Skip to main content
Top
Published in: Inflammation 5/2021

01-10-2021 | Myocardial Infarction | Review

New Insights and Novel Therapeutic Potentials for Macrophages in Myocardial Infarction

Authors: Zenglei Zhang, Junnan Tang, Xiaolin Cui, Bo Qin, Jianchao Zhang, Li Zhang, Hui Zhang, Gangqiong Liu, Wei Wang, Jinying Zhang

Published in: Inflammation | Issue 5/2021

Login to get access

Abstract

Cardiovascular disease (CVD) has long been the leading cause of death worldwide, and myocardial infarction (MI) accounts for the greatest proportion of CVD. Recent research has revealed that inflammation plays a major role in the pathogenesis of CVD and other manifestations of atherosclerosis. Overwhelming evidence supports the view that macrophages, as the basic cell component of the innate immune system, play a pivotal role in atherosclerosis initiation and progression. Limited but indispensable resident macrophages have been detected in the healthy heart; however, the number of cardiac macrophages significantly increases during cardiac injury. In the early period of initial cardiac damage (e.g., MI), numerous classically activated macrophages (M1) originating from the bone marrow and spleen are rapidly recruited to damaged sites, where they are responsible for cardiac remodeling. After the inflammatory stage, the macrophages shift toward an alternatively activated phenotype (M2) that promotes cardiac repair. In addition, extensive studies have shown the therapeutic potential of macrophages as targets, especially for emerging nanoparticle-mediated drug delivery systems. In the present review, we focused on the role of macrophages in the development and progression of MI, factors regulating macrophage activation and function, and the therapeutic potential of macrophages in MI.
Literature
2.
go back to reference Kura, Branislav, Barbara Szeiffova Bacova, Barbora Kalocayova, Matus Sykora, and Jan Slezak. 2020. Oxidative stress-responsive microRNAs in heart injury. International Journal of Molecular Sciences 21 (1): 358.PubMedCentralCrossRef Kura, Branislav, Barbara Szeiffova Bacova, Barbora Kalocayova, Matus Sykora, and Jan Slezak. 2020. Oxidative stress-responsive microRNAs in heart injury. International Journal of Molecular Sciences 21 (1): 358.PubMedCentralCrossRef
3.
go back to reference Roth, Gregory A., Catherine Johnson, Amanuel Abajobir, Foad Abd-Allah, Semaw Ferede Abera, Gebre Abyu, Muktar Ahmed, et al. 2017. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. Journals of the American College of Cardiology 70: 1–25.CrossRef Roth, Gregory A., Catherine Johnson, Amanuel Abajobir, Foad Abd-Allah, Semaw Ferede Abera, Gebre Abyu, Muktar Ahmed, et al. 2017. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. Journals of the American College of Cardiology 70: 1–25.CrossRef
4.
go back to reference Braunwald, Eugene. 2015. The war against heart failure: the Lancet lecture. Lancet 385 (9970): 812–824.PubMedCrossRef Braunwald, Eugene. 2015. The war against heart failure: the Lancet lecture. Lancet 385 (9970): 812–824.PubMedCrossRef
5.
go back to reference Poss, Kenneth D., Lindsay G. Wilson, and Mark T. Keating. 2002. Heart regeneration in zebrafish. Science 298: 2188–2190.PubMedCrossRef Poss, Kenneth D., Lindsay G. Wilson, and Mark T. Keating. 2002. Heart regeneration in zebrafish. Science 298: 2188–2190.PubMedCrossRef
6.
go back to reference Kikuchi, Kazu, Jennifer E. Holdway, Andreas A. Werdich, Ryan M. Anderson, Yi Fang, Gregory F. Egnaczyk, Todd Evans, et al. 2010. Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature 464: 601–605.PubMedPubMedCentralCrossRef Kikuchi, Kazu, Jennifer E. Holdway, Andreas A. Werdich, Ryan M. Anderson, Yi Fang, Gregory F. Egnaczyk, Todd Evans, et al. 2010. Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature 464: 601–605.PubMedPubMedCentralCrossRef
7.
go back to reference Jopling, Chris, Eduard Sleep, Marina Raya, Mercè Martí, Angel Raya, and Juan Carlos Izpisúa Belmonte. 2010. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464: 606–609.PubMedPubMedCentralCrossRef Jopling, Chris, Eduard Sleep, Marina Raya, Mercè Martí, Angel Raya, and Juan Carlos Izpisúa Belmonte. 2010. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464: 606–609.PubMedPubMedCentralCrossRef
8.
go back to reference Porrello, Enzo R., Ahmed I. Mahmoud, Emma Simpson, Joseph A. Hill, James A. Richardson, Eric N. Olson, and Hesham A. Sadek. 2011. Transient regenerative potential of the neonatal mouse heart. Science 331: 1078–1080.PubMedPubMedCentralCrossRef Porrello, Enzo R., Ahmed I. Mahmoud, Emma Simpson, Joseph A. Hill, James A. Richardson, Eric N. Olson, and Hesham A. Sadek. 2011. Transient regenerative potential of the neonatal mouse heart. Science 331: 1078–1080.PubMedPubMedCentralCrossRef
9.
