decreasing the burden of congenital heart anomalies: An epidemiologic evaluation of risk factors and survival. Progress in Pediatric Cardiology, 18, 111–121.CrossRef Botto, L. D., & Correa, A. (2003). Decreasing the burden of congenital heart anomalies: An epidemiologic evaluation of risk factors and survival. Progress in Pediatric Cardiology, 18, 111–121.CrossRef
4.
go back to reference Scheplyagina, L. A. (2005). Impact of the mother’s zinc deficiency on the woman’s and newborn’s health status. Journal of Trace Elements in Medicine and Biology, 19, 29–35.PubMedCrossRef Scheplyagina, L. A. (2005). Impact of the mother’s zinc deficiency on the woman’s and newborn’s health status. Journal of Trace Elements in Medicine and Biology, 19, 29–35.PubMedCrossRef
5.
go back to reference Lopez, V., Keen, C. L., & Lanoue, L. (2008). Prenatal zinc deficiency: Influence on heart morphology and distribution of key heart proteins in a rat model. Biological Trace Element Research, 122, 238–255.PubMedCrossRef Lopez, V., Keen, C. L., & Lanoue, L. (2008). Prenatal zinc deficiency: Influence on heart morphology and distribution of key heart proteins in a rat model. Biological Trace Element Research, 122, 238–255.PubMedCrossRef
6.
go back to reference Jameson, S. (1976). Zinc and copper in pregnancy, correlations to fetal and maternal complications. Acta Medica Scandinavica, 593, 5–20.PubMed Jameson, S. (1976). Zinc and copper in pregnancy, correlations to fetal and maternal complications. Acta Medica Scandinavica, 593, 5–20.PubMed
7.
go back to reference Zhang, B. Y., Zhang, T., Lin, L. M., Wang, F., Xin, R. L., Gu, X., et al. (2008). Correlation between birth defects and dietary nutrition status in a high incidence area of China. Biomedical and Environmental Sciences, 21, 37–44.PubMedCrossRef Zhang, B. Y., Zhang, T., Lin, L. M., Wang, F., Xin, R. L., Gu, X., et al. (2008). Correlation between birth defects and dietary nutrition status in a high incidence area of China. Biomedical and Environmental Sciences, 21, 37–44.PubMedCrossRef
8.
go back to reference He, X., Hong, X., Zeng, F., Kang, F., Li, L., & Sun, Q. (2009). Zinc antagonizes homocysteine-induced fetal heart defects in rats. Cardiovascular Toxicology, 9, 151–159.PubMedCrossRef He, X., Hong, X., Zeng, F., Kang, F., Li, L., & Sun, Q. (2009). Zinc antagonizes homocysteine-induced fetal heart defects in rats. Cardiovascular Toxicology, 9, 151–159.PubMedCrossRef
9.
go back to reference Helston, R. M., Phillips, S. R., McKay, J. A., Jackson, K. A., Mathers, J. C., & Ford, D. (2007). Zinc transporters in the mouse placenta show a coordinated regulatory response to changes in dietary zinc intake. Placenta, 28, 437–444.PubMedCrossRef Helston, R. M., Phillips, S. R., McKay, J. A., Jackson, K. A., Mathers, J. C., & Ford, D. (2007). Zinc transporters in the mouse placenta show a coordinated regulatory response to changes in dietary zinc intake. Placenta, 28, 437–444.PubMedCrossRef
10.
go back to reference Onosaka, S., & Cherian, M. G. (1982). The induced synthesis of metallothionein in various tissues of rats in response to metals. II. Influence of zinc status and specific effect on pancreatic metallothionein. Toxicology, 23, 11–20.PubMedCrossRef Onosaka, S., & Cherian, M. G. (1982). The induced synthesis of metallothionein in various tissues of rats in response to metals. II. Influence of zinc status and specific effect on pancreatic metallothionein. Toxicology, 23, 11–20.PubMedCrossRef
11.
