Skip to main content
Top
Published in: Journal of Clinical Immunology 4/2019

01-05-2019 | Primary Immunodeficiency | CME Reviews

Life-Threatening Infections Due to Live-Attenuated Vaccines: Early Manifestations of Inborn Errors of Immunity

Authors: Laura Pöyhönen, Jacinta Bustamante, Jean-Laurent Casanova, Emmanuelle Jouanguy, Qian Zhang

Published in: Journal of Clinical Immunology | Issue 4/2019

Login to get access

Abstract

Live-attenuated vaccines (LAVs) can protect humans against 12 viral and three bacterial diseases. By definition, any clinical infection caused by a LAV that is sufficiently severe to require medical intervention attests to an inherited or acquired immunodeficiency that must be diagnosed or identified. Self-healing infections can also result from milder forms of immunodeficiency. We review here the inherited forms of immunodeficiency underlying severe infections of LAVs. Inborn errors of immunity (IEIs) underlying bacille Calmette-Guérin (BCG), oral poliovirus (OPV), vaccine measles virus (vMeV), and oral rotavirus vaccine (ORV) disease have been described from 1951, 1963, 1966, and 2009 onward, respectively. For each of these four LAVs, the underlying IEIs show immunological homogeneity despite genetic heterogeneity. Specifically, BCG disease is due to inborn errors of IFN-γ immunity, OPV disease to inborn errors of B cell immunity, vMeV disease to inborn errors of IFN-α/β and IFN-λ immunity, and ORV disease to adaptive immunity. Severe reactions to the other 11 LAVs have been described yet remain “idiopathic,” in the absence of known underlying inherited or acquired immunodeficiencies, and are warranted to be the focus of research efforts. The study of IEIs underlying life-threatening LAV infections is clinically important for the affected patients and their families, as well as immunologically, for the study of the molecular and cellular basis of host defense against both attenuated and parental pathogens.
Literature
1.
go back to reference Minor PD. Live attenuated vaccines: historical successes and current challenges. Virology. 2015;479-480:379–92.CrossRefPubMed Minor PD. Live attenuated vaccines: historical successes and current challenges. Virology. 2015;479-480:379–92.CrossRefPubMed
2.
3.
go back to reference Bonilla FA. Update: vaccines in primary immunodeficiency. J Allergy Clin Immunol. 2018;141(2):474–81.CrossRefPubMed Bonilla FA. Update: vaccines in primary immunodeficiency. J Allergy Clin Immunol. 2018;141(2):474–81.CrossRefPubMed
4.
go back to reference Sobh A, Bonilla FA. Vaccination in primary immunodeficiency disorders. J Allergy Clin Immunol Pract. 2016;4(6):1066–75.CrossRefPubMed Sobh A, Bonilla FA. Vaccination in primary immunodeficiency disorders. J Allergy Clin Immunol Pract. 2016;4(6):1066–75.CrossRefPubMed
6.
go back to reference Luca S, Mihaescu T. History of BCG vaccine. Maedica (Buchar). 2013;8(1):53–8. Luca S, Mihaescu T. History of BCG vaccine. Maedica (Buchar). 2013;8(1):53–8.
7.
go back to reference Lam LKM, et al. Gamma-interferon exerts a critical early restriction on replication and dissemination of yellow fever virus vaccine strain 17D-204. NPJ Vaccines. 2018;3:5.CrossRefPubMedPubMedCentral Lam LKM, et al. Gamma-interferon exerts a critical early restriction on replication and dissemination of yellow fever virus vaccine strain 17D-204. NPJ Vaccines. 2018;3:5.CrossRefPubMedPubMedCentral
8.
go back to reference de Menezes Martins R, Fernandes Leal Mda L, Homma A. Serious adverse events associated with yellow fever vaccine. Hum Vaccin Immunother. 2015;11(9):2183–7.CrossRefPubMedPubMedCentral de Menezes Martins R, Fernandes Leal Mda L, Homma A. Serious adverse events associated with yellow fever vaccine. Hum Vaccin Immunother. 2015;11(9):2183–7.CrossRefPubMedPubMedCentral
11.
go back to reference Driss N, Ben-Mustapha I, Mellouli F, Ben Yahia A, Touzi H, Bejaoui M, et al. High susceptibility for enterovirus infection and virus excretion features in Tunisian patients with primary immunodeficiencies. Clin Vaccine Immunol. 2012;19(10):1684–9.CrossRefPubMedPubMedCentral Driss N, Ben-Mustapha I, Mellouli F, Ben Yahia A, Touzi H, Bejaoui M, et al. High susceptibility for enterovirus infection and virus excretion features in Tunisian patients with primary immunodeficiencies. Clin Vaccine Immunol. 2012;19(10):1684–9.CrossRefPubMedPubMedCentral
13.
go back to reference Katz SL, Enders JF, Holloway A. Studies on an attenuated measles-virus vaccine. II. Clinical, virologic and immunologic effects of vaccine in institutionalized children. N Engl J Med. 1960;263:159–61.CrossRefPubMed Katz SL, Enders JF, Holloway A. Studies on an attenuated measles-virus vaccine. II. Clinical, virologic and immunologic effects of vaccine in institutionalized children. N Engl J Med. 1960;263:159–61.CrossRefPubMed
14.
go back to reference Stokes J Jr, et al. Use of living attenuated measles-virus vaccine in early infancy. N Engl J Med. 1960;263:230–3.CrossRefPubMed Stokes J Jr, et al. Use of living attenuated measles-virus vaccine in early infancy. N Engl J Med. 1960;263:230–3.CrossRefPubMed
15.
go back to reference Katz SL, Enders JF, Holloway A. The development and evaluation of an attenuated measles virus vaccine. Am J Public Health Nations Health. 1962;52(2)Suppl):5–10.CrossRefPubMedPubMedCentral Katz SL, Enders JF, Holloway A. The development and evaluation of an attenuated measles virus vaccine. Am J Public Health Nations Health. 1962;52(2)Suppl):5–10.CrossRefPubMedPubMedCentral
16.
go back to reference Casanova JL, et al. Immunological conditions of children with BCG disseminated infection. Lancet. 1995;346(8974):581.CrossRefPubMed Casanova JL, et al. Immunological conditions of children with BCG disseminated infection. Lancet. 1995;346(8974):581.CrossRefPubMed
17.
go back to reference Macdonald HN, van Rooyen CE. Clinical surveillance after feeding oral attenuated live polio vaccine. Can Med Assoc J. 1963;88(20):1017–9.PubMedPubMedCentral Macdonald HN, van Rooyen CE. Clinical surveillance after feeding oral attenuated live polio vaccine. Can Med Assoc J. 1963;88(20):1017–9.PubMedPubMedCentral
19.
go back to reference Werther RL, et al. Rotavirus vaccine induced diarrhea in a child with severe combined immune deficiency. J Allergy Clin Immunol. 2009;124(3):600.CrossRefPubMed Werther RL, et al. Rotavirus vaccine induced diarrhea in a child with severe combined immune deficiency. J Allergy Clin Immunol. 2009;124(3):600.CrossRefPubMed
20.
go back to reference Bakare N, et al. Severe combined immunodeficiency (SCID) and rotavirus vaccination: reports to the Vaccine Adverse Events Reporting System (VAERS). Vaccine. 2010;28(40):6609–12.CrossRefPubMed Bakare N, et al. Severe combined immunodeficiency (SCID) and rotavirus vaccination: reports to the Vaccine Adverse Events Reporting System (VAERS). Vaccine. 2010;28(40):6609–12.CrossRefPubMed
21.
go back to reference Ramon Guerra AU, et al. Congenital familial hypogammaglobulinemia with familial severe generalized moniliasis & atypical reactions following BCG vaccination. Rev Colomb Pediatr Pueric. 1957;16(Spec No):102–15.PubMed Ramon Guerra AU, et al. Congenital familial hypogammaglobulinemia with familial severe generalized moniliasis & atypical reactions following BCG vaccination. Rev Colomb Pediatr Pueric. 1957;16(Spec No):102–15.PubMed
22.
go back to reference Ramon-Guerra AU, Queirolo CA, Temesio N. Syndrome of severe infectious complication of BCG, extensive moniliasis & familial hypogammaglobulinemia. Arch Pediatr Urug. 1958;29(9):618–32.PubMed Ramon-Guerra AU, Queirolo CA, Temesio N. Syndrome of severe infectious complication of BCG, extensive moniliasis & familial hypogammaglobulinemia. Arch Pediatr Urug. 1958;29(9):618–32.PubMed
23.
go back to reference Bodechtel G, et al. Gesundheitsschäden nach oraler Impfung mit dem Poliomyelitis-Impfstoff Typ I von Sabin. Dtsch Med Wochenschr. 1963;88(38):1821–8.CrossRef Bodechtel G, et al. Gesundheitsschäden nach oraler Impfung mit dem Poliomyelitis-Impfstoff Typ I von Sabin. Dtsch Med Wochenschr. 1963;88(38):1821–8.CrossRef
24.
go back to reference JOPPICK G. Paralytic diseases following oral vaccination with Sabin type I. Sympos Europ Assoc Polio. 1963;9:170–2. JOPPICK G. Paralytic diseases following oral vaccination with Sabin type I. Sympos Europ Assoc Polio. 1963;9:170–2.