go back to reference Porrello, Enzo R., Ahmed I. Mahmoud, Emma Simpson, Brett A. Johnson, David Grinsfelder, Diana Canseco, Pradeep P. Mammen, et al. 2013. Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proceedings of The National Academy of Sciences of The United States of America 110 (1): 187–192.PubMedCrossRef Porrello, Enzo R., Ahmed I. Mahmoud, Emma Simpson, Brett A. Johnson, David Grinsfelder, Diana Canseco, Pradeep P. Mammen, et al. 2013. Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proceedings of The National Academy of Sciences of The United States of America 110 (1): 187–192.PubMedCrossRef
10.
go back to reference Hansson, Göran K. 2005. Inflammation, atherosclerosis, and coronary artery disease. New England Journal of Medicine 352: 1685–1695.CrossRefPubMed Hansson, Göran K. 2005. Inflammation, atherosclerosis, and coronary artery disease. New England Journal of Medicine 352: 1685–1695.CrossRefPubMed
11.
go back to reference Ross, Russell. 1999. Atherosclerosis — an inflammatory disease. New England Journal of Medicine 340: 115–126.CrossRefPubMed Ross, Russell. 1999. Atherosclerosis — an inflammatory disease. New England Journal of Medicine 340: 115–126.CrossRefPubMed
12.
go back to reference Wayne Alexander, R. 1994. Inflammation and coronary artery disease. New England Journal of Medicine 331: 468–469.CrossRef Wayne Alexander, R. 1994. Inflammation and coronary artery disease. New England Journal of Medicine 331: 468–469.CrossRef
13.
go back to reference Redd, Michael J., Lisa Cooper, Will Wood, Brian Stramer, and Paul Martin. 2004. Wound healing and inflammation: embryos reveal the way to perfect repair. Philosophical Transactions of The Royal Society B-Biological Sciences 359: 777–784.PubMedCentralCrossRef Redd, Michael J., Lisa Cooper, Will Wood, Brian Stramer, and Paul Martin. 2004. Wound healing and inflammation: embryos reveal the way to perfect repair. Philosophical Transactions of The Royal Society B-Biological Sciences 359: 777–784.PubMedCentralCrossRef
14.
go back to reference Eming, Sabine A., Thomas A. Wynn, and Paul Martin. 2017. Inflammation and metabolism in tissue repair and regeneration. Science 356: 1026–1030.PubMedCrossRef Eming, Sabine A., Thomas A. Wynn, and Paul Martin. 2017. Inflammation and metabolism in tissue repair and regeneration. Science 356: 1026–1030.PubMedCrossRef
15.
go back to reference Heidt, Timo, Gabriel Courties, Partha Dutta, Hendrik B. Sager, Matt Sebas, Yoshiko Iwamoto, Yuan Sun, Nicolas da Silva, Peter Panizzi, Anja M. van der Laan, Filip K. Swirski, Ralph Weissleder, and Matthias Nahrendorf. 2014. Differential contribution of monocytes to heart macrophages in steady-state and after myocardial infarction. Circulation Research 115: 284–295.PubMedPubMedCentralCrossRef Heidt, Timo, Gabriel Courties, Partha Dutta, Hendrik B. Sager, Matt Sebas, Yoshiko Iwamoto, Yuan Sun, Nicolas da Silva, Peter Panizzi, Anja M. van der Laan, Filip K. Swirski, Ralph Weissleder, and Matthias Nahrendorf. 2014. Differential contribution of monocytes to heart macrophages in steady-state and after myocardial infarction. Circulation Research 115: 284–295.PubMedPubMedCentralCrossRef
16.
go back to reference van der Laan, Anja M., Ellis N. ter Horst, Ronak Delewi, Mark P.V. Begieneman, Paul A.J. Krijnen, Alexander Hirsch, Mehrdad Lavaei, M. Nahrendorf, A.J. Horrevoets, H.W.M. Niessen, and J.J. Piek. 2014. Monocyte subset accumulation in the human heart following acute myocardial infarction and the role of the spleen as monocyte reservoir. European Heart Journal 35: 376–385.PubMedCrossRef van der Laan, Anja M., Ellis N. ter Horst, Ronak Delewi, Mark P.V. Begieneman, Paul A.J. Krijnen, Alexander Hirsch, Mehrdad Lavaei, M. Nahrendorf, A.J. Horrevoets, H.W.M. Niessen, and J.J. Piek. 2014. Monocyte subset accumulation in the human heart following acute myocardial infarction and the role of the spleen as monocyte reservoir. European Heart Journal 35: 376–385.PubMedCrossRef
17.
go back to reference Frangogiannis, Nikolaos G. The inflammatory response in myocardial injury, repair, and remodelling. Nature Reviews Cardiology 11 (5): 255–265. Frangogiannis, Nikolaos G. The inflammatory response in myocardial injury, repair, and remodelling. Nature Reviews Cardiology 11 (5): 255–265.