go back to reference Andrews, G. K., & Geiser, J. (1999). Expression of the mouse metallothionein-I and -II genes provides a reproductive advantage during maternal dietary zinc deficiency. Journal of Nutrition, 129, 1643–1648.PubMed Andrews, G. K., & Geiser, J. (1999). Expression of the mouse metallothionein-I and -II genes provides a reproductive advantage during maternal dietary zinc deficiency. Journal of Nutrition, 129, 1643–1648.PubMed
12.
go back to reference Li, B., Tan, Y., Sun, W., Fu, Y., Miao, L., & Cai, L. (2013). The role of zinc in the prevention of diabetic cardiomyopathy and nephropathy. Toxicology Mechanisms and Methods, 23, 27–33.PubMedCrossRef Li, B., Tan, Y., Sun, W., Fu, Y., Miao, L., & Cai, L. (2013). The role of zinc in the prevention of diabetic cardiomyopathy and nephropathy. Toxicology Mechanisms and Methods, 23, 27–33.PubMedCrossRef
13.
go back to reference Wu, C. Y., Bird, A. J., Chung, L. M., Newton, M. A., Winge, D. R., & Eide, D. J. (2008). Differential control of Zapl-regulated genes in response to zinc deficiency in Saccharomyces cerevisiae. BMC Genomics, 9, 370.PubMedCrossRefPubMedCentral Wu, C. Y., Bird, A. J., Chung, L. M., Newton, M. A., Winge, D. R., & Eide, D. J. (2008). Differential control of Zapl-regulated genes in response to zinc deficiency in Saccharomyces cerevisiae. BMC Genomics, 9, 370.PubMedCrossRefPubMedCentral
14.
go back to reference Asano, N., Kondoh, M., Ebihara, C., Fujii, M., Nakanishi, T., Soares, M. J., et al. (2004). Expression profiles of zinc transporters in rodent placental models. Toxicology Letters, 154, 45–53.PubMedCrossRef Asano, N., Kondoh, M., Ebihara, C., Fujii, M., Nakanishi, T., Soares, M. J., et al. (2004). Expression profiles of zinc transporters in rodent placental models. Toxicology Letters, 154, 45–53.PubMedCrossRef
15.
go back to reference Liuzzi, J. P., Bobo, J. A., Lichten, L. A., Samuelson, D. A., & Cousins, R. J. (2004). Responsive transporter genes within the murine intestinal-pancreatic axis form a basis of zinc homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 101, 14355–14360.PubMedCrossRefPubMedCentral Liuzzi, J. P., Bobo, J. A., Lichten, L. A., Samuelson, D. A., & Cousins, R. J. (2004). Responsive transporter genes within the murine intestinal-pancreatic axis form a basis of zinc homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 101, 14355–14360.PubMedCrossRefPubMedCentral
16.
go back to reference Andrews, G. K., Wang, H., Dey, S. K., & Palmiter, R. D. (2004). Mouse zinc transporter 1 gene provides an essential function during early embryonic development. Genesis, 40, 74–81.PubMedCrossRef Andrews, G. K., Wang, H., Dey, S. K., & Palmiter, R. D. (2004). Mouse zinc transporter 1 gene provides an essential function during early embryonic development. Genesis, 40, 74–81.PubMedCrossRef
17.
go back to reference Lee, D. K., Geiser, J., Dufner-Beattie, J., & Andrews, G. K. (2003). Pancreatic metallothionein-I may play a role in zinc homeostasis during maternal dietary zinc deficiency in mice. Journal of Nutrition, 133, 45–50.PubMed Lee, D. K., Geiser, J., Dufner-Beattie, J., & Andrews, G. K. (2003). Pancreatic metallothionein-I may play a role in zinc homeostasis during maternal dietary zinc deficiency in mice. Journal of Nutrition, 133, 45–50.PubMed
18.
go back to reference Dufner-Beattie, J., Huang, Z. L., Geiser, J., Xu, W., & Andrews, G. K. (2006). Mouse ZIP1 and ZIP3 genes together are essential for adaptation to dietary zinc deficiency during pregnancy. Genesis, 44, 239–251.PubMedCrossRef Dufner-Beattie, J., Huang, Z. L., Geiser, J., Xu, W., & Andrews, G. K. (2006). Mouse ZIP1 and ZIP3 genes together are essential for adaptation to dietary zinc deficiency during pregnancy. Genesis, 44, 239–251.PubMedCrossRef
19.