27.
go back to reference Boisson-Dupuis S, et al. Inborn errors of human STAT1: allelic heterogeneity governs the diversity of immunological and infectious phenotypes. Curr Opin Immunol. 2012;24(4):364–78.CrossRefPubMedPubMedCentral Boisson-Dupuis S, et al. Inborn errors of human STAT1: allelic heterogeneity governs the diversity of immunological and infectious phenotypes. Curr Opin Immunol. 2012;24(4):364–78.CrossRefPubMedPubMedCentral
28.
go back to reference Bustamante J, et al. Mendelian susceptibility to mycobacterial disease: genetic, immunological, and clinical features of inborn errors of IFN-gamma immunity. Semin Immunol. 2014;26(6):454–70.CrossRefPubMedPubMedCentral Bustamante J, et al. Mendelian susceptibility to mycobacterial disease: genetic, immunological, and clinical features of inborn errors of IFN-gamma immunity. Semin Immunol. 2014;26(6):454–70.CrossRefPubMedPubMedCentral
31.
go back to reference Moens L, et al. A novel kindred with inherited STAT2 deficiency and severe viral illness. J Allergy Clin Immunol. 2017;139(6):1995–1997 e9.CrossRefPubMed Moens L, et al. A novel kindred with inherited STAT2 deficiency and severe viral illness. J Allergy Clin Immunol. 2017;139(6):1995–1997 e9.CrossRefPubMed
32.
go back to reference Zwerling A, Behr MA, Verma A, Brewer TF, Menzies D, Pai M. The BCG World Atlas: a database of global BCG vaccination policies and practices. PLoS Med. 2011;8(3):e1001012.CrossRefPubMedPubMedCentral Zwerling A, Behr MA, Verma A, Brewer TF, Menzies D, Pai M. The BCG World Atlas: a database of global BCG vaccination policies and practices. PLoS Med. 2011;8(3):e1001012.CrossRefPubMedPubMedCentral
33.
go back to reference Ying W, et al. Clinical characteristics and immunogenetics of BCGosis/BCGitis in Chinese children: a 6 year follow-up study. PLoS One. 2014;9(4):e94485.CrossRefPubMedPubMedCentral Ying W, et al. Clinical characteristics and immunogenetics of BCGosis/BCGitis in Chinese children: a 6 year follow-up study. PLoS One. 2014;9(4):e94485.CrossRefPubMedPubMedCentral
34.
go back to reference Zufferey C, Germano S, Dutta B, Ritz N, Curtis N. The contribution of non-conventional T cells and NK cells in the mycobacterial-specific IFNgamma response in Bacille Calmette-Guerin (BCG)-immunized infants. PLoS One. 2013;8(10):e77334.CrossRefPubMedPubMedCentral Zufferey C, Germano S, Dutta B, Ritz N, Curtis N. The contribution of non-conventional T cells and NK cells in the mycobacterial-specific IFNgamma response in Bacille Calmette-Guerin (BCG)-immunized infants. PLoS One. 2013;8(10):e77334.CrossRefPubMedPubMedCentral
35.
go back to reference Sadeghi-Shabestari M, Rezaei N. Disseminated bacille Calmette-Guerin in Iranian children with severe combined immunodeficiency. Int J Infect Dis. 2009;13(6):e420–3.CrossRefPubMed Sadeghi-Shabestari M, Rezaei N. Disseminated bacille Calmette-Guerin in Iranian children with severe combined immunodeficiency. Int J Infect Dis. 2009;13(6):e420–3.CrossRefPubMed
37.
go back to reference Marciano BE, Huang CY, Joshi G, Rezaei N, Carvalho BC, Allwood Z, et al. BCG vaccination in patients with severe combined immunodeficiency: complications, risks, and vaccination policies. J Allergy Clin Immunol. 2014;133(4):1134–41.CrossRefPubMedPubMedCentral Marciano BE, Huang CY, Joshi G, Rezaei N, Carvalho BC, Allwood Z, et al. BCG vaccination in patients with severe combined immunodeficiency: complications, risks, and vaccination policies. J Allergy Clin Immunol. 2014;133(4):1134–41.CrossRefPubMedPubMedCentral
38.
go back to reference Lotte A, et al. Second IUATLD study on complications induced by intradermal BCG-vaccination. Bull Int Union Tuberc Lung Dis. 1988;63(2):47–59.PubMed Lotte A, et al. Second IUATLD study on complications induced by intradermal BCG-vaccination. Bull Int Union Tuberc Lung Dis. 1988;63(2):47–59.PubMed
39.
go back to reference Hesseling AC, Johnson LF, Jaspan H, Cotton MF, Whitelaw A, Schaaf HS, et al. Disseminated bacille Calmette-Guerin disease in HIV-infected south African infants. Bull World Health Organ. 2009;87(7):505–11.CrossRefPubMedPubMedCentral Hesseling AC, Johnson LF, Jaspan H, Cotton MF, Whitelaw A, Schaaf HS, et al. Disseminated bacille Calmette-Guerin disease in HIV-infected south African infants. Bull World Health Organ. 2009;87(7):505–11.CrossRefPubMedPubMedCentral
40.
go back to reference Casanova JL, Abel L. Genetic dissection of immunity to mycobacteria: the human model. Annu Rev Immunol. 2002;20:581–620.CrossRefPubMed Casanova JL, Abel L. Genetic dissection of immunity to mycobacteria: the human model. Annu Rev Immunol. 2002;20:581–620.CrossRefPubMed
41.
go back to reference Bolursaz MR, Lotfian F, Velayati AA. Bacillus Calmette-Guerin vaccine complications in Iranian children at a university hospital. Allergol Immunopathol (Madr). 2017;45(4):356–61.CrossRef Bolursaz MR, Lotfian F, Velayati AA. Bacillus Calmette-Guerin vaccine complications in Iranian children at a university hospital. Allergol Immunopathol (Madr). 2017;45(4):356–61.CrossRef
42.
go back to reference Norouzi S, et al. Bacillus Calmette-Guerin (BCG) complications associated with primary immunodeficiency diseases. J Inf Secur. 2012;64(6):543–54. Norouzi S, et al. Bacillus Calmette-Guerin (BCG) complications associated with primary immunodeficiency diseases. J Inf Secur. 2012;64(6):543–54.
43.
go back to reference O’Brien KL, et al. Bacillus Calmette-Guerin complications in children born to HIV-1-infected women with a review of the literature. Pediatrics. 1995;95(3):414–8.PubMed O’Brien KL, et al. Bacillus Calmette-Guerin complications in children born to HIV-1-infected women with a review of the literature. Pediatrics. 1995;95(3):414–8.PubMed
44.
45.
go back to reference Rosain J, et al. Mendelian susceptibility to mycobacterial disease: 2014-2018 update. Immunol Cell Biol. 2019;97(4):360–7. Rosain J, et al. Mendelian susceptibility to mycobacterial disease: 2014-2018 update. Immunol Cell Biol. 2019;97(4):360–7.
46.
go back to reference Canessa C, et al. Bcgitis and vaccine-derived poliovirus infection in a patient with a novel deletion in RAG1 binding site. Int J Immunopathol Pharmacol. 2013;26(2):511–5.CrossRefPubMed Canessa C, et al. Bcgitis and vaccine-derived poliovirus infection in a patient with a novel deletion in RAG1 binding site. Int J Immunopathol Pharmacol. 2013;26(2):511–5.CrossRefPubMed
47.
go back to reference Fischer A, et al. Severe combined immunodeficiencies and related disorders. Nat Rev Dis Primers. 2015;1:15061.CrossRefPubMed Fischer A, et al. Severe combined immunodeficiencies and related disorders. Nat Rev Dis Primers. 2015;1:15061.CrossRefPubMed
48.
go back to reference Heiman S, et al. Co-appearance of OPV and BCG vaccine-derived complications in two infants with severe combined immunodeficiency. Immunol Res. 2018;66(3):437–43.CrossRefPubMed Heiman S, et al. Co-appearance of OPV and BCG vaccine-derived complications in two infants with severe combined immunodeficiency. Immunol Res. 2018;66(3):437–43.CrossRefPubMed
49.
go back to reference Roxo-Junior P, et al. A family history of serious complications due to BCG vaccination is a tool for the early diagnosis of severe primary immunodeficiency. Ital J Pediatr. 2013;39:54.CrossRefPubMedPubMedCentral Roxo-Junior P, et al. A family history of serious complications due to BCG vaccination is a tool for the early diagnosis of severe primary immunodeficiency. Ital J Pediatr. 2013;39:54.CrossRefPubMedPubMedCentral
50.
go back to reference Mazzucchelli JT, et al. Severe combined immunodeficiency in Brazil: management, prognosis, and BCG-associated complications. J Investig Allergol Clin Immunol. 2014;24(3):184–91.PubMed Mazzucchelli JT, et al. Severe combined immunodeficiency in Brazil: management, prognosis, and BCG-associated complications. J Investig Allergol Clin Immunol. 2014;24(3):184–91.PubMed
51.
go back to reference Bukhari E, et al. Disseminated bacille Calmette-Guerin disease in Saudi children: clinical profile, microbiology, immunology evaluation and outcome. Eur Rev Med Pharmacol Sci. 2016;20(17):3696–702.PubMed Bukhari E, et al. Disseminated bacille Calmette-Guerin disease in Saudi children: clinical profile, microbiology, immunology evaluation and outcome. Eur Rev Med Pharmacol Sci. 2016;20(17):3696–702.PubMed
52.
go back to reference Trimble R, Atkins J, Quigg TC, Burns CC, Wallace GS, Thomas M, et al. Vaccine-associated paralytic poliomyelitis and BCG-osis in an immigrant child with severe combined immunodeficiency syndrome—Texas, 2013. MMWR Morb Mortal Wkly Rep. 2014;63(33):721–4.PubMedPubMedCentral Trimble R, Atkins J, Quigg TC, Burns CC, Wallace GS, Thomas M, et al. Vaccine-associated paralytic poliomyelitis and BCG-osis in an immigrant child with severe combined immunodeficiency syndrome—Texas, 2013. MMWR Morb Mortal Wkly Rep. 2014;63(33):721–4.PubMedPubMedCentral
53.
