Skip to main content
Top
Published in: Inflammation 5/2021

01-10-2021 | Gout | Original Article

Circular RNA circHIPK3 Activates Macrophage NLRP3 Inflammasome and TLR4 Pathway in Gouty Arthritis via Sponging miR-561 and miR-192

Authors: Chaofeng Lian, Jinlei Sun, Wenjuan Guan, Lei Zhang, Xin Zhang, Lu Yang, Wenlu Hu

Published in: Inflammation | Issue 5/2021

Login to get access

Abstract

Increasing evidences indicate that circular RNAs (circRNAs) play important roles in regulating gene expressions in various diseases. However, the role of circRNAs in inflammatory response of gouty arthritis remains unknown. This study aims to investigate the role and underlying mechanism of circHIPK3 in inflammatory response of gouty arthritis. Quantitative real-time PCR was used to detect the expressions of circHIPK3, miR-192 and miR-561. Western blot was used to detect the protein levels of TLR4, NLRP3, nuclear factor-κB (NF-κB) related proteins, and Caspase-1. Dual luciferase reporter assay, RNA pull-down assay, and FISH assay were used to confirm the interaction between circHIPK3 and miR-192/miR-561. ELISA was used to detect interleukin (IL)-1β and tumor necrosis factor (TNF)-α levels. circHIPK3 was elevated in synovial fluid mononuclear cells (SFMCs) from patients with gouty arthritis and monosodium urate (MSU)-stimulated THP-1 cells. circHIPK3 overexpression promoted the inflammatory cytokines levels in MSU-stimulated THP-1 cells, and circHIPK3 silencing obtained the opposite effect. Mechanistically, circHIPK3 sponged miR-192 and miR-561, and subsequently promoted the expressions of miR-192 and miR-561 target gene TLR4 and NLRP3. In vivo experiments confirmed circHIPK3 knockdown suppressed gouty arthritis. circHIPK3 sponges miR-192 and miR-561 to promote TLR4 and NLRP3 expressions, thereby promoting inflammatory response in gouty arthritis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Dalbeth, N., T.R. Merriman, and L.K. Stamp. 2016. Gout. Lancet 388 (10055): 2039–2052.CrossRef Dalbeth, N., T.R. Merriman, and L.K. Stamp. 2016. Gout. Lancet 388 (10055): 2039–2052.CrossRef
2.
go back to reference Major, T.J., N. Dalbeth, E.A. Stahl, and T.R. Merriman. 2018. An update on the genetics of hyperuricaemia and gout. Nature Reviews Rheumatology 14 (6): 341–353.CrossRef Major, T.J., N. Dalbeth, E.A. Stahl, and T.R. Merriman. 2018. An update on the genetics of hyperuricaemia and gout. Nature Reviews Rheumatology 14 (6): 341–353.CrossRef
3.
go back to reference Luo, Y., et al. 2018. Metabolic profiling of human plasma reveals the activation of 5-lipoxygenase in the acute attack of gouty arthritis. Rheumatology (Oxford). Luo, Y., et al. 2018. Metabolic profiling of human plasma reveals the activation of 5-lipoxygenase in the acute attack of gouty arthritis. Rheumatology (Oxford).
4.
go back to reference Kuo, C., et al. 2015. Global epidemiology of gout: prevalence, incidence and risk factors. Nat Rev Rheumatol 11 (11): 649–662.CrossRef Kuo, C., et al. 2015. Global epidemiology of gout: prevalence, incidence and risk factors. Nat Rev Rheumatol 11 (11): 649–662.CrossRef
5.