18.
go back to reference Kanisicak, Onur, Hadi Khalil, Malina J. Ivey, Jason Karch, Bryan D. Maliken, Robert N. Correll, and Matthew J. Brody, et al. 2016. Genetic lineage tracing defines myofibroblast origin and function in the injured heart. Nature Communications 7: 12260.PubMedPubMedCentralCrossRef Kanisicak, Onur, Hadi Khalil, Malina J. Ivey, Jason Karch, Bryan D. Maliken, Robert N. Correll, and Matthew J. Brody, et al. 2016. Genetic lineage tracing defines myofibroblast origin and function in the injured heart. Nature Communications 7: 12260.PubMedPubMedCentralCrossRef
19.
go back to reference Serini, Guido, Marie-Luce Bochaton-Piallat, Patricia Ropraz, Antoine Geinoz, Laura Borsi, Luciano Zardi, and Giulio Gabbiani. 1998. The fibronectin domain ED-A is crucial for myofibroblastic phenotype induction by transforming growth factor-beta1. The Journal of Cell Biology 142 (3): 873–881.PubMedPubMedCentralCrossRef Serini, Guido, Marie-Luce Bochaton-Piallat, Patricia Ropraz, Antoine Geinoz, Laura Borsi, Luciano Zardi, and Giulio Gabbiani. 1998. The fibronectin domain ED-A is crucial for myofibroblastic phenotype induction by transforming growth factor-beta1. The Journal of Cell Biology 142 (3): 873–881.PubMedPubMedCentralCrossRef
21.
22.
go back to reference Robbins, Clinton S., Aleksey Chudnovskiy, Philipp J. Rauch, Jose-Luiz Figueiredo, Yoshiko Iwamoto, Rostic Gorbatov, Martin Etzrodt, Georg F. Weber, et al. 2012. Extramedullary hematopoiesis generates Ly-6C(high) monocytes that infiltrate atherosclerotic lesions. Circulation 125 (2): 364–374.PubMedCrossRef Robbins, Clinton S., Aleksey Chudnovskiy, Philipp J. Rauch, Jose-Luiz Figueiredo, Yoshiko Iwamoto, Rostic Gorbatov, Martin Etzrodt, Georg F. Weber, et al. 2012. Extramedullary hematopoiesis generates Ly-6C(high) monocytes that infiltrate atherosclerotic lesions. Circulation 125 (2): 364–374.PubMedCrossRef
23.
go back to reference Swirski, Filip K., Matthias Nahrendorf, Martin Etzrodt, Moritz Wildgruber, Virna Cortez-Retamozo, Peter Panizzi, Jose-Luiz Figueiredo, et al. 2009. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325 (5940): 612–616.PubMedPubMedCentralCrossRef Swirski, Filip K., Matthias Nahrendorf, Martin Etzrodt, Moritz Wildgruber, Virna Cortez-Retamozo, Peter Panizzi, Jose-Luiz Figueiredo, et al. 2009. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325 (5940): 612–616.PubMedPubMedCentralCrossRef
24.
go back to reference Auffray, Cedric, Darin Fogg, Meriem Garfa, Gaelle Elain, Olivier Join-Lambert, Samer Kayal, Sabine Sarnacki, A. Cumano, G. Lauvau, and F. Geissmann. 2007. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 317 (5838): 666–670.PubMedCrossRef Auffray, Cedric, Darin Fogg, Meriem Garfa, Gaelle Elain, Olivier Join-Lambert, Samer Kayal, Sabine Sarnacki, A. Cumano, G. Lauvau, and F. Geissmann. 2007. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 317 (5838): 666–670.PubMedCrossRef
25.
go back to reference Bajpai, Geetika, Caralin Schneider, Nicole Wong, Andrea Bredemeyer, Maarten Hulsmans, Matthias Nahrendorf, Slava Epelman, Daniel Kreisel, Yongjian Liu, Akinobu Itoh, Thirupura S. Shankar, Craig H. Selzman, Stavros G. Drakos, and Kory J. Lavine. 2018. The human heart contains distinct macrophage subsets with divergent origins and functions. Nature Medicine 24 (8): 1234–1245.PubMedPubMedCentralCrossRef Bajpai, Geetika, Caralin Schneider, Nicole Wong, Andrea Bredemeyer, Maarten Hulsmans, Matthias Nahrendorf, Slava Epelman, Daniel Kreisel, Yongjian Liu, Akinobu Itoh, Thirupura S. Shankar, Craig H. Selzman, Stavros G. Drakos, and Kory J. Lavine. 2018. The human heart contains distinct macrophage subsets with divergent origins and functions. Nature Medicine 24 (8): 1234–1245.PubMedPubMedCentralCrossRef
26.