go back to reference Al-Herz W, Al-Mousa H. Combined immunodeficiency: the Middle East experience. J Allergy Clin Immunol. 2013;131(3):658–60.CrossRefPubMed Al-Herz W, Al-Mousa H. Combined immunodeficiency: the Middle East experience. J Allergy Clin Immunol. 2013;131(3):658–60.CrossRefPubMed
54.
go back to reference Picard C, et al. International Union of Immunological Societies: 2017 primary immunodeficiency diseases committee report on inborn errors of immunity. J Clin Immunol. 2018;38(1):96–128.CrossRefPubMed Picard C, et al. International Union of Immunological Societies: 2017 primary immunodeficiency diseases committee report on inborn errors of immunity. J Clin Immunol. 2018;38(1):96–128.CrossRefPubMed
58.
go back to reference Lee WI, et al. Immune defects in active mycobacterial diseases in patients with primary immunodeficiency diseases (PIDs). J Formos Med Assoc. 2011;110(12):750–8.CrossRefPubMed Lee WI, et al. Immune defects in active mycobacterial diseases in patients with primary immunodeficiency diseases (PIDs). J Formos Med Assoc. 2011;110(12):750–8.CrossRefPubMed
59.
go back to reference Tajik S, et al. A novel CYBB mutation in chronic granulomatous disease in Iran. Iran J Allergy Asthma Immunol. 2016;15(5):426–9.PubMed Tajik S, et al. A novel CYBB mutation in chronic granulomatous disease in Iran. Iran J Allergy Asthma Immunol. 2016;15(5):426–9.PubMed
60.
go back to reference Conti F, et al. Mycobacterial disease in patients with chronic granulomatous disease: a retrospective analysis of 71 cases. J Allergy Clin Immunol. 2016;138(1):241–248.e3.CrossRefPubMed Conti F, et al. Mycobacterial disease in patients with chronic granulomatous disease: a retrospective analysis of 71 cases. J Allergy Clin Immunol. 2016;138(1):241–248.e3.CrossRefPubMed
61.
go back to reference Martel C, et al. Clinical, functional and genetic analysis of twenty-four patients with chronic granulomatous disease—identification of eight novel mutations in CYBB and NCF2 genes. J Clin Immunol. 2012;32(5):942–58.CrossRefPubMed Martel C, et al. Clinical, functional and genetic analysis of twenty-four patients with chronic granulomatous disease—identification of eight novel mutations in CYBB and NCF2 genes. J Clin Immunol. 2012;32(5):942–58.CrossRefPubMed
62.
go back to reference Di Matteo G, et al. Molecular characterization of a large cohort of patients with chronic granulomatous disease and identification of novel CYBB mutations: an Italian multicenter study. Mol Immunol. 2009;46(10):1935–41.CrossRefPubMed Di Matteo G, et al. Molecular characterization of a large cohort of patients with chronic granulomatous disease and identification of novel CYBB mutations: an Italian multicenter study. Mol Immunol. 2009;46(10):1935–41.CrossRefPubMed
63.
go back to reference Arnadottir GA, et al. A homozygous loss-of-function mutation leading to CYBC1 deficiency causes chronic granulomatous disease. Nat Commun. 2018;9(1):4447.CrossRefPubMedPubMedCentral Arnadottir GA, et al. A homozygous loss-of-function mutation leading to CYBC1 deficiency causes chronic granulomatous disease. Nat Commun. 2018;9(1):4447.CrossRefPubMedPubMedCentral
64.
go back to reference Thomas DC, et al. EROS/CYBC1 mutations: decreased NADPH oxidase function and chronic granulomatous disease. J Allergy Clin Immunol. 2019;143(2):782–785 e1.CrossRefPubMed Thomas DC, et al. EROS/CYBC1 mutations: decreased NADPH oxidase function and chronic granulomatous disease. J Allergy Clin Immunol. 2019;143(2):782–785 e1.CrossRefPubMed
65.
go back to reference Averbuch D, et al. The clinical spectrum of patients with deficiency of signal transducer and activator of transcription-1. Pediatr Infect Dis J. 2011;30(4):352–5.CrossRefPubMed Averbuch D, et al. The clinical spectrum of patients with deficiency of signal transducer and activator of transcription-1. Pediatr Infect Dis J. 2011;30(4):352–5.CrossRefPubMed
66.
go back to reference Bustamante J, et al. BCG-osis and tuberculosis in a child with chronic granulomatous disease. J Allergy Clin Immunol. 2007;120(1):32–8.CrossRefPubMed Bustamante J, et al. BCG-osis and tuberculosis in a child with chronic granulomatous disease. J Allergy Clin Immunol. 2007;120(1):32–8.CrossRefPubMed
67.
go back to reference Deffert C, Cachat J, Krause KH. Phagocyte NADPH oxidase, chronic granulomatous disease and mycobacterial infections. Cell Microbiol. 2014;16(8):1168–78.CrossRefPubMed Deffert C, Cachat J, Krause KH. Phagocyte NADPH oxidase, chronic granulomatous disease and mycobacterial infections. Cell Microbiol. 2014;16(8):1168–78.CrossRefPubMed
68.
go back to reference Baba LA, Ailal F, el Hafidi N, Hubeau M, Jabot-Hanin F, Benajiba N, et al. Chronic granulomatous disease in Morocco: genetic, immunological, and clinical features of 12 patients from 10 kindreds. J Clin Immunol. 2014;34(4):452–8.PubMed Baba LA, Ailal F, el Hafidi N, Hubeau M, Jabot-Hanin F, Benajiba N, et al. Chronic granulomatous disease in Morocco: genetic, immunological, and clinical features of 12 patients from 10 kindreds. J Clin Immunol. 2014;34(4):452–8.PubMed
69.
go back to reference de Oliveira-Junior EB, Zurro NB, Prando C, Cabral-Marques O, Pereira PVS, Schimke LF, et al. Clinical and genotypic spectrum of chronic granulomatous disease in 71 Latin American patients: first report from the LASID registry. Pediatr Blood Cancer. 2015;62(12):2101–7.CrossRefPubMed de Oliveira-Junior EB, Zurro NB, Prando C, Cabral-Marques O, Pereira PVS, Schimke LF, et al. Clinical and genotypic spectrum of chronic granulomatous disease in 71 Latin American patients: first report from the LASID registry. Pediatr Blood Cancer. 2015;62(12):2101–7.CrossRefPubMed
70.
go back to reference El Hawary R, et al. Role of flow cytometry in the diagnosis of chronic granulomatous disease: the Egyptian experience. J Clin Immunol. 2016;36(6):610–8.CrossRefPubMed El Hawary R, et al. Role of flow cytometry in the diagnosis of chronic granulomatous disease: the Egyptian experience. J Clin Immunol. 2016;36(6):610–8.CrossRefPubMed
71.
go back to reference Zhou Q, et al. A cohort of 169 chronic granulomatous disease patients exposed to BCG vaccination: a retrospective study from a single center in Shanghai, China (2004-2017). J Clin Immunol. 2018;38(3):260–72.CrossRefPubMed Zhou Q, et al. A cohort of 169 chronic granulomatous disease patients exposed to BCG vaccination: a retrospective study from a single center in Shanghai, China (2004-2017). J Clin Immunol. 2018;38(3):260–72.CrossRefPubMed
73.
go back to reference Bustamante J, et al. Germline CYBB mutations that selectively affect macrophages in kindreds with X-linked predisposition to tuberculous mycobacterial disease. Nat Immunol. 2011;12(3):213–21.CrossRefPubMedPubMedCentral Bustamante J, et al. Germline CYBB mutations that selectively affect macrophages in kindreds with X-linked predisposition to tuberculous mycobacterial disease. Nat Immunol. 2011;12(3):213–21.CrossRefPubMedPubMedCentral
74.
go back to reference Ramirez-Alejo N, Santos-Argumedo L. Innate defects of the IL-12/IFN-gamma axis in susceptibility to infections by mycobacteria and salmonella. J Interf Cytokine Res. 2014;34(5):307–17.CrossRef Ramirez-Alejo N, Santos-Argumedo L. Innate defects of the IL-12/IFN-gamma axis in susceptibility to infections by mycobacteria and salmonella. J Interf Cytokine Res. 2014;34(5):307–17.CrossRef
77.
go back to reference Kong XF, et al. Disruption of an antimycobacterial circuit between dendritic and helper T cells in human SPPL2a deficiency. Nat Immunol. 2018;19(9):973–85.CrossRefPubMedPubMedCentral Kong XF, et al. Disruption of an antimycobacterial circuit between dendritic and helper T cells in human SPPL2a deficiency. Nat Immunol. 2018;19(9):973–85.CrossRefPubMedPubMedCentral
78.
go back to reference Martinez-Barricarte R, et al. Human IFN-gamma immunity to mycobacteria is governed by both IL-12 and IL-23. Sci Immunol. 2018;3(30). Martinez-Barricarte R, et al. Human IFN-gamma immunity to mycobacteria is governed by both IL-12 and IL-23. Sci Immunol. 2018;3(30).