go back to reference Han, Q., W. Bing, Y. di, L. Hua, L. Shi-he, Z. Yu-hua, H. Xiu-guo, W. Yu-gang, F. Qi-ming, Y. Shih-mo, and T. Ting-ting. 2016. Kinsenoside screening with a microfluidic chip attenuates gouty arthritis through inactivating NF-κB signaling in macrophages and protecting endothelial cells. Cell death & disease 7 (9): e2350–e2350.CrossRef Han, Q., W. Bing, Y. di, L. Hua, L. Shi-he, Z. Yu-hua, H. Xiu-guo, W. Yu-gang, F. Qi-ming, Y. Shih-mo, and T. Ting-ting. 2016. Kinsenoside screening with a microfluidic chip attenuates gouty arthritis through inactivating NF-κB signaling in macrophages and protecting endothelial cells. Cell death & disease 7 (9): e2350–e2350.CrossRef
6.
go back to reference Yang, Q.-B., Y.L. He, Q.B. Zhang, Q.S. Mi, and J.G. Zhou. 2019. Downregulation of transcription factor T-bet as a protective strategy in monosodium urate-induced gouty inflammation. Frontiers in immunology 10: 1199–1199.CrossRef Yang, Q.-B., Y.L. He, Q.B. Zhang, Q.S. Mi, and J.G. Zhou. 2019. Downregulation of transcription factor T-bet as a protective strategy in monosodium urate-induced gouty inflammation. Frontiers in immunology 10: 1199–1199.CrossRef
7.
go back to reference Martinon, F., V. Pétrilli, A. Mayor, A. Tardivel, and J. Tschopp. 2006. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440 (7081): 237–241.CrossRef Martinon, F., V. Pétrilli, A. Mayor, A. Tardivel, and J. Tschopp. 2006. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440 (7081): 237–241.CrossRef
8.
go back to reference So, A.K., and F. Martinon. 2017. Inflammation in gout: mechanisms and therapeutic targets. Nature Reviews Rheumatology 13: 639–647.CrossRef So, A.K., and F. Martinon. 2017. Inflammation in gout: mechanisms and therapeutic targets. Nature Reviews Rheumatology 13: 639–647.CrossRef
9.
go back to reference Shi, Y., A.D. Mucsi, and G. Ng. 2010. Monosodium urate crystals in inflammation and immunity. Immunological Reviews 233 (1): 203–217.CrossRef Shi, Y., A.D. Mucsi, and G. Ng. 2010. Monosodium urate crystals in inflammation and immunity. Immunological Reviews 233 (1): 203–217.CrossRef
10.
go back to reference Guo, H., J.B. Callaway, and J.P.Y. Ting. 2015. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nature medicine 21 (7): 677–687.CrossRef Guo, H., J.B. Callaway, and J.P.Y. Ting. 2015. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nature medicine 21 (7): 677–687.CrossRef
11.
go back to reference Latz, E., T.S. Xiao, and A. Stutz. 2013. Activation and regulation of the inflammasomes. Nature reviews. Immunology 13 (6): 397–411.CrossRef Latz, E., T.S. Xiao, and A. Stutz. 2013. Activation and regulation of the inflammasomes. Nature reviews. Immunology 13 (6): 397–411.CrossRef
12.
go back to reference Liu, Y.-F., et al. 2014. Effects of modified Simiao decoction on IL-1β and TNFα secretion in monocytic THP-1 cells with monosodium urate crystals-induced inflammation. Evid Based Complement Alternat Med 2014 (3): 1–7. Liu, Y.-F., et al. 2014. Effects of modified Simiao decoction on IL-1β and TNFα secretion in monocytic THP-1 cells with monosodium urate crystals-induced inflammation. Evid Based Complement Alternat Med 2014 (3): 1–7.