go back to reference Volkman, A., N.C. Chang, P.H. Strausbauch, and P.S. Morahan. 1983. Differential effects of chronic monocyte depletion on macrophage populations. Laboratory Investigation 49: 291–298.PubMed Volkman, A., N.C. Chang, P.H. Strausbauch, and P.S. Morahan. 1983. Differential effects of chronic monocyte depletion on macrophage populations. Laboratory Investigation 49: 291–298.PubMed
27.
go back to reference Sawyer, R.T., P.H. Strausbauch, and A. Volkman. 1982. Resident macrophage proliferation in mice depleted of blood monocytes by strontium-89. Laboratory Investigation 46 (2): 165–170.PubMed Sawyer, R.T., P.H. Strausbauch, and A. Volkman. 1982. Resident macrophage proliferation in mice depleted of blood monocytes by strontium-89. Laboratory Investigation 46 (2): 165–170.PubMed
28.
go back to reference Ginhoux, Florent, Melanie Greter, Marylene Leboeuf, Sayan Nandi, Peter See, Solen Gokhan, and Mark F Mehler, et al. 2010. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330 (6005): 841–845.PubMedPubMedCentralCrossRef Ginhoux, Florent, Melanie Greter, Marylene Leboeuf, Sayan Nandi, Peter See, Solen Gokhan, and Mark F Mehler, et al. 2010. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330 (6005): 841–845.PubMedPubMedCentralCrossRef
29.
go back to reference Schulz, Christian, Elisa Gomez Perdiguero, Laurent Chorro, Heather Szabo-Rogers, Nicolas Cagnard, Katrin Kierdorf, Marco Prinz, Bishan Wu, Sten Eirik W. Jacobsen, Jeffrey W. Pollard, Jon Frampton, Karen J. Liu, and Frederic Geissmann. 2012. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336 (6077): 86–90.PubMedCrossRef Schulz, Christian, Elisa Gomez Perdiguero, Laurent Chorro, Heather Szabo-Rogers, Nicolas Cagnard, Katrin Kierdorf, Marco Prinz, Bishan Wu, Sten Eirik W. Jacobsen, Jeffrey W. Pollard, Jon Frampton, Karen J. Liu, and Frederic Geissmann. 2012. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336 (6077): 86–90.PubMedCrossRef
30.
go back to reference Yona, Simon, Ki-Wook Kim, Yochai Wolf, Alexander Mildner, Diana Varol, Michal Breker, Dalit Strauss-Ayali, Sergey Viukov, Martin Guilliams, Alexander Misharin, David A. Hume, Harris Perlman, Bernard Malissen, Elazar Zelzer, and Steffen Jung. 2013. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38 (1): 79–91.PubMedCrossRef Yona, Simon, Ki-Wook Kim, Yochai Wolf, Alexander Mildner, Diana Varol, Michal Breker, Dalit Strauss-Ayali, Sergey Viukov, Martin Guilliams, Alexander Misharin, David A. Hume, Harris Perlman, Bernard Malissen, Elazar Zelzer, and Steffen Jung. 2013. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38 (1): 79–91.PubMedCrossRef
31.
go back to reference Hashimoto, Daigo, Andrew Chow, Clara Noizat, Pearline Teo, Mary Beth Beasley, Marylene Leboeuf, and Christian D Becker, et al. 2013. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 38 (4): 792–804.PubMedCrossRef Hashimoto, Daigo, Andrew Chow, Clara Noizat, Pearline Teo, Mary Beth Beasley, Marylene Leboeuf, and Christian D Becker, et al. 2013. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 38 (4): 792–804.PubMedCrossRef
32.
go back to reference Guilliams, Martin, Ismé De Kleer, Sandrine Henri, Sijranke Post, Leen Vanhoutte, Sofie De Prijck, Kim Deswarte, et al. 2013. Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF. Journal of Experimental Medicine 210 (10): 1977–1992.CrossRefPubMedPubMedCentral Guilliams, Martin, Ismé De Kleer, Sandrine Henri, Sijranke Post, Leen Vanhoutte, Sofie De Prijck, Kim Deswarte, et al. 2013. Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF. Journal of Experimental Medicine 210 (10): 1977–1992.CrossRefPubMedPubMedCentral
33.
go back to reference Epelman, Slava, Kory J. Lavine, Anna E. Beaudin, Dorothy K. Sojka, Javier A. Carrero, Boris Calderon, Thaddeus Brija, et al. 2014. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity 40 (1): 91–104.PubMedPubMedCentralCrossRef Epelman, Slava, Kory J. Lavine, Anna E. Beaudin, Dorothy K. Sojka, Javier A. Carrero, Boris Calderon, Thaddeus Brija, et al. 2014. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity 40 (1): 91–104.PubMedPubMedCentralCrossRef
34.