79.
go back to reference Casanova JL, Abel L. Human genetics of infectious diseases: unique insights into immunological redundancy. Semin Immunol. 2018;36:1–12.CrossRefPubMed Casanova JL, Abel L. Human genetics of infectious diseases: unique insights into immunological redundancy. Semin Immunol. 2018;36:1–12.CrossRefPubMed
80.
go back to reference Kong XF, et al. A novel form of cell type-specific partial IFN-gammaR1 deficiency caused by a germ line mutation of the IFNGR1 initiation codon. Hum Mol Genet. 2010;19(3):434–44.CrossRefPubMed Kong XF, et al. A novel form of cell type-specific partial IFN-gammaR1 deficiency caused by a germ line mutation of the IFNGR1 initiation codon. Hum Mol Genet. 2010;19(3):434–44.CrossRefPubMed
81.
go back to reference Oleaga-Quintas C, et al. A purely quantitative form of partial recessive IFN-gammaR2 deficiency caused by mutations of the initiation or second codon. Hum Mol Genet. 2019;28(3):524.CrossRefPubMed Oleaga-Quintas C, et al. A purely quantitative form of partial recessive IFN-gammaR2 deficiency caused by mutations of the initiation or second codon. Hum Mol Genet. 2019;28(3):524.CrossRefPubMed
83.
go back to reference Dorman SE, et al. Clinical features of dominant and recessive interferon gamma receptor 1 deficiencies. Lancet. 2004;364(9451):2113–21.CrossRefPubMed Dorman SE, et al. Clinical features of dominant and recessive interferon gamma receptor 1 deficiencies. Lancet. 2004;364(9451):2113–21.CrossRefPubMed
84.
go back to reference Khanolkar A, et al. CD4 T cell-restricted IL-2 signaling defect in a patient with a novel IFNGR1 deficiency. J Allergy Clin Immunol. 2018;141(1):435–439 e7.CrossRefPubMed Khanolkar A, et al. CD4 T cell-restricted IL-2 signaling defect in a patient with a novel IFNGR1 deficiency. J Allergy Clin Immunol. 2018;141(1):435–439 e7.CrossRefPubMed
85.
go back to reference Aytekin C, et al. Bacille Calmette-Guerin lymphadenitis and recurrent oral candidiasis in an infant with a new mutation leading to interleukin-12 receptor beta-1 deficiency. J Investig Allergol Clin Immunol. 2011;21(5):401–4.PubMedPubMedCentral Aytekin C, et al. Bacille Calmette-Guerin lymphadenitis and recurrent oral candidiasis in an infant with a new mutation leading to interleukin-12 receptor beta-1 deficiency. J Investig Allergol Clin Immunol. 2011;21(5):401–4.PubMedPubMedCentral
87.
go back to reference Filipe-Santos O, et al. X-linked susceptibility to mycobacteria is caused by mutations in NEMO impairing CD40-dependent IL-12 production. J Exp Med. 2006;203(7):1745–59.CrossRefPubMedPubMedCentral Filipe-Santos O, et al. X-linked susceptibility to mycobacteria is caused by mutations in NEMO impairing CD40-dependent IL-12 production. J Exp Med. 2006;203(7):1745–59.CrossRefPubMedPubMedCentral
88.
go back to reference Okada S, et al. IMMUNODEFICIENCIES. Impairment of immunity to Candida and Mycobacterium in humans with bi-allelic RORC mutations. Science. 2015;349(6248):606–13.CrossRefPubMedPubMedCentral Okada S, et al. IMMUNODEFICIENCIES. Impairment of immunity to Candida and Mycobacterium in humans with bi-allelic RORC mutations. Science. 2015;349(6248):606–13.CrossRefPubMedPubMedCentral
91.
go back to reference Schrager LK, Harris RC, Vekemans J. Research and development of new tuberculosis vaccines: a review. F1000Res. 2018;7:1732.CrossRefPubMed Schrager LK, Harris RC, Vekemans J. Research and development of new tuberculosis vaccines: a review. F1000Res. 2018;7:1732.CrossRefPubMed
92.
go back to reference Tullius MV, et al. A replication-limited recombinant Mycobacterium bovis BCG vaccine against tuberculosis designed for human immunodeficiency virus-positive persons is safer and more efficacious than BCG. Infect Immun. 2008;76(11):5200–14.CrossRefPubMedPubMedCentral Tullius MV, et al. A replication-limited recombinant Mycobacterium bovis BCG vaccine against tuberculosis designed for human immunodeficiency virus-positive persons is safer and more efficacious than BCG. Infect Immun. 2008;76(11):5200–14.CrossRefPubMedPubMedCentral
93.
go back to reference Grode L, et al. Increased vaccine efficacy against tuberculosis of recombinant Mycobacterium bovis bacille Calmette-Guerin mutants that secrete listeriolysin. J Clin Invest. 2005;115(9):2472–9.CrossRefPubMedPubMedCentral Grode L, et al. Increased vaccine efficacy against tuberculosis of recombinant Mycobacterium bovis bacille Calmette-Guerin mutants that secrete listeriolysin. J Clin Invest. 2005;115(9):2472–9.CrossRefPubMedPubMedCentral
94.
go back to reference Groschel MI, et al. ESX secretion systems: mycobacterial evolution to counter host immunity. Nat Rev Microbiol. 2016;14(11):677–91.CrossRefPubMed Groschel MI, et al. ESX secretion systems: mycobacterial evolution to counter host immunity. Nat Rev Microbiol. 2016;14(11):677–91.CrossRefPubMed
95.
go back to reference Sun R, et al. Novel recombinant BCG expressing perfringolysin O and the over-expression of key immunodominant antigens; pre-clinical characterization, safety and protection against challenge with Mycobacterium tuberculosis. Vaccine. 2009;27(33):4412–23.CrossRefPubMed Sun R, et al. Novel recombinant BCG expressing perfringolysin O and the over-expression of key immunodominant antigens; pre-clinical characterization, safety and protection against challenge with Mycobacterium tuberculosis. Vaccine. 2009;27(33):4412–23.CrossRefPubMed
96.
go back to reference Gengenbacher M, et al. Dietary pyridoxine controls efficacy of vitamin B6-auxotrophic tuberculosis vaccine bacillus Calmette-Guerin DeltaureC::hly Deltapdx1 in mice. MBio. 2014;5(3):e01262–14.CrossRefPubMedPubMedCentral Gengenbacher M, et al. Dietary pyridoxine controls efficacy of vitamin B6-auxotrophic tuberculosis vaccine bacillus Calmette-Guerin DeltaureC::hly Deltapdx1 in mice. MBio. 2014;5(3):e01262–14.CrossRefPubMedPubMedCentral
97.
99.
go back to reference Sabin AB, Ward R. the natural history of human poliomyelitis : I. Distribution of virus in nervous and non-nervous tissues. J Exp Med. 1941;73(6):771–93.CrossRefPubMedPubMedCentral Sabin AB, Ward R. the natural history of human poliomyelitis : I. Distribution of virus in nervous and non-nervous tissues. J Exp Med. 1941;73(6):771–93.CrossRefPubMedPubMedCentral
100.
go back to reference Sabin AB. Pathogenesis of poliomyelitis; reappraisal in the light of new data. Science. 1956;123(3209):1151–7.CrossRefPubMed Sabin AB. Pathogenesis of poliomyelitis; reappraisal in the light of new data. Science. 1956;123(3209):1151–7.CrossRefPubMed
101.
go back to reference Nathanson N. The pathogenesis of poliomyelitis: what we don’t know. Adv Virus Res. 2008;71:1–50.CrossRefPubMed Nathanson N. The pathogenesis of poliomyelitis: what we don’t know. Adv Virus Res. 2008;71:1–50.CrossRefPubMed
103.
go back to reference Nathanson N, Martin JR. The epidemiology of poliomyelitis: enigmas surrounding its appearance, epidemicity, and disappearance. Am J Epidemiol. 1979;110(6):672–92.CrossRefPubMed Nathanson N, Martin JR. The epidemiology of poliomyelitis: enigmas surrounding its appearance, epidemicity, and disappearance. Am J Epidemiol. 1979;110(6):672–92.CrossRefPubMed
104.
go back to reference Li L, et al. Poliovirus excretion among persons with primary immune deficiency disorders: summary of a seven-country study series. J Infect Dis. 2014;210(Suppl 1):S368–72.CrossRefPubMed Li L, et al. Poliovirus excretion among persons with primary immune deficiency disorders: summary of a seven-country study series. J Infect Dis. 2014;210(Suppl 1):S368–72.CrossRefPubMed
105.
go back to reference Platt LR, Estivariz CF, Sutter RW. Vaccine-associated paralytic poliomyelitis: a review of the epidemiology and estimation of the global burden. J Infect Dis. 2014;210(Suppl 1):S380–9.CrossRefPubMed Platt LR, Estivariz CF, Sutter RW. Vaccine-associated paralytic poliomyelitis: a review of the epidemiology and estimation of the global burden. J Infect Dis. 2014;210(Suppl 1):S380–9.CrossRefPubMed
106.
go back to reference Shaghaghi M, et al. New insights into physiopathology of immunodeficiency-associated vaccine-derived poliovirus infection; systematic review of over 5 decades of data. Vaccine. 2018;36(13):1711–9.CrossRefPubMed Shaghaghi M, et al. New insights into physiopathology of immunodeficiency-associated vaccine-derived poliovirus infection; systematic review of over 5 decades of data. Vaccine. 2018;36(13):1711–9.CrossRefPubMed
107.
go back to reference Zaffran M, et al. The polio endgame: securing a world free of all polioviruses. Lancet. 2018;391(10115):11–3.CrossRefPubMed Zaffran M, et al. The polio endgame: securing a world free of all polioviruses. Lancet. 2018;391(10115):11–3.CrossRefPubMed
108.
go back to reference Morales M, Tangermann RH, Wassilak SG. Progress toward polio eradication—worldwide, 2015-2016. MMWR Morb Mortal Wkly Rep. 2016;65(18):470–3.CrossRefPubMed Morales M, Tangermann RH, Wassilak SG. Progress toward polio eradication—worldwide, 2015-2016. MMWR Morb Mortal Wkly Rep. 2016;65(18):470–3.CrossRefPubMed
109.
go back to reference Minor P. Vaccine-derived poliovirus (VDPV): impact on poliomyelitis eradication. Vaccine. 2009;27(20):2649–52.CrossRefPubMed Minor P. Vaccine-derived poliovirus (VDPV): impact on poliomyelitis eradication. Vaccine. 2009;27(20):2649–52.CrossRefPubMed
110.