13.
go back to reference Liu, Y.-F., et al. 2016. Effects of berberine on NLRP3 and IL-1β expressions in monocytic THP-1 cells with monosodium urate crystals-induced inflammation. BioMed research international 2016: 2503703–2503703.PubMedPubMedCentral Liu, Y.-F., et al. 2016. Effects of berberine on NLRP3 and IL-1β expressions in monocytic THP-1 cells with monosodium urate crystals-induced inflammation. BioMed research international 2016: 2503703–2503703.PubMedPubMedCentral
14.
go back to reference Akira, S., S. Uematsu, and O. Takeuchi. 2006. Pathogen recognition and innate immunity. Cell 124 (4): 783–801.CrossRef Akira, S., S. Uematsu, and O. Takeuchi. 2006. Pathogen recognition and innate immunity. Cell 124 (4): 783–801.CrossRef
15.
go back to reference Stephens, M., S. Liao, and P.-Y. von der Weid. 2019. Mesenteric lymphatic alterations observed during DSS induced intestinal inflammation are driven in a TLR4-PAMP/DAMP discriminative manner. Frontiers in immunology 10: 557–557.CrossRef Stephens, M., S. Liao, and P.-Y. von der Weid. 2019. Mesenteric lymphatic alterations observed during DSS induced intestinal inflammation are driven in a TLR4-PAMP/DAMP discriminative manner. Frontiers in immunology 10: 557–557.CrossRef
16.
go back to reference Rossato, M.F., C. Hoffmeister, G. Trevisan, F. Bezerra, T.M. Cunha, J. Ferreira, and C.R. Silva. 2019. Monosodium urate crystal interleukin-1beta release is dependent on Toll-like receptor 4 and transient receptor potential V1 activation. Rheumatology (Oxford). Rossato, M.F., C. Hoffmeister, G. Trevisan, F. Bezerra, T.M. Cunha, J. Ferreira, and C.R. Silva. 2019. Monosodium urate crystal interleukin-1beta release is dependent on Toll-like receptor 4 and transient receptor potential V1 activation. Rheumatology (Oxford).
17.
go back to reference Kawai, T., and S. Akira. 2010. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nature Immunology 11: 373–384.CrossRef Kawai, T., and S. Akira. 2010. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nature Immunology 11: 373–384.CrossRef
18.
go back to reference Qing, Y.-F., Q.B. Zhang, J.G. Zhou, and L. Jiang. 2014. Changes in toll-like receptor (TLR)4–NFκB–IL1β signaling in male gout patients might be involved in the pathogenesis of primary gouty arthritis. Rheumatology International 34 (2): 213–220.CrossRef Qing, Y.-F., Q.B. Zhang, J.G. Zhou, and L. Jiang. 2014. Changes in toll-like receptor (TLR)4–NFκB–IL1β signaling in male gout patients might be involved in the pathogenesis of primary gouty arthritis. Rheumatology International 34 (2): 213–220.CrossRef
19.
go back to reference WR, J., et al., Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA (New York, N.Y.), 2013. 19(2): p. 141-57. WR, J., et al., Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA (New York, N.Y.), 2013. 19(2): p. 141-57.
20.
go back to reference Hansen, T.B., J. Kjems, and C.K. Damgaard. 2013. Circular RNA and miR-7 in cancer. Cancer Res 73 (18): 5609–5612.CrossRef Hansen, T.B., J. Kjems, and C.K. Damgaard. 2013. Circular RNA and miR-7 in cancer. Cancer Res 73 (18): 5609–5612.CrossRef
21.
go back to reference Rossbach, O. 2019. Artificial circular RNA sponges targeting microRNAs as a novel tool in molecular biology. Mol Ther Nucleic Acids 17: 452–454.CrossRef Rossbach, O. 2019. Artificial circular RNA sponges targeting microRNAs as a novel tool in molecular biology. Mol Ther Nucleic Acids 17: 452–454.CrossRef
22.
go back to reference Li, Y., F. Zheng, X. Xiao, F. Xie, D. Tao, C. Huang, D. Liu, M. Wang, L. Wang, F. Zeng, and G. Jiang. 2017. CircHIPK3 sponges miR-558 to suppress heparanase expression in bladder cancer cells. EMBO reports 18 (9): 1646–1659.CrossRef Li, Y., F. Zheng, X. Xiao, F. Xie, D. Tao, C. Huang, D. Liu, M. Wang, L. Wang, F. Zeng, and G. Jiang. 2017. CircHIPK3 sponges miR-558 to suppress heparanase expression in bladder cancer cells. EMBO reports 18 (9): 1646–1659.CrossRef
23.