35.
go back to reference Gordon, Siamon. 2003. Alternative activation of macrophages. Nature Reviews Immunology 3 (1): 23–35.PubMedCrossRef Gordon, Siamon. 2003. Alternative activation of macrophages. Nature Reviews Immunology 3 (1): 23–35.PubMedCrossRef
36.
go back to reference Gordon, Siamon, and Philip R. Taylor. 2005. Monocyte and macrophage heterogeneity. Nature Reviews Immunology 5: 953–964.PubMedCrossRef Gordon, Siamon, and Philip R. Taylor. 2005. Monocyte and macrophage heterogeneity. Nature Reviews Immunology 5: 953–964.PubMedCrossRef
37.
go back to reference Martinez, Fernando Oneissi, Antonio Sica, Alberto Mantovani, and Massimo Locati. 2008. Macrophage activation and polarization. Frontiers in Bioscience 13: 453–461.PubMedCrossRef Martinez, Fernando Oneissi, Antonio Sica, Alberto Mantovani, and Massimo Locati. 2008. Macrophage activation and polarization. Frontiers in Bioscience 13: 453–461.PubMedCrossRef
38.
go back to reference Martinez, Fernando O., Siamon Gordon, Massimo Locati, and Alberto Mantovani. 2006. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. Journal of Immunology 177 (10): 7303–7311.CrossRef Martinez, Fernando O., Siamon Gordon, Massimo Locati, and Alberto Mantovani. 2006. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. Journal of Immunology 177 (10): 7303–7311.CrossRef
39.
40.
go back to reference Cheng, Yuanyuan, and Jianhui Rong. 2018. Macrophage polarization as a therapeutic target in myocardial infarction. Current Drug Targets 19 (6): 651–662.PubMedCrossRef Cheng, Yuanyuan, and Jianhui Rong. 2018. Macrophage polarization as a therapeutic target in myocardial infarction. Current Drug Targets 19 (6): 651–662.PubMedCrossRef
41.
go back to reference Krausgruber, Thomas, Katrina Blazek, Tim Smallie, Saba Alzabin, Helen Lockstone, Natasha Sahgal, Tracy Hussell, Marc Feldmann, and Irina A. Udalova. 2011. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nature Immunology 12: 231–238.PubMedCrossRef Krausgruber, Thomas, Katrina Blazek, Tim Smallie, Saba Alzabin, Helen Lockstone, Natasha Sahgal, Tracy Hussell, Marc Feldmann, and Irina A. Udalova. 2011. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nature Immunology 12: 231–238.PubMedCrossRef
42.
go back to reference Toshchakov, Vladimir, Bryan W. Jones, Pin-Yu Perera, Karen Thomas, M. Joshua Cody, Shuling Zhang, Bryan R.G. Williams, et al. 2002. TLR4, but not TLR2, mediates IFN-beta-induced STAT1alpha/beta-dependent gene expression in macrophages. Nature Immunology 3: 392–398.PubMedCrossRef Toshchakov, Vladimir, Bryan W. Jones, Pin-Yu Perera, Karen Thomas, M. Joshua Cody, Shuling Zhang, Bryan R.G. Williams, et al. 2002. TLR4, but not TLR2, mediates IFN-beta-induced STAT1alpha/beta-dependent gene expression in macrophages. Nature Immunology 3: 392–398.PubMedCrossRef
43.
go back to reference Dale, David C., Laurence Boxer, and W. Conrad Liles. 2008. The phagocytes: neutrophils and monocytes. Blood 112 (4): 935–945.PubMedCrossRef Dale, David C., Laurence Boxer, and W. Conrad Liles. 2008. The phagocytes: neutrophils and monocytes. Blood 112 (4): 935–945.PubMedCrossRef
44.
go back to reference Filipe-Santos, Orchidée, Jacinta Bustamante, Ariane Chapgier, Guillaume Vogt, Ludovic de Beaucoudrey, Jacqueline Feinberg, Emmanuelle Jouanguy, Stéphanie Boisson-Dupuis, Claire Fieschi, Capucine Picard, and Jean-Laurent Casanova. 2006. Inborn errors of IL-12/23- and IFN-gamma-mediated immunity: molecular, cellular, and clinical features. Seminars in Immunology 18 (6): 347–361.PubMedCrossRef Filipe-Santos, Orchidée, Jacinta Bustamante, Ariane Chapgier, Guillaume Vogt, Ludovic de Beaucoudrey, Jacqueline Feinberg, Emmanuelle Jouanguy, Stéphanie Boisson-Dupuis, Claire Fieschi, Capucine Picard, and Jean-Laurent Casanova. 2006. Inborn errors of IL-12/23- and IFN-gamma-mediated immunity: molecular, cellular, and clinical features. Seminars in Immunology 18 (6): 347–361.PubMedCrossRef
45.