111.
go back to reference Bandyopadhyay AS, Modlin JF, Wenger J, Gast C. Immunogenicity of new primary immunization schedules with inactivated poliovirus vaccine and bivalent oral polio vaccine for the polio endgame: a review. Clin Infect Dis. 2018;67(suppl_1):S35–41.CrossRefPubMedPubMedCentral Bandyopadhyay AS, Modlin JF, Wenger J, Gast C. Immunogenicity of new primary immunization schedules with inactivated poliovirus vaccine and bivalent oral polio vaccine for the polio endgame: a review. Clin Infect Dis. 2018;67(suppl_1):S35–41.CrossRefPubMedPubMedCentral
113.
go back to reference Melnick JL. Advantages and disadvantages of killed and live poliomyelitis vaccines. Bull World Health Organ. 1978;56(1):21–38.PubMedPubMedCentral Melnick JL. Advantages and disadvantages of killed and live poliomyelitis vaccines. Bull World Health Organ. 1978;56(1):21–38.PubMedPubMedCentral
114.
115.
go back to reference Nkowane BM, et al. Vaccine-associated paralytic poliomyelitis. United States: 1973 through 1984. JAMA. 1987;257(10):1335–40.CrossRefPubMed Nkowane BM, et al. Vaccine-associated paralytic poliomyelitis. United States: 1973 through 1984. JAMA. 1987;257(10):1335–40.CrossRefPubMed
116.
go back to reference Shaghaghi M, Parvaneh N, Ostad-Rahimi P, Fathi SM, Shahmahmoodi S, Abolhassani H, et al. Combined immunodeficiency presenting with vaccine-associated paralytic poliomyelitis: a case report and narrative review of literature. Immunol Investig. 2014;43(3):292–8.CrossRef Shaghaghi M, Parvaneh N, Ostad-Rahimi P, Fathi SM, Shahmahmoodi S, Abolhassani H, et al. Combined immunodeficiency presenting with vaccine-associated paralytic poliomyelitis: a case report and narrative review of literature. Immunol Investig. 2014;43(3):292–8.CrossRef
117.
go back to reference Macklin G, et al. Prolonged excretion of poliovirus among individuals with primary immunodeficiency disorder: an analysis of the World Health Organization registry. Front Immunol. 2017;8:1103.CrossRefPubMedPubMedCentral Macklin G, et al. Prolonged excretion of poliovirus among individuals with primary immunodeficiency disorder: an analysis of the World Health Organization registry. Front Immunol. 2017;8:1103.CrossRefPubMedPubMedCentral
118.
go back to reference Aghamohammadi A, et al. Patients with primary immunodeficiencies are a reservoir of poliovirus and a risk to polio eradication. Front Immunol. 2017;8:685.CrossRefPubMedPubMedCentral Aghamohammadi A, et al. Patients with primary immunodeficiencies are a reservoir of poliovirus and a risk to polio eradication. Front Immunol. 2017;8:685.CrossRefPubMedPubMedCentral
119.
go back to reference de Silva R, Gunasena S, Ratnayake D, Wickremesinghe GD, Kumarasiri CD, Pushpakumara BAW, et al. Prevalence of prolonged and chronic poliovirus excretion among persons with primary immune deficiency disorders in Sri Lanka. Vaccine. 2012;30(52):7561–5.CrossRefPubMed de Silva R, Gunasena S, Ratnayake D, Wickremesinghe GD, Kumarasiri CD, Pushpakumara BAW, et al. Prevalence of prolonged and chronic poliovirus excretion among persons with primary immune deficiency disorders in Sri Lanka. Vaccine. 2012;30(52):7561–5.CrossRefPubMed
120.
go back to reference Sazzad HM, et al. The feasibility of identifying children with primary immunodeficiency disorders: preparation for the polio post-eradication era in Bangladesh. Vaccine. 2012;30(36):5396–400.CrossRefPubMed Sazzad HM, et al. The feasibility of identifying children with primary immunodeficiency disorders: preparation for the polio post-eradication era in Bangladesh. Vaccine. 2012;30(36):5396–400.CrossRefPubMed
121.
go back to reference Sazzad HM, et al. Screening for long-term poliovirus excretion among children with primary immunodeficiency disorders: preparation for the polio posteradication era in Bangladesh. J Infect Dis. 2014;210(Suppl 1):S373–9.CrossRefPubMed Sazzad HM, et al. Screening for long-term poliovirus excretion among children with primary immunodeficiency disorders: preparation for the polio posteradication era in Bangladesh. J Infect Dis. 2014;210(Suppl 1):S373–9.CrossRefPubMed
122.
go back to reference Foiadelli T, et al. Nucleotide variation in Sabin type 3 poliovirus from an Albanian infant with agammaglobulinemia and vaccine associated poliomyelitis. BMC Infect Dis. 2016;16:277.CrossRefPubMedPubMedCentral Foiadelli T, et al. Nucleotide variation in Sabin type 3 poliovirus from an Albanian infant with agammaglobulinemia and vaccine associated poliomyelitis. BMC Infect Dis. 2016;16:277.CrossRefPubMedPubMedCentral
123.
go back to reference Aluri J, et al. Clinical, immunological, and molecular findings in five patients with major histocompatibility complex class II deficiency from India. Front Immunol. 2018;9:188.CrossRefPubMedPubMedCentral Aluri J, et al. Clinical, immunological, and molecular findings in five patients with major histocompatibility complex class II deficiency from India. Front Immunol. 2018;9:188.CrossRefPubMedPubMedCentral
124.
go back to reference Parvaneh N, et al. Vaccine-associated paralytic poliomyelitis in a patient with MHC class II deficiency. J Clin Virol. 2007;39(2):145–8.CrossRefPubMed Parvaneh N, et al. Vaccine-associated paralytic poliomyelitis in a patient with MHC class II deficiency. J Clin Virol. 2007;39(2):145–8.CrossRefPubMed
125.
go back to reference El Hawary RE, et al. MHC-II Deficiency Among Egyptians: Novel Mutations and Unique Phenotypes. J Allergy Clin Immunol Pract. 2019;7(3):856–63. El Hawary RE, et al. MHC-II Deficiency Among Egyptians: Novel Mutations and Unique Phenotypes. J Allergy Clin Immunol Pract. 2019;7(3):856–63.
126.
go back to reference Schubert A, Bottcher S, Eis-Hubinger AM. Two cases of vaccine-derived poliovirus infection in an oncology ward. N Engl J Med. 2016;374(13):1296–8.CrossRefPubMed Schubert A, Bottcher S, Eis-Hubinger AM. Two cases of vaccine-derived poliovirus infection in an oncology ward. N Engl J Med. 2016;374(13):1296–8.CrossRefPubMed
127.
go back to reference Driss N, et al. Sequential asymptomatic enterovirus infections in a patient with major histocompatibility complex class II primary immunodeficiency. J Clin Microbiol. 2014;52(9):3486–9.CrossRefPubMedPubMedCentral Driss N, et al. Sequential asymptomatic enterovirus infections in a patient with major histocompatibility complex class II primary immunodeficiency. J Clin Microbiol. 2014;52(9):3486–9.CrossRefPubMedPubMedCentral
128.
go back to reference Lopez C, et al. Nonparalytic poliovirus infections in patients with severe combined immunodeficiency disease. J Pediatr. 1974;84(4):497–502.CrossRefPubMed Lopez C, et al. Nonparalytic poliovirus infections in patients with severe combined immunodeficiency disease. J Pediatr. 1974;84(4):497–502.CrossRefPubMed
129.
go back to reference Asturias EJ, et al. Poliovirus excretion in Guatemalan adults and children with HIV infection and children with cancer. Biologicals. 2006;34(2):109–12.CrossRefPubMed Asturias EJ, et al. Poliovirus excretion in Guatemalan adults and children with HIV infection and children with cancer. Biologicals. 2006;34(2):109–12.CrossRefPubMed
130.
go back to reference Moss WJ, Clements CJ, Halsey NA. Immunization of children at risk of infection with human immunodeficiency virus. Bull World Health Organ. 2003;81(1):61–70.PubMedPubMedCentral Moss WJ, Clements CJ, Halsey NA. Immunization of children at risk of infection with human immunodeficiency virus. Bull World Health Organ. 2003;81(1):61–70.PubMedPubMedCentral
131.
132.