go back to reference Chen, G., Y. Shi, M. Liu, and J. Sun. 2018. circHIPK3 regulates cell proliferation and migration by sponging miR-124 and regulating AQP3 expression in hepatocellular carcinoma. Cell death & disease 9 (2): 175–175.CrossRef Chen, G., Y. Shi, M. Liu, and J. Sun. 2018. circHIPK3 regulates cell proliferation and migration by sponging miR-124 and regulating AQP3 expression in hepatocellular carcinoma. Cell death & disease 9 (2): 175–175.CrossRef
24.
go back to reference Zeng, K., X. Chen, M. Xu, X. Liu, X. Hu, T. Xu, H. Sun, Y. Pan, B. He, and S. Wang. 2018. CircHIPK3 promotes colorectal cancer growth and metastasis by sponging miR-7. Cell death & disease 9 (4): 417–417.CrossRef Zeng, K., X. Chen, M. Xu, X. Liu, X. Hu, T. Xu, H. Sun, Y. Pan, B. He, and S. Wang. 2018. CircHIPK3 promotes colorectal cancer growth and metastasis by sponging miR-7. Cell death & disease 9 (4): 417–417.CrossRef
25.
go back to reference Reber, L., et al., Contribution of mast cell-derived interleukin-1β to uric acid crystal-induced acute arthritis in mice. null, 2014. 66(10): p. 2881-91. Reber, L., et al., Contribution of mast cell-derived interleukin-1β to uric acid crystal-induced acute arthritis in mice. null, 2014. 66(10): p. 2881-91.
26.
go back to reference Liu, Y.F., et al. 2016. Effects of berberine on NLRP3 and IL-1Î2 expressions in monocytic THP-1 cells with monosodium urate crystals-induced inflammation. Biomed Res Int 2016 (6): 2503703.PubMedPubMedCentral Liu, Y.F., et al. 2016. Effects of berberine on NLRP3 and IL-1Î2 expressions in monocytic THP-1 cells with monosodium urate crystals-induced inflammation. Biomed Res Int 2016 (6): 2503703.PubMedPubMedCentral
27.
go back to reference Chu, Y.L., Y.Q. Jiang, S.L. Sun, B.L. Zheng, W.S. Xiong, W.J. Li, X.M. Chen, M.J. Wang, Q.C. Huang, and R.Y. Huang. 2017. The differential profiles of long non-coding RNAs between rheumatoid arthritis and gouty arthritis. Discov Med 24 (132): 133–146.PubMed Chu, Y.L., Y.Q. Jiang, S.L. Sun, B.L. Zheng, W.S. Xiong, W.J. Li, X.M. Chen, M.J. Wang, Q.C. Huang, and R.Y. Huang. 2017. The differential profiles of long non-coding RNAs between rheumatoid arthritis and gouty arthritis. Discov Med 24 (132): 133–146.PubMed
28.
go back to reference Jin, H., T.J. Kim, J.H. Choi, M.J. Kim, Y.N. Cho, K.I. Nam, S.J. Kee, J. Moon, S.Y. Choi, D.J. Park, S.S. Lee, and Y.W. Park. 2014. MicroRNA-155 as a proinflammatory regulator via SHIP-1 down-regulation in acute gouty arthritis. Arthritis Res. Ther. 16 (2): R88.CrossRef Jin, H., T.J. Kim, J.H. Choi, M.J. Kim, Y.N. Cho, K.I. Nam, S.J. Kee, J. Moon, S.Y. Choi, D.J. Park, S.S. Lee, and Y.W. Park. 2014. MicroRNA-155 as a proinflammatory regulator via SHIP-1 down-regulation in acute gouty arthritis. Arthritis Res. Ther. 16 (2): R88.CrossRef
29.