go back to reference Murray, Peter J., Judith E. Allen, Subhra K. Biswas, Edward A. Fisher, Derek W. Gilroy, Sergij Goerdt, Siamon Gordon, et al. 2014. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41 (1): 14–20.PubMedPubMedCentralCrossRef Murray, Peter J., Judith E. Allen, Subhra K. Biswas, Edward A. Fisher, Derek W. Gilroy, Sergij Goerdt, Siamon Gordon, et al. 2014. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41 (1): 14–20.PubMedPubMedCentralCrossRef
46.
go back to reference Gordon, Siamon, and Fernando O. Martinez. 2010. Alternative activation of macrophages: mechanism and functions. Immunity 32: 593–604.PubMedCrossRef Gordon, Siamon, and Fernando O. Martinez. 2010. Alternative activation of macrophages: mechanism and functions. Immunity 32: 593–604.PubMedCrossRef
47.
go back to reference Rőszer, Tamás. 2015. Understanding the mysterious M2 macrophage through activation markers and effector mechanisms. Mediators of Inflammations 2015: 816460. Rőszer, Tamás. 2015. Understanding the mysterious M2 macrophage through activation markers and effector mechanisms. Mediators of Inflammations 2015: 816460.
48.
go back to reference Lang, Roland, Divyen Patel, John J. Morris, Robert L. Rutschman, and Peter J. Murray. 2002. Shaping gene expression in activated and resting primary macrophages by IL-10. Journal of Immunology 169: 2253–2263.CrossRef Lang, Roland, Divyen Patel, John J. Morris, Robert L. Rutschman, and Peter J. Murray. 2002. Shaping gene expression in activated and resting primary macrophages by IL-10. Journal of Immunology 169: 2253–2263.CrossRef
49.
go back to reference Nelms, Keats, Achsah D. Keegan, Jose Zamorano, John J. Ryan, and William E. Paul. 1999. The IL-4 receptor: signaling mechanisms and biologic functions. Annual Review of Immunology 17: 701–738.PubMedCrossRef Nelms, Keats, Achsah D. Keegan, Jose Zamorano, John J. Ryan, and William E. Paul. 1999. The IL-4 receptor: signaling mechanisms and biologic functions. Annual Review of Immunology 17: 701–738.PubMedCrossRef
50.
go back to reference O’Farrell, Anne-Marie, Ying Liu, Kevin W. Moore, and Alice L.-F. Mui. 1998. IL-10 inhibits macrophage activation and proliferation by distinct signaling mechanisms: evidence for Stat3-dependent and -independent pathways. EMBO Journal 17: 1006–1018.CrossRefPubMedPubMedCentral O’Farrell, Anne-Marie, Ying Liu, Kevin W. Moore, and Alice L.-F. Mui. 1998. IL-10 inhibits macrophage activation and proliferation by distinct signaling mechanisms: evidence for Stat3-dependent and -independent pathways. EMBO Journal 17: 1006–1018.CrossRefPubMedPubMedCentral
51.
go back to reference Navegantes, Kely Campos, Rafaelli de Souza Gomes, Priscilla Aparecida Tártari Pereira, Paula Giselle Czaikoski, Carolina Heitmann Mares Azevedo, and Marta Chagas Monteiro. 2017. Immune modulation of some autoimmune diseases: the critical role of macrophages and neutrophils in the innate and adaptive immunity. Journal of Translational Medicine 15 (1): 36.PubMedPubMedCentralCrossRef Navegantes, Kely Campos, Rafaelli de Souza Gomes, Priscilla Aparecida Tártari Pereira, Paula Giselle Czaikoski, Carolina Heitmann Mares Azevedo, and Marta Chagas Monteiro. 2017. Immune modulation of some autoimmune diseases: the critical role of macrophages and neutrophils in the innate and adaptive immunity. Journal of Translational Medicine 15 (1): 36.PubMedPubMedCentralCrossRef
52.
go back to reference Aurora, Arin B., Enzo R. Porrello, Wei Tan, Ahmed I. Mahmoud, Joseph A. Hill, Rhonda Bassel-Duby, Hesham A. Sadek, et al. 2014. Macrophages are required for neonatal heart regeneration. Journal of Clinical Investigation 124 (3): 1382–1392.CrossRefPubMedPubMedCentral Aurora, Arin B., Enzo R. Porrello, Wei Tan, Ahmed I. Mahmoud, Joseph A. Hill, Rhonda Bassel-Duby, Hesham A. Sadek, et al. 2014. Macrophages are required for neonatal heart regeneration. Journal of Clinical Investigation 124 (3): 1382–1392.CrossRefPubMedPubMedCentral
53.