133.
go back to reference Shaghaghi M, et al. Clearing vaccine-derived poliovirus infection following hematopoietic stem cell transplantation: a case report and review of literature. J Clin Immunol. 2018;38(5):610–6.CrossRefPubMed Shaghaghi M, et al. Clearing vaccine-derived poliovirus infection following hematopoietic stem cell transplantation: a case report and review of literature. J Clin Immunol. 2018;38(5):610–6.CrossRefPubMed
134.
go back to reference Plebani A, et al. Clinical, immunological, and molecular analysis in a large cohort of patients with X-linked agammaglobulinemia: an Italian multicenter study. Clin Immunol. 2002;104(3):221–30.CrossRefPubMed Plebani A, et al. Clinical, immunological, and molecular analysis in a large cohort of patients with X-linked agammaglobulinemia: an Italian multicenter study. Clin Immunol. 2002;104(3):221–30.CrossRefPubMed
135.
go back to reference Chen XF, et al. Clinical characteristics and genetic profiles of 174 patients with X-linked agammaglobulinemia: report from Shanghai, China (2000-2015). Medicine (Baltimore). 2016;95(32):e4544.CrossRef Chen XF, et al. Clinical characteristics and genetic profiles of 174 patients with X-linked agammaglobulinemia: report from Shanghai, China (2000-2015). Medicine (Baltimore). 2016;95(32):e4544.CrossRef
136.
go back to reference Guo J, et al. Immunodeficiency-related vaccine-derived poliovirus (iVDPV) cases: a systematic review and implications for polio eradication. Vaccine. 2015;33(10):1235–42.CrossRefPubMedPubMedCentral Guo J, et al. Immunodeficiency-related vaccine-derived poliovirus (iVDPV) cases: a systematic review and implications for polio eradication. Vaccine. 2015;33(10):1235–42.CrossRefPubMedPubMedCentral
137.
go back to reference Fiore L, et al. Search for poliovirus long-term excretors among patients affected by agammaglobulinemia. Clin Immunol. 2004;111(1):98–102.CrossRefPubMed Fiore L, et al. Search for poliovirus long-term excretors among patients affected by agammaglobulinemia. Clin Immunol. 2004;111(1):98–102.CrossRefPubMed
138.
143.
go back to reference Enders JF, Peebles TC. Propagation in tissue cultures of cytopathogenic agents from patients with measles. Proc Soc Exp Biol Med. 1954;86(2):277–86.CrossRefPubMed Enders JF, Peebles TC. Propagation in tissue cultures of cytopathogenic agents from patients with measles. Proc Soc Exp Biol Med. 1954;86(2):277–86.CrossRefPubMed
144.
go back to reference Kowalzik F, Faber J, and Knuf M. MMR and MMRV vaccines. Vaccine. 2018;36(36):5402–7. Kowalzik F, Faber J, and Knuf M. MMR and MMRV vaccines. Vaccine. 2018;36(36):5402–7.
145.
go back to reference Measles vaccines. WHO position paper—April 2017. Wkly Epidemiol Rec. 2017;92(17):205–27. Measles vaccines. WHO position paper—April 2017. Wkly Epidemiol Rec. 2017;92(17):205–27.
146.
go back to reference Peltola H, et al. Measles, mumps, and rubella in Finland: 25 years of a nationwide elimination programme. Lancet Infect Dis. 2008;8(12):796–803.CrossRefPubMed Peltola H, et al. Measles, mumps, and rubella in Finland: 25 years of a nationwide elimination programme. Lancet Infect Dis. 2008;8(12):796–803.CrossRefPubMed
147.
go back to reference Bottiger M, et al. Swedish experience of two dose vaccination programme aiming at eliminating measles, mumps, and rubella. Br Med J (Clin Res Ed). 1987;295(6608):1264–7.CrossRef Bottiger M, et al. Swedish experience of two dose vaccination programme aiming at eliminating measles, mumps, and rubella. Br Med J (Clin Res Ed). 1987;295(6608):1264–7.CrossRef
148.
go back to reference Lievano F, et al. Measles, mumps, and rubella virus vaccine (M-M-RII): a review of 32 years of clinical and postmarketing experience. Vaccine. 2012;30(48):6918–26.CrossRefPubMed Lievano F, et al. Measles, mumps, and rubella virus vaccine (M-M-RII): a review of 32 years of clinical and postmarketing experience. Vaccine. 2012;30(48):6918–26.CrossRefPubMed
152.
go back to reference Makela A, Nuorti JP, Peltola H. Neurologic disorders after measles-mumps-rubella vaccination. Pediatrics. 2002;110(5):957–63.CrossRefPubMed Makela A, Nuorti JP, Peltola H. Neurologic disorders after measles-mumps-rubella vaccination. Pediatrics. 2002;110(5):957–63.CrossRefPubMed
153.
go back to reference Mumps meningitis and MMR vaccination. Lancet. 1989;2(8670):1015–6. Mumps meningitis and MMR vaccination. Lancet. 1989;2(8670):1015–6.
154.
go back to reference Morfopoulou S, Mee ET, Connaughton SM, Brown JR, Gilmour K, Chong WK‘K’, et al. Deep sequencing reveals persistence of cell-associated mumps vaccine virus in chronic encephalitis. Acta Neuropathol. 2017;133(1):139–47.CrossRefPubMed Morfopoulou S, Mee ET, Connaughton SM, Brown JR, Gilmour K, Chong WK‘K’, et al. Deep sequencing reveals persistence of cell-associated mumps vaccine virus in chronic encephalitis. Acta Neuropathol. 2017;133(1):139–47.CrossRefPubMed
155.
go back to reference Bayer DK, et al. Vaccine-associated varicella and rubella infections in severe combined immunodeficiency with isolated CD4 lymphocytopenia and mutations in IL7R detected by tandem whole exome sequencing and chromosomal microarray. Clin Exp Immunol. 2014;178(3):459–69.CrossRefPubMedPubMedCentral Bayer DK, et al. Vaccine-associated varicella and rubella infections in severe combined immunodeficiency with isolated CD4 lymphocytopenia and mutations in IL7R detected by tandem whole exome sequencing and chromosomal microarray. Clin Exp Immunol. 2014;178(3):459–69.CrossRefPubMedPubMedCentral
156.
go back to reference Neven B, et al. Cutaneous and visceral chronic granulomatous disease triggered by a rubella virus vaccine strain in children with primary immunodeficiencies. Clin Infect Dis. 2017;64(1):83–6.CrossRefPubMed Neven B, et al. Cutaneous and visceral chronic granulomatous disease triggered by a rubella virus vaccine strain in children with primary immunodeficiencies. Clin Infect Dis. 2017;64(1):83–6.CrossRefPubMed
157.
go back to reference Bodemer C, et al. Live rubella virus vaccine long-term persistence as an antigenic trigger of cutaneous granulomas in patients with primary immunodeficiency. Clin Microbiol Infect. 2014;20(10):O656–63.CrossRefPubMed Bodemer C, et al. Live rubella virus vaccine long-term persistence as an antigenic trigger of cutaneous granulomas in patients with primary immunodeficiency. Clin Microbiol Infect. 2014;20(10):O656–63.CrossRefPubMed
158.
go back to reference Perelygina L, et al. Rubella persistence in epidermal keratinocytes and granuloma M2 macrophages in patients with primary immunodeficiencies. J Allergy Clin Immunol. 2016;138(5):1436–1439 e11.CrossRefPubMedPubMedCentral Perelygina L, et al. Rubella persistence in epidermal keratinocytes and granuloma M2 macrophages in patients with primary immunodeficiencies. J Allergy Clin Immunol. 2016;138(5):1436–1439 e11.CrossRefPubMedPubMedCentral
159.
go back to reference Buchbinder D. et al. Rubella virus-associated cutaneous granulomatous disease: a unique complication in immune-deficient patients, not limited to DNA repair disorders. J Clin Immunol. 2019;39(1):81–9. Buchbinder D. et al. Rubella virus-associated cutaneous granulomatous disease: a unique complication in immune-deficient patients, not limited to DNA repair disorders. J Clin Immunol. 2019;39(1):81–9.
160.
go back to reference Perelygina L, et al. Outcomes for nitazoxanide treatment in a case series of patients with primary immunodeficiencies and Rubella Virus-Associated Granuloma. J Clin Immunol. 2019;39(1):112–7. Perelygina L, et al. Outcomes for nitazoxanide treatment in a case series of patients with primary immunodeficiencies and Rubella Virus-Associated Granuloma. J Clin Immunol. 2019;39(1):112–7.
161.
go back to reference Mihatsch MJ, et al. Lethal measles giant cell pneumonia after live measles vaccination in a case of thymic alymphoplasia Gitlin. Helv Paediatr Acta. 1972;27(2):143–6.PubMed Mihatsch MJ, et al. Lethal measles giant cell pneumonia after live measles vaccination in a case of thymic alymphoplasia Gitlin. Helv Paediatr Acta. 1972;27(2):143–6.PubMed
162.
go back to reference Monafo WJ, et al. Disseminated measles infection after vaccination in a child with a congenital immunodeficiency. J Pediatr. 1994;124(2):273–6.CrossRefPubMed Monafo WJ, et al. Disseminated measles infection after vaccination in a child with a congenital immunodeficiency. J Pediatr. 1994;124(2):273–6.CrossRefPubMed
163.
go back to reference Bitnun A, et al. Measles inclusion-body encephalitis caused by the vaccine strain of measles virus. Clin Infect Dis. 1999;29(4):855–61.CrossRefPubMed Bitnun A, et al. Measles inclusion-body encephalitis caused by the vaccine strain of measles virus. Clin Infect Dis. 1999;29(4):855–61.CrossRefPubMed
164.
go back to reference Perez EE, Bokszczanin A, McDonald-McGinn D, Zackai EH, Sullivan KE. Safety of live viral vaccines in patients with chromosome 22q11.2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome). Pediatrics. 2003;112(4):e325.CrossRefPubMed Perez EE, Bokszczanin A, McDonald-McGinn D, Zackai EH, Sullivan KE. Safety of live viral vaccines in patients with chromosome 22q11.2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome). Pediatrics. 2003;112(4):e325.CrossRefPubMed
165.