go back to reference Król, E., Krejpcio, Z., Michalak, S., Wójciak, R. W., & Bogdański, P. (2012). Effects of combined dietary chromium(III) propionate complex and thiamine supplementation on insulin sensitivity, blood biochemical indices, and mineral levels in high-fructose-fed rats. Biological Trace Element Research, 150, 350–359.PubMedCrossRefPubMedCentral Król, E., Krejpcio, Z., Michalak, S., Wójciak, R. W., & Bogdański, P. (2012). Effects of combined dietary chromium(III) propionate complex and thiamine supplementation on insulin sensitivity, blood biochemical indices, and mineral levels in high-fructose-fed rats. Biological Trace Element Research, 150, 350–359.PubMedCrossRefPubMedCentral
20.
go back to reference Kennedy, K. J., Rains, T. M., & Shay, N. F. (1998). Zinc deficiency changes preferred macronutrient intake in subpopulations of Sprague–Dawley outbred rats and reduces hepatic pyruvate kinase gene expression. Journal of Nutrition, 128, 43–49.PubMed Kennedy, K. J., Rains, T. M., & Shay, N. F. (1998). Zinc deficiency changes preferred macronutrient intake in subpopulations of Sprague–Dawley outbred rats and reduces hepatic pyruvate kinase gene expression. Journal of Nutrition, 128, 43–49.PubMed
21.
go back to reference Blanchard, R. K., Moore, J. B., Green, C. L., Robert, J., & Cousins, R. J. (2001). Modulation of intestinal gene expression by dietary zinc status: Effectiveness of cDNA arrays for expression profiling of a single nutrient deficiency. Proceedings of the National Academy of Sciences, 98, 13507–13513.CrossRef Blanchard, R. K., Moore, J. B., Green, C. L., Robert, J., & Cousins, R. J. (2001). Modulation of intestinal gene expression by dietary zinc status: Effectiveness of cDNA arrays for expression profiling of a single nutrient deficiency. Proceedings of the National Academy of Sciences, 98, 13507–13513.CrossRef
22.
go back to reference Dempsey, C., McCormick, N. H., Croxford, T. P., Seo, Y. A., Grider, A., & Kelleher, S. L. (2012). Marginal maternal zinc deficiency in lactating mice reduces secretory capacity and alters milk composition. Journal of Nutrition, 142, 655–660.PubMedCrossRefPubMedCentral Dempsey, C., McCormick, N. H., Croxford, T. P., Seo, Y. A., Grider, A., & Kelleher, S. L. (2012). Marginal maternal zinc deficiency in lactating mice reduces secretory capacity and alters milk composition. Journal of Nutrition, 142, 655–660.PubMedCrossRefPubMedCentral
23.
go back to reference Iwaya, H., Kashiwaya, M., Shinoki, A., Lee, J. S., Hayashi, K., Hara, H., et al. (2011). Marginal zinc deficiency exacerbates experimental colitis induced by dextran sulfate sodium in rats. Journal of Nutrition, 141, 1077–1082.PubMedCrossRef Iwaya, H., Kashiwaya, M., Shinoki, A., Lee, J. S., Hayashi, K., Hara, H., et al. (2011). Marginal zinc deficiency exacerbates experimental colitis induced by dextran sulfate sodium in rats. Journal of Nutrition, 141, 1077–1082.PubMedCrossRef
24.
go back to reference Nagata, M., Kayanoma, M., Takahashi, T., Kaneko, T., & Hara, H. (2011). Marginal zinc deficiency in pregnant rats impairs bone matrix formation and bone mineralization in their neonates. Biological Trace Element Research, 142, 190–199.PubMedCrossRef Nagata, M., Kayanoma, M., Takahashi, T., Kaneko, T., & Hara, H. (2011). Marginal zinc deficiency in pregnant rats impairs bone matrix formation and bone mineralization in their neonates. Biological Trace Element Research, 142, 190–199.PubMedCrossRef
25.