go back to reference Pinto, Alexander R., Rosa Paolicelli, Ekaterina Salimova, Janko Gospocic, Esfir Slonimsky, Daniel Bilbao-Cortes, James W. Godwin, et al. 2012. An abundant tissue macrophage population in the adult murine heart with a distinct alternatively-activated macrophage profile. PLoS One 7 (5): e36814.PubMedPubMedCentralCrossRef Pinto, Alexander R., Rosa Paolicelli, Ekaterina Salimova, Janko Gospocic, Esfir Slonimsky, Daniel Bilbao-Cortes, James W. Godwin, et al. 2012. An abundant tissue macrophage population in the adult murine heart with a distinct alternatively-activated macrophage profile. PLoS One 7 (5): e36814.PubMedPubMedCentralCrossRef
54.
go back to reference Perdiguero, Elisa Gomez, Kay Klapproth, Christian Schulz, Katrin Busch, Emanuele Azzoni, Lucile Crozet, Hannah Garner, et al. 2015. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 518 (7540): 547–551.CrossRef Perdiguero, Elisa Gomez, Kay Klapproth, Christian Schulz, Katrin Busch, Emanuele Azzoni, Lucile Crozet, Hannah Garner, et al. 2015. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 518 (7540): 547–551.CrossRef
56.
go back to reference Bajpai, Geetika, Andrea Bredemeyer, Wenjun Li, Konstantin Zaitsev, and Andrew L Koenig, Inessa Lokshina, Jayaram Mohan, et al. 2019. Tissue resident CCR2- and CCR2+ cardiac macrophages differentially orchestrate monocyte recruitment and fate specification following myocardial injury. Circulation Research 124 (2): 263–278.PubMedPubMedCentralCrossRef Bajpai, Geetika, Andrea Bredemeyer, Wenjun Li, Konstantin Zaitsev, and Andrew L Koenig, Inessa Lokshina, Jayaram Mohan, et al. 2019. Tissue resident CCR2- and CCR2+ cardiac macrophages differentially orchestrate monocyte recruitment and fate specification following myocardial injury. Circulation Research 124 (2): 263–278.PubMedPubMedCentralCrossRef
57.
go back to reference Lavine, Kory J., Slava Epelman, Keita Uchida, Kassandra J. Weber, Colin G. Nichols, Joel D. Schilling, David M. Ornitz, et al. 2014. Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart. Proceedings of The National Academy of Sciences of The United States of America 111 (45): 16029–16034.PubMedPubMedCentralCrossRef Lavine, Kory J., Slava Epelman, Keita Uchida, Kassandra J. Weber, Colin G. Nichols, Joel D. Schilling, David M. Ornitz, et al. 2014. Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart. Proceedings of The National Academy of Sciences of The United States of America 111 (45): 16029–16034.PubMedPubMedCentralCrossRef
58.
go back to reference Molawi, Kaaweh, Yochai Wolf, Prashanth K. Kandalla, Jeremy Favret, Nora Hagemeyer, Kathrin Frenzel, Alexander R. Pinto, et al. 2014. Progressive replacement of embryo-derived cardiac macrophages with age. Journal of Experimental Medicine 211: 2151–2158.CrossRefPubMedPubMedCentral Molawi, Kaaweh, Yochai Wolf, Prashanth K. Kandalla, Jeremy Favret, Nora Hagemeyer, Kathrin Frenzel, Alexander R. Pinto, et al. 2014. Progressive replacement of embryo-derived cardiac macrophages with age. Journal of Experimental Medicine 211: 2151–2158.CrossRefPubMedPubMedCentral
59.
go back to reference Weyrich, Andrew S., Mark R. Elstad, Rodger P. McEver, Thomas M. McIntyre, Kevin L. Moore, James H. Morrissey, Stephen M. Prescott, and Guy A. Zimmerman. 1996. Activated platelets signal chemokine synthesis by human monocytes. Journal of Clinical Investigation 97 (6): 1525–1534.PubMedCentralCrossRefPubMed Weyrich, Andrew S., Mark R. Elstad, Rodger P. McEver, Thomas M. McIntyre, Kevin L. Moore, James H. Morrissey, Stephen M. Prescott, and Guy A. Zimmerman. 1996. Activated platelets signal chemokine synthesis by human monocytes. Journal of Clinical Investigation 97 (6): 1525–1534.PubMedCentralCrossRefPubMed
61.
go back to reference Witztum, Joseph L., and Daniel Steinberg. 2001. The oxidative modification hypothesis of atherosclerosis: does it hold for humans? Trends in Cardiovascular Medicine 11: 93–102.PubMedCrossRef Witztum, Joseph L., and Daniel Steinberg. 2001. The oxidative modification hypothesis of atherosclerosis: does it hold for humans? Trends in Cardiovascular Medicine 11: 93–102.PubMedCrossRef
63.
go back to reference Lindemann, Stephan, Björn Krämer, Karin Daub, Konstantinos Stellos, and Meinrad Gawaz. 2007. Molecular pathways used by platelets to initiate and accelerate atherogenesis. Current Opinion Lipidology 18 (5): 566–573.CrossRef Lindemann, Stephan, Björn Krämer, Karin Daub, Konstantinos Stellos, and Meinrad Gawaz. 2007. Molecular pathways used by platelets to initiate and accelerate atherogenesis. Current Opinion Lipidology 18 (5): 566–573.CrossRef
64.