go back to reference Azzari C, et al. Safety and immunogenicity of measles-mumps-rubella vaccine in children with congenital immunodeficiency (DiGeorge syndrome). Vaccine. 2005;23(14):1668–71.CrossRefPubMed Azzari C, et al. Safety and immunogenicity of measles-mumps-rubella vaccine in children with congenital immunodeficiency (DiGeorge syndrome). Vaccine. 2005;23(14):1668–71.CrossRefPubMed
166.
go back to reference Hofstetter AM, et al. Live vaccine use and safety in DiGeorge syndrome. Pediatrics. 2014;133(4):e946–54.CrossRefPubMed Hofstetter AM, et al. Live vaccine use and safety in DiGeorge syndrome. Pediatrics. 2014;133(4):e946–54.CrossRefPubMed
167.
go back to reference Burns C, et al. A novel presentation of homozygous loss-of-function STAT-1 mutation in an infant with hyperinflammation—a case report and review of the literature. J Allergy Clin Immunol Pract. 2016;4(4):777–9.CrossRefPubMed Burns C, et al. A novel presentation of homozygous loss-of-function STAT-1 mutation in an infant with hyperinflammation—a case report and review of the literature. J Allergy Clin Immunol Pract. 2016;4(4):777–9.CrossRefPubMed
168.
go back to reference Ciancanelli MJ, et al. Infectious disease. Life-threatening influenza and impaired interferon amplification in human IRF7 deficiency. Science. 2015;348(6233):448–53.CrossRefPubMedPubMedCentral Ciancanelli MJ, et al. Infectious disease. Life-threatening influenza and impaired interferon amplification in human IRF7 deficiency. Science. 2015;348(6233):448–53.CrossRefPubMedPubMedCentral
169.
go back to reference Hernandez N, et al. Life-threatening influenza pneumonitis in a child with inherited IRF9 deficiency. J Exp Med. 2018;215(10):2567-2585. Hernandez N, et al. Life-threatening influenza pneumonitis in a child with inherited IRF9 deficiency. J Exp Med. 2018;215(10):2567-2585.
170.
go back to reference Ramachandran A, Parisien JP, Horvath CM. STAT2 is a primary target for measles virus V protein-mediated alpha/beta interferon signaling inhibition. J Virol. 2008;82(17):8330–8.CrossRefPubMedPubMedCentral Ramachandran A, Parisien JP, Horvath CM. STAT2 is a primary target for measles virus V protein-mediated alpha/beta interferon signaling inhibition. J Virol. 2008;82(17):8330–8.CrossRefPubMedPubMedCentral
171.
go back to reference Devaux P, et al. A recombinant measles virus unable to antagonize STAT1 function cannot control inflammation and is attenuated in rhesus monkeys. J Virol. 2011;85(1):348–56.CrossRefPubMed Devaux P, et al. A recombinant measles virus unable to antagonize STAT1 function cannot control inflammation and is attenuated in rhesus monkeys. J Virol. 2011;85(1):348–56.CrossRefPubMed
172.
173.
go back to reference Grimwood K, Buttery JP. Clinical update: rotavirus gastroenteritis and its prevention. Lancet. 2007;370(9584):302–4.CrossRefPubMed Grimwood K, Buttery JP. Clinical update: rotavirus gastroenteritis and its prevention. Lancet. 2007;370(9584):302–4.CrossRefPubMed
175.
go back to reference Bishop RF, et al. Virus particles in epithelial cells of duodenal mucosa from children with acute non-bacterial gastroenteritis. Lancet. 1973;2(7841):1281–3.CrossRefPubMed Bishop RF, et al. Virus particles in epithelial cells of duodenal mucosa from children with acute non-bacterial gastroenteritis. Lancet. 1973;2(7841):1281–3.CrossRefPubMed
176.
go back to reference Flewett TH, Bryden AS, Davies H. Letter: virus particles in gastroenteritis. Lancet. 1973;2(7844):1497.CrossRefPubMed Flewett TH, Bryden AS, Davies H. Letter: virus particles in gastroenteritis. Lancet. 1973;2(7844):1497.CrossRefPubMed
178.
go back to reference Blutt SE, Conner ME. Rotavirus: to the gut and beyond! Curr Opin Gastroenterol. 2007;23(1):39–43.CrossRefPubMed Blutt SE, Conner ME. Rotavirus: to the gut and beyond! Curr Opin Gastroenterol. 2007;23(1):39–43.CrossRefPubMed
181.
go back to reference Hemming M, et al. Rotavirus antigenemia in children is associated with more severe clinical manifestations of acute gastroenteritis. Pediatr Infect Dis J. 2014;33(4):366–71.CrossRefPubMed Hemming M, et al. Rotavirus antigenemia in children is associated with more severe clinical manifestations of acute gastroenteritis. Pediatr Infect Dis J. 2014;33(4):366–71.CrossRefPubMed
182.
go back to reference Blutt SE, et al. Rotavirus antigenaemia and viraemia: a common event? Lancet. 2003;362(9394):1445–9.CrossRefPubMed Blutt SE, et al. Rotavirus antigenaemia and viraemia: a common event? Lancet. 2003;362(9394):1445–9.CrossRefPubMed
185.
186.
go back to reference Centers for Disease, C. and Prevention. Addition of severe combined immunodeficiency as a contraindication for administration of rotavirus vaccine. MMWR Morb Mortal Wkly Rep. 2010;59(22):687–8. Centers for Disease, C. and Prevention. Addition of severe combined immunodeficiency as a contraindication for administration of rotavirus vaccine. MMWR Morb Mortal Wkly Rep. 2010;59(22):687–8.
188.
go back to reference Uygungil B, et al. Persistent rotavirus vaccine shedding in a new case of severe combined immunodeficiency: a reason to screen. J Allergy Clin Immunol. 2010;125(1):270–1.CrossRefPubMed Uygungil B, et al. Persistent rotavirus vaccine shedding in a new case of severe combined immunodeficiency: a reason to screen. J Allergy Clin Immunol. 2010;125(1):270–1.CrossRefPubMed
189.
go back to reference Patel NC, et al. Chronic rotavirus infection in an infant with severe combined immunodeficiency: successful treatment by hematopoietic stem cell transplantation. Clin Immunol. 2012;142(3):399–401.CrossRefPubMed Patel NC, et al. Chronic rotavirus infection in an infant with severe combined immunodeficiency: successful treatment by hematopoietic stem cell transplantation. Clin Immunol. 2012;142(3):399–401.CrossRefPubMed
190.
go back to reference Kaplon J, Cros G, Ambert-Balay K, Leruez-Ville M, Chomton M, Fremy C, et al. Rotavirus vaccine virus shedding, viremia and clearance in infants with severe combined immune deficiency. Pediatr Infect Dis J. 2015;34(3):326–8.CrossRefPubMed Kaplon J, Cros G, Ambert-Balay K, Leruez-Ville M, Chomton M, Fremy C, et al. Rotavirus vaccine virus shedding, viremia and clearance in infants with severe combined immune deficiency. Pediatr Infect Dis J. 2015;34(3):326–8.CrossRefPubMed
191.
go back to reference Morillo-Gutierrez B, Worth A, Valappil M, Gaspar HB, Gennery AR. Chronic infection with rotavirus vaccine strains in UK children with severe combined immunodeficiency. Pediatr Infect Dis J. 2015;34(9):1040–1.CrossRefPubMed Morillo-Gutierrez B, Worth A, Valappil M, Gaspar HB, Gennery AR. Chronic infection with rotavirus vaccine strains in UK children with severe combined immunodeficiency. Pediatr Infect Dis J. 2015;34(9):1040–1.CrossRefPubMed
192.
go back to reference Bogaert D, et al. Persistent rotavirus diarrhea post-transplant in a novel JAK3-SCID patient after vaccination. Pediatr Allergy Immunol. 2016;27(1):93–6.CrossRefPubMed Bogaert D, et al. Persistent rotavirus diarrhea post-transplant in a novel JAK3-SCID patient after vaccination. Pediatr Allergy Immunol. 2016;27(1):93–6.CrossRefPubMed
193.
go back to reference Rosenfeld L, et al. Life-threatening systemic rotavirus infection after vaccination in severe combined immunodeficiency (SCID). Pediatr Allergy Immunol. 2017;28(8):841–3.CrossRefPubMed Rosenfeld L, et al. Life-threatening systemic rotavirus infection after vaccination in severe combined immunodeficiency (SCID). Pediatr Allergy Immunol. 2017;28(8):841–3.CrossRefPubMed
194.
go back to reference Yoshikawa T, et al. Persistent systemic rotavirus vaccine infection in a child with X-linked severe combined immunodeficiency. J Med Virol. 2019;91(6):1008–13. Yoshikawa T, et al. Persistent systemic rotavirus vaccine infection in a child with X-linked severe combined immunodeficiency. J Med Virol. 2019;91(6):1008–13.