go back to reference Ma, T., X. Liu, Z. Cen, C. Xin, M. Guo, C. Zou, W. Song, R. Xie, K. Wang, H. Zhou, J. Zhang, Z. Wang, C. Bian, K. Cui, J. Li, Y.Q. Wei, J. Li, and X. Zhou. 2018. MicroRNA-302b negatively regulates IL-1β production in response to MSU crystals by targeting IRAK4 and EphA2. Arthritis research & therapy 20 (1): 34–34.CrossRef Ma, T., X. Liu, Z. Cen, C. Xin, M. Guo, C. Zou, W. Song, R. Xie, K. Wang, H. Zhou, J. Zhang, Z. Wang, C. Bian, K. Cui, J. Li, Y.Q. Wei, J. Li, and X. Zhou. 2018. MicroRNA-302b negatively regulates IL-1β production in response to MSU crystals by targeting IRAK4 and EphA2. Arthritis research & therapy 20 (1): 34–34.CrossRef
30.
go back to reference Cheng, Z., C. Yu, S. Cui, H. Wang, H. Jin, C. Wang, B. Li, M. Qin, C. Yang, J. He, Q. Zuo, S. Wang, J. Liu, W. Ye, Y. Lv, F. Zhao, M. Yao, L. Jiang, and W. Qin. 2019. circTP63 functions as a ceRNA to promote lung squamous cell carcinoma progression by upregulating FOXM1. Nature communications 10 (1): 3200–3200.CrossRef Cheng, Z., C. Yu, S. Cui, H. Wang, H. Jin, C. Wang, B. Li, M. Qin, C. Yang, J. He, Q. Zuo, S. Wang, J. Liu, W. Ye, Y. Lv, F. Zhao, M. Yao, L. Jiang, and W. Qin. 2019. circTP63 functions as a ceRNA to promote lung squamous cell carcinoma progression by upregulating FOXM1. Nature communications 10 (1): 3200–3200.CrossRef
31.
go back to reference Lu, Q., T. Liu, H. Feng, R. Yang, X. Zhao, W. Chen, B. Jiang, H. Qin, X. Guo, M. Liu, L. Li, and H. Guo. 2019. Circular RNA circSLC8A1 acts as a sponge of miR-130b/miR-494 in suppressing bladder cancer progression via regulating PTEN. Molecular cancer 18 (1): 111–111.CrossRef Lu, Q., T. Liu, H. Feng, R. Yang, X. Zhao, W. Chen, B. Jiang, H. Qin, X. Guo, M. Liu, L. Li, and H. Guo. 2019. Circular RNA circSLC8A1 acts as a sponge of miR-130b/miR-494 in suppressing bladder cancer progression via regulating PTEN. Molecular cancer 18 (1): 111–111.CrossRef
32.
go back to reference Liu, J., et al., Circ-SERPINE2 promotes the development of gastric carcinoma by sponging miR-375 and modulating YWHAZ. Cell Proliferation, 2019. 0(0): p. e12648. Liu, J., et al., Circ-SERPINE2 promotes the development of gastric carcinoma by sponging miR-375 and modulating YWHAZ. Cell Proliferation, 2019. 0(0): p. e12648.
33.
go back to reference Xie, F., Y. Li, M. Wang, C. Huang, D. Tao, F. Zheng, H. Zhang, F. Zeng, X. Xiao, and G. Jiang. 2018. Circular RNA BCRC-3 suppresses bladder cancer proliferation through miR-182-5p/p27 axis. Molecular cancer 17 (1): 144–144.CrossRef Xie, F., Y. Li, M. Wang, C. Huang, D. Tao, F. Zheng, H. Zhang, F. Zeng, X. Xiao, and G. Jiang. 2018. Circular RNA BCRC-3 suppresses bladder cancer proliferation through miR-182-5p/p27 axis. Molecular cancer 17 (1): 144–144.CrossRef
34.
go back to reference Y, C., et al., High glucose-induced circHIPK3 downregulation mediates endothelial cell injury. Biochemical and biophysical research communications, 2018. 507(null): p. 362-368. Y, C., et al., High glucose-induced circHIPK3 downregulation mediates endothelial cell injury. Biochemical and biophysical research communications, 2018. 507(null): p. 362-368.