go back to reference Kalinowski, M., Wolf, G., & Markefski, M. (1983). Concentration and subcellular localization of zinc in the hippocampal formation, cerebellum, and whole brain during the postnatal development of the rat. Acta Histochemica, 73, 33–40.PubMedCrossRef Kalinowski, M., Wolf, G., & Markefski, M. (1983). Concentration and subcellular localization of zinc in the hippocampal formation, cerebellum, and whole brain during the postnatal development of the rat. Acta Histochemica, 73, 33–40.PubMedCrossRef
26.
go back to reference Nourani, M. R., Ebrahimi, M., Roudkenar, M. H., Vahedi, E., Ghanei, M., & Imani Fooladi, A. A. (2011). Sulfur mustard induces expression of metallothionein-1A in human airway epithelial cells. International Journal of General Medicine, 4, 413–419.PubMedCrossRefPubMedCentral Nourani, M. R., Ebrahimi, M., Roudkenar, M. H., Vahedi, E., Ghanei, M., & Imani Fooladi, A. A. (2011). Sulfur mustard induces expression of metallothionein-1A in human airway epithelial cells. International Journal of General Medicine, 4, 413–419.PubMedCrossRefPubMedCentral
27.
go back to reference Ho, E., Dukovcica, S., Hobsona, B., Wonga, C. P., Miller, G., Hardin, K., et al. (2012). Zinc transporter expression in zebrafish (Danio rerio) during development. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 155, 26–32. Ho, E., Dukovcica, S., Hobsona, B., Wonga, C. P., Miller, G., Hardin, K., et al. (2012). Zinc transporter expression in zebrafish (Danio rerio) during development. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 155, 26–32.
28.
go back to reference Pirinccioglu, A. G., Alyan, O., Kizil, G., Kangin, M., & Beyazit, N. (2012). Evaluation of oxidative stress in children with congenital heart defects. Pediatrics International, 54, 94–98.PubMedCrossRef Pirinccioglu, A. G., Alyan, O., Kizil, G., Kangin, M., & Beyazit, N. (2012). Evaluation of oxidative stress in children with congenital heart defects. Pediatrics International, 54, 94–98.PubMedCrossRef
29.
go back to reference Chasapis, C. T., Loutsidou, A. C., Spiliopoulou, C. A., & Stefanidou, M. E. (2012). Zinc and human health: An update. Archives of Toxicology, 86, 521–534.PubMedCrossRef Chasapis, C. T., Loutsidou, A. C., Spiliopoulou, C. A., & Stefanidou, M. E. (2012). Zinc and human health: An update. Archives of Toxicology, 86, 521–534.PubMedCrossRef
30.
go back to reference Kumar, S. D., Vijaya, M., Samy, R. P., Dheen, S. T., Ren, M., Watt, F., et al. (2012). Zinc supplementation prevents cardiomyocyte apoptosis and congenital heart defects in embryos of diabetic mice. Free Radical Biology & Medicine, 53, 1595–1606.CrossRef Kumar, S. D., Vijaya, M., Samy, R. P., Dheen, S. T., Ren, M., Watt, F., et al. (2012). Zinc supplementation prevents cardiomyocyte apoptosis and congenital heart defects in embryos of diabetic mice. Free Radical Biology & Medicine, 53, 1595–1606.CrossRef
31.
go back to reference Dutsch-Wicherek, M., Sikora, J., & Tomaszewska, R. (2008). The possible biological role of Metallothionein in apoptosis. Frontiers in Bioscience, 13, 4029–4038.PubMedCrossRef Dutsch-Wicherek, M., Sikora, J., & Tomaszewska, R. (2008). The possible biological role of Metallothionein in apoptosis. Frontiers in Bioscience, 13, 4029–4038.PubMedCrossRef
32.