195.
go back to reference Laserson KF, et al. Safety of the pentavalent rotavirus vaccine (PRV), RotaTeq((R)), in Kenya, including among HIV-infected and HIV-exposed infants. Vaccine. 2012;30(Suppl 1):A61–70.CrossRefPubMed Laserson KF, et al. Safety of the pentavalent rotavirus vaccine (PRV), RotaTeq((R)), in Kenya, including among HIV-infected and HIV-exposed infants. Vaccine. 2012;30(Suppl 1):A61–70.CrossRefPubMed
196.
go back to reference Levin MJ, et al. Safety and immunogenicity of a live attenuated pentavalent rotavirus vaccine in HIV-exposed infants with or without HIV infection in Africa. AIDS. 2017;31(1):49–59.CrossRefPubMedPubMedCentral Levin MJ, et al. Safety and immunogenicity of a live attenuated pentavalent rotavirus vaccine in HIV-exposed infants with or without HIV infection in Africa. AIDS. 2017;31(1):49–59.CrossRefPubMedPubMedCentral
197.
go back to reference Saulsbury FT, Winkelstein JA, Yolken RH. Chronic rotavirus infection in immunodeficiency. J Pediatr. 1980;97(1):61–5.CrossRefPubMed Saulsbury FT, Winkelstein JA, Yolken RH. Chronic rotavirus infection in immunodeficiency. J Pediatr. 1980;97(1):61–5.CrossRefPubMed
198.
go back to reference Booth IW, et al. Protracted diarrhoea, immunodeficiency and viruses. Eur J Pediatr. 1982;138(3):271–2.CrossRefPubMed Booth IW, et al. Protracted diarrhoea, immunodeficiency and viruses. Eur J Pediatr. 1982;138(3):271–2.CrossRefPubMed
199.
200.
go back to reference Pedley S, et al. The genomes of rotaviruses isolated from chronically infected immunodeficient children. J Gen Virol. 1984;65(Pt 7):1141–50.CrossRefPubMed Pedley S, et al. The genomes of rotaviruses isolated from chronically infected immunodeficient children. J Gen Virol. 1984;65(Pt 7):1141–50.CrossRefPubMed
201.
go back to reference Eiden J, et al. Rotavirus RNA variation during chronic infection of immunocompromised children. Pediatr Infect Dis. 1985;4(6):632–7.CrossRefPubMed Eiden J, et al. Rotavirus RNA variation during chronic infection of immunocompromised children. Pediatr Infect Dis. 1985;4(6):632–7.CrossRefPubMed
202.
go back to reference Wood DJ, David TJ, Chrystie IL, Totterdell B. Chronic enteric virus infection in two T-cell immunodeficient children. J Med Virol. 1988;24(4):435–44.CrossRefPubMed Wood DJ, David TJ, Chrystie IL, Totterdell B. Chronic enteric virus infection in two T-cell immunodeficient children. J Med Virol. 1988;24(4):435–44.CrossRefPubMed
203.
go back to reference Oishi I, et al. Serial observations of chronic rotavirus infection in an immunodeficient child. Microbiol Immunol. 1991;35(11):953–61.CrossRefPubMed Oishi I, et al. Serial observations of chronic rotavirus infection in an immunodeficient child. Microbiol Immunol. 1991;35(11):953–61.CrossRefPubMed
204.
go back to reference Gilger MA, et al. Extraintestinal rotavirus infections in children with immunodeficiency. J Pediatr. 1992;120(6):912–7.CrossRefPubMed Gilger MA, et al. Extraintestinal rotavirus infections in children with immunodeficiency. J Pediatr. 1992;120(6):912–7.CrossRefPubMed
205.
go back to reference Richardson S, Grimwood K, Gorrell R, Palombo E, Barnes G, Bishop R. Extended excretion of rotavirus after severe diarrhoea in young children. Lancet. 1998;351(9119):1844–8.CrossRefPubMed Richardson S, Grimwood K, Gorrell R, Palombo E, Barnes G, Bishop R. Extended excretion of rotavirus after severe diarrhoea in young children. Lancet. 1998;351(9119):1844–8.CrossRefPubMed
206.
go back to reference Conley ME, Howard V. Clinical findings leading to the diagnosis of X-linked agammaglobulinemia. J Pediatr. 2002;141(4):566–71.CrossRefPubMed Conley ME, Howard V. Clinical findings leading to the diagnosis of X-linked agammaglobulinemia. J Pediatr. 2002;141(4):566–71.CrossRefPubMed
207.
go back to reference Nakano I, et al. Sudden death from systemic rotavirus infection and detection of nonstructural rotavirus proteins. J Clin Microbiol. 2011;49(12):4382–5.CrossRefPubMedPubMedCentral Nakano I, et al. Sudden death from systemic rotavirus infection and detection of nonstructural rotavirus proteins. J Clin Microbiol. 2011;49(12):4382–5.CrossRefPubMedPubMedCentral
208.
go back to reference van de Ven AA, et al. The role of prolonged viral gastrointestinal infections in the development of immunodeficiency-related enteropathy. Clin Rev Allergy Immunol. 2012;42(1):79–91.CrossRefPubMed van de Ven AA, et al. The role of prolonged viral gastrointestinal infections in the development of immunodeficiency-related enteropathy. Clin Rev Allergy Immunol. 2012;42(1):79–91.CrossRefPubMed
209.
go back to reference Nanishi E, et al. A nationwide survey of common viral infections in childhood among patients with primary immunodeficiency diseases. J Inf Secur. 2016;73(4):358–68. Nanishi E, et al. A nationwide survey of common viral infections in childhood among patients with primary immunodeficiency diseases. J Inf Secur. 2016;73(4):358–68.
210.
go back to reference Parvaneh L, et al. Infectious etiology of chronic diarrhea in patients with primary immunodeficiency diseases. Eur Ann Allergy Clin Immunol. 2019;51(1):32–7.CrossRefPubMed Parvaneh L, et al. Infectious etiology of chronic diarrhea in patients with primary immunodeficiency diseases. Eur Ann Allergy Clin Immunol. 2019;51(1):32–7.CrossRefPubMed
211.
go back to reference Casanova JL. Severe infectious diseases of childhood as monogenic inborn errors of immunity. Proc Natl Acad Sci U S A. 2015;112(51):E7128–37.PubMedPubMedCentral Casanova JL. Severe infectious diseases of childhood as monogenic inborn errors of immunity. Proc Natl Acad Sci U S A. 2015;112(51):E7128–37.PubMedPubMedCentral
212.
go back to reference Casanova JL. Human genetic basis of interindividual variability in the course of infection. Proc Natl Acad Sci U S A. 2015;112(51):E7118–27.PubMedPubMedCentral Casanova JL. Human genetic basis of interindividual variability in the course of infection. Proc Natl Acad Sci U S A. 2015;112(51):E7118–27.PubMedPubMedCentral
213.
go back to reference de Bree LCJ, et al. Non-specific effects of vaccines: current evidence and potential implications. Semin Immunol. 2018;39:35–43.CrossRefPubMed de Bree LCJ, et al. Non-specific effects of vaccines: current evidence and potential implications. Semin Immunol. 2018;39:35–43.CrossRefPubMed
214.
go back to reference Reinhardt B, et al. Development of viremia and humoral and cellular parameters of immune activation after vaccination with yellow fever virus strain 17D: a model of human flavivirus infection. J Med Virol. 1998;56(2):159–67.CrossRefPubMed Reinhardt B, et al. Development of viremia and humoral and cellular parameters of immune activation after vaccination with yellow fever virus strain 17D: a model of human flavivirus infection. J Med Virol. 1998;56(2):159–67.CrossRefPubMed
215.
go back to reference Pulendran B, et al. Case of yellow fever vaccine--associated viscerotropic disease with prolonged viremia, robust adaptive immune responses, and polymorphisms in CCR5 and RANTES genes. J Infect Dis. 2008;198(4):500–7.CrossRefPubMedPubMedCentral Pulendran B, et al. Case of yellow fever vaccine--associated viscerotropic disease with prolonged viremia, robust adaptive immune responses, and polymorphisms in CCR5 and RANTES genes. J Infect Dis. 2008;198(4):500–7.CrossRefPubMedPubMedCentral
216.
go back to reference Silva ML, et al. Clinical and immunological insights on severe, adverse neurotropic and viscerotropic disease following 17D yellow fever vaccination. Clin Vaccine Immunol. 2010;17(1):118–26.CrossRefPubMed Silva ML, et al. Clinical and immunological insights on severe, adverse neurotropic and viscerotropic disease following 17D yellow fever vaccination. Clin Vaccine Immunol. 2010;17(1):118–26.CrossRefPubMed
217.
go back to reference Seligman SJ, et al. Defining risk groups to yellow fever vaccine-associated viscerotropic disease in the absence of denominator data. Am J Trop Med Hyg. 2014;90(2):267–71.CrossRefPubMedPubMedCentral Seligman SJ, et al. Defining risk groups to yellow fever vaccine-associated viscerotropic disease in the absence of denominator data. Am J Trop Med Hyg. 2014;90(2):267–71.CrossRefPubMedPubMedCentral
218.
go back to reference Hernandez N, et al. Inherited IFNAR1 deficiency in otherwise healthy patients with adverse reaction to measles and yellow fever live vaccines. J Exp Med. 2019 (in press). Hernandez N, et al. Inherited IFNAR1 deficiency in otherwise healthy patients with adverse reaction to measles and yellow fever live vaccines. J Exp Med. 2019 (in press).
Metadata
Title
Life-Threatening Infections Due to Live-Attenuated Vaccines: Early Manifestations of Inborn Errors of Immunity
Authors
Laura Pöyhönen
Jacinta Bustamante
Jean-Laurent Casanova
Emmanuelle Jouanguy
Qian Zhang
Publication date
01-05-2019
Publisher
Springer US
Published in
Journal of Clinical Immunology / Issue 4/2019
Print ISSN: 0271-9142
Electronic ISSN: 1573-2592
DOI
https://doi.org/10.1007/s10875-019-00642-3

Other articles of this Issue 4/2019

Journal of Clinical Immunology 4/2019 Go to the issue