35.
go back to reference Caserta, S., M. Mengozzi, F. Kern, S.F. Newbury, P. Ghezzi, and M.J. Llewelyn. 2018. Severity of systemic inflammatory response syndrome affects the blood levels of circulating inflammatory-relevant microRNAs. Frontiers in immunology 8: 1977–1977.CrossRef Caserta, S., M. Mengozzi, F. Kern, S.F. Newbury, P. Ghezzi, and M.J. Llewelyn. 2018. Severity of systemic inflammatory response syndrome affects the blood levels of circulating inflammatory-relevant microRNAs. Frontiers in immunology 8: 1977–1977.CrossRef
36.
go back to reference Chu, Q., and T. Xu. 2016. miR-192 targeting IL-1RI regulates the immune response in miiuy croaker after pathogen infection in vitro and in vivo. Fish & Shellfish Immunology 54: 537–543.CrossRef Chu, Q., and T. Xu. 2016. miR-192 targeting IL-1RI regulates the immune response in miiuy croaker after pathogen infection in vitro and in vivo. Fish & Shellfish Immunology 54: 537–543.CrossRef
37.
go back to reference Y, L., et al., Correlation of microRNA expression profile with clinical response to tumor necrosis factor inhibitor in treating rheumatoid arthritis patients: A prospective cohort study. Journal of clinical laboratory analysis, 2019. undefined(undefined): p. e22953. Y, L., et al., Correlation of microRNA expression profile with clinical response to tumor necrosis factor inhibitor in treating rheumatoid arthritis patients: A prospective cohort study. Journal of clinical laboratory analysis, 2019. undefined(undefined): p. e22953.
38.
go back to reference Thomson, D.W., and M.E. Dinger. 2016. Endogenous microRNA sponges: evidence and controversy. Nature Reviews Genetics 17: 272–283.CrossRef Thomson, D.W., and M.E. Dinger. 2016. Endogenous microRNA sponges: evidence and controversy. Nature Reviews Genetics 17: 272–283.CrossRef
39.
go back to reference SK, B., et al. 2016. Early epigenetic downregulation of microRNA-192 expression promotes pancreatic cancer progression. Cancer research 76 (14): 4149–4159.CrossRef SK, B., et al. 2016. Early epigenetic downregulation of microRNA-192 expression promotes pancreatic cancer progression. Cancer research 76 (14): 4149–4159.CrossRef
40.
go back to reference Qian, K., B. Mao, W. Zhang, and H. Chen. 2016. MicroRNA-561 inhibits gastric cancercell proliferation and invasion by downregulating c-Myc expression. American journal of translational research 8 (9): 3802–3811.PubMedPubMedCentral Qian, K., B. Mao, W. Zhang, and H. Chen. 2016. MicroRNA-561 inhibits gastric cancercell proliferation and invasion by downregulating c-Myc expression. American journal of translational research 8 (9): 3802–3811.PubMedPubMedCentral
Metadata
Title
Circular RNA circHIPK3 Activates Macrophage NLRP3 Inflammasome and TLR4 Pathway in Gouty Arthritis via Sponging miR-561 and miR-192
Authors
Chaofeng Lian
Jinlei Sun
Wenjuan Guan
Lei Zhang
Xin Zhang
Lu Yang
Wenlu Hu
Publication date
01-10-2021
Publisher
Springer US
Published in
Inflammation / Issue 5/2021
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-021-01483-2

Other articles of this Issue 5/2021

Inflammation 5/2021 Go to the issue