go back to reference Hazelhoff-Roelfzema, W., Tohyama, C., Nishimura, H., Nishimura, N., & Morselt, A. F. (1989). Quantitative immunohistochemistry of metallothionein in rat placenta. Histochemistry, 90, 365–369.PubMedCrossRef Hazelhoff-Roelfzema, W., Tohyama, C., Nishimura, H., Nishimura, N., & Morselt, A. F. (1989). Quantitative immunohistochemistry of metallothionein in rat placenta. Histochemistry, 90, 365–369.PubMedCrossRef
33.
go back to reference Yang, X., Doser, T. A., Fang, C. X., Nunn, J. M., Janardhanan, R., Zhu, M., et al. (2006). Metallothionein prolongs survival and antagonizes senescence-associated cardiomyocyte diastolic dysfunction: Role of oxidative stress. The FASEB Journal, 20, 1024–1026.CrossRef Yang, X., Doser, T. A., Fang, C. X., Nunn, J. M., Janardhanan, R., Zhu, M., et al. (2006). Metallothionein prolongs survival and antagonizes senescence-associated cardiomyocyte diastolic dysfunction: Role of oxidative stress. The FASEB Journal, 20, 1024–1026.CrossRef
34.
go back to reference Cragg, R. A., Phillips, S. R., Piper, J. M., Varma, J. S., Campbell, F. C., Mathers, J. C., et al. (2005). Homeostatic regulation of zinc transporters in the human small intestine by dietary zinc supplementation. Gut, 54, 469–478.PubMedCrossRefPubMedCentral Cragg, R. A., Phillips, S. R., Piper, J. M., Varma, J. S., Campbell, F. C., Mathers, J. C., et al. (2005). Homeostatic regulation of zinc transporters in the human small intestine by dietary zinc supplementation. Gut, 54, 469–478.PubMedCrossRefPubMedCentral
35.
go back to reference Malavolta, M., Basso, A., Piacenza, F., Giacconi, R., Costarelli, L., Pierpaoli, S., et al. (2012). Survival study of metallothionein-1 transgenic mice and respective controls (C57BL/6J): Influence of a zinc-enriched environment. Rejuvenation Research, 15, 140–143.PubMedCrossRef Malavolta, M., Basso, A., Piacenza, F., Giacconi, R., Costarelli, L., Pierpaoli, S., et al. (2012). Survival study of metallothionein-1 transgenic mice and respective controls (C57BL/6J): Influence of a zinc-enriched environment. Rejuvenation Research, 15, 140–143.PubMedCrossRef
36.
go back to reference Asano, N., Kondoh, M., Ebihara, C., Fujii, M., Nakanishi, T., Utoguchi, N., et al. (2006). Induction of zinc transporters by forskolin in human trophoblast BeWo cells. Reproductive Toxicology, 21, 285–291.PubMedCrossRef Asano, N., Kondoh, M., Ebihara, C., Fujii, M., Nakanishi, T., Utoguchi, N., et al. (2006). Induction of zinc transporters by forskolin in human trophoblast BeWo cells. Reproductive Toxicology, 21, 285–291.PubMedCrossRef
37.
go back to reference Liuzzi, J. P., Blanchard, R. K., & Cousins, R. J. (2001). Differential regulation of zinc transporter 1, 2, and 4 mRNA expression by dietary zinc in rats. Journal of Nutrition, 131, 46–52.PubMed Liuzzi, J. P., Blanchard, R. K., & Cousins, R. J. (2001). Differential regulation of zinc transporter 1, 2, and 4 mRNA expression by dietary zinc in rats. Journal of Nutrition, 131, 46–52.PubMed
38.
go back to reference Andrews, G. K., Wang, H., Dey, S. K., & Palmiter, R. D. (2004). Mouse zinc transporter 1 gene provides an essential function during early embryonic development. Genesis, 40, 74–81.PubMedCrossRef Andrews, G. K., Wang, H., Dey, S. K., & Palmiter, R. D. (2004). Mouse zinc transporter 1 gene provides an essential function during early embryonic development. Genesis, 40, 74–81.PubMedCrossRef
39.
go back to reference Ford, D. (2004). Intestinal and placental zinc transport pathways. Proceedings of the Nutrition Society, 63, 21–29.PubMedCrossRef Ford, D. (2004). Intestinal and placental zinc transport pathways. Proceedings of the Nutrition Society, 63, 21–29.PubMedCrossRef
40.
go back to reference Liuzzi, J. P., Bobo, J. A., Cui, L., McMahon, R. J., & Cousins, R. J. (2003). Zinc transporters 1, 2 and 4 are differentially expressed and localized in rats during pregnancy and lactation. Journal of Nutrition, 133, 342–351.PubMed Liuzzi, J. P., Bobo, J. A., Cui, L., McMahon, R. J., & Cousins, R. J. (2003). Zinc transporters 1, 2 and 4 are differentially expressed and localized in rats during pregnancy and lactation. Journal of Nutrition, 133, 342–351.PubMed
41.
go back to reference Aydemir, T. B., Blanchard, R. K., & Cousins, R. J. (2006). Zinc supplementation of young men alters metallothionein, zinc transporter, and cytokine gene expression in leukocyte populations. Proceedings of the National Academy of Sciences of the United States of America, 103, 1699–1704.PubMedCrossRefPubMedCentral Aydemir, T. B., Blanchard, R. K., & Cousins, R. J. (2006). Zinc supplementation of young men alters metallothionein, zinc transporter, and cytokine gene expression in leukocyte populations. Proceedings of the National Academy of Sciences of the United States of America, 103, 1699–1704.PubMedCrossRefPubMedCentral
42.
go back to reference International Zinc Nutrition Consultative Group (I.Zi.N.C.G.). (2004). Assessment of the risk of zinc deficiency in population and options for its control. Food and Nutrition Bulletin, 25, S91–S202. International Zinc Nutrition Consultative Group (I.Zi.N.C.G.). (2004). Assessment of the risk of zinc deficiency in population and options for its control. Food and Nutrition Bulletin, 25, S91–S202.
43.
go back to reference Moran, V. H., Skinner, A. L., Medina, M. W., Patel, S., Dykes, F., Souverein, O. W., et al. (2012). The relationship between zinc intake and serum/plasma zinc concentration in pregnant and lactating women: A systematic review with dose-response meta-analyses. Journal of Trace Elements in Medicine and Biology, 26, 74–79.PubMedCrossRef Moran, V. H., Skinner, A. L., Medina, M. W., Patel, S., Dykes, F., Souverein, O. W., et al. (2012). The relationship between zinc intake and serum/plasma zinc concentration in pregnant and lactating women: A systematic review with dose-response meta-analyses. Journal of Trace Elements in Medicine and Biology, 26, 74–79.PubMedCrossRef
44.
go back to reference Bui, V. Q., Marcinkevage, J., Ramakrishnan, U., Flores-Ayala, R. C., Ramirez-Zea, M., Villalpando, S., et al. (2013). Associations among dietary zinc intakes and biomarkers of zinc status before and after a zinc supplementation program in Guatemalan schoolchildren. Food and Nutrition Bulletin, 34, 143–150.PubMed Bui, V. Q., Marcinkevage, J., Ramakrishnan, U., Flores-Ayala, R. C., Ramirez-Zea, M., Villalpando, S., et al. (2013). Associations among dietary zinc intakes and biomarkers of zinc status before and after a zinc supplementation program in Guatemalan schoolchildren. Food and Nutrition Bulletin, 34, 143–150.PubMed
Metadata
Title
Suppression of Placental Metallothionein 1 and Zinc Transporter 1 mRNA Expressions Contributes to Fetal Heart Malformations Caused by Maternal Zinc Deficiency
Authors
Chaobin Liu
Xiaoyu He
Xinru Hong
Fenhong Kang
Suqing Chen
Qing Wang
Xiaoqiu Chen
Dian Hu
Qinghua Sun
Publication date
01-12-2014
Publisher
Springer US
Published in
Cardiovascular Toxicology / Issue 4/2014
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-014-9256-0

Other articles of this Issue 4/2014

Cardiovascular Toxicology 4/2014 Go to the issue