go back to reference Tabas, Ira. 2005. Consequences and therapeutic implications of macrophage apoptosis in atherosclerosis: the importance of lesion stage and phagocytic efficiency. Arteriosclerosis, Thrombosis, and Vascular Biology 25 (11): 2255–2264.PubMedCrossRef Tabas, Ira. 2005. Consequences and therapeutic implications of macrophage apoptosis in atherosclerosis: the importance of lesion stage and phagocytic efficiency. Arteriosclerosis, Thrombosis, and Vascular Biology 25 (11): 2255–2264.PubMedCrossRef
65.
go back to reference De Filippis, Andrew P., Andrew R. Chapman, Nicholas L. Mills, James A. de Lemos, Armin Arbab-Zadeh, L. Kristin Newby, and David A. Morrow. 2019. Assessment and treatment of patients with type 2 myocardial infarction and acute nonischemic myocardial injury. Circulation 140 (20): 1661–1678.CrossRef De Filippis, Andrew P., Andrew R. Chapman, Nicholas L. Mills, James A. de Lemos, Armin Arbab-Zadeh, L. Kristin Newby, and David A. Morrow. 2019. Assessment and treatment of patients with type 2 myocardial infarction and acute nonischemic myocardial injury. Circulation 140 (20): 1661–1678.CrossRef
66.
go back to reference Forte, Elvira, Milena Bastos Furtado, and Nadia Rosenthal. 2018. The interstitium in cardiac repair: role of the immune-stromal cell interplay. Nature Reviews Cardiology 15 (10): 601–616.PubMedCrossRef Forte, Elvira, Milena Bastos Furtado, and Nadia Rosenthal. 2018. The interstitium in cardiac repair: role of the immune-stromal cell interplay. Nature Reviews Cardiology 15 (10): 601–616.PubMedCrossRef
67.
go back to reference Döring, Yvonne, Maik Drechsler, Oliver Soehnlein, and Christian Weber. 2015. Neutrophils in atherosclerosis: from mice to man. Arteriosclerosis, Thrombosis, and Vascular Biology 35: 288–295.PubMedCrossRef Döring, Yvonne, Maik Drechsler, Oliver Soehnlein, and Christian Weber. 2015. Neutrophils in atherosclerosis: from mice to man. Arteriosclerosis, Thrombosis, and Vascular Biology 35: 288–295.PubMedCrossRef
68.
go back to reference Soehnlein, Oliver, Alma Zernecke, Einar E. Eriksson, Antonio Gigliotti Rothfuchs, Christine T. Pham, Heiko Herwald, Kiril Bidzhekov, et al. 2008. Neutrophil secretion products pave the way for inflammatory monocytes. Blood 112: 1461–1471.PubMedPubMedCentralCrossRef Soehnlein, Oliver, Alma Zernecke, Einar E. Eriksson, Antonio Gigliotti Rothfuchs, Christine T. Pham, Heiko Herwald, Kiril Bidzhekov, et al. 2008. Neutrophil secretion products pave the way for inflammatory monocytes. Blood 112: 1461–1471.PubMedPubMedCentralCrossRef
69.
go back to reference Frantz, Stefan, Ulrich Hofmann, Daniela Fraccarollo, Andreas Schäfer, Stefanie Kranepuhl, Ina Hagedorn, Bernhard Nieswandt, Matthias Nahrendorf, Helga Wagner, Barbara Bayer, Christina Pachel, Michael P. Schön, Susanne Kneitz, Tobias Bobinger, Frank Weidemann, Georg Ertl, and Johann Bauersachs. 2013. Monocytes/macrophages prevent healing defects and left ventricular thrombus formation after myocardial infarction. FASEB Journal 27 (3): 871–881.PubMedCrossRef Frantz, Stefan, Ulrich Hofmann, Daniela Fraccarollo, Andreas Schäfer, Stefanie Kranepuhl, Ina Hagedorn, Bernhard Nieswandt, Matthias Nahrendorf, Helga Wagner, Barbara Bayer, Christina Pachel, Michael P. Schön, Susanne Kneitz, Tobias Bobinger, Frank Weidemann, Georg Ertl, and Johann Bauersachs. 2013. Monocytes/macrophages prevent healing defects and left ventricular thrombus formation after myocardial infarction. FASEB Journal 27 (3): 871–881.PubMedCrossRef
70.
go back to reference Dewald, Oliver, Pawel Zymek, Kim Winkelmann, Anna Koerting, Guofeng Ren, Tareq Abou-Khamis, Lloyd H. Michael, et al. 2005. CCL2/monocyte chemoattractant protein-1 regulates inflammatory responses critical to healing myocardial infarcts. Circulation Research 96 (8): 881–889.PubMedCrossRef Dewald, Oliver, Pawel Zymek, Kim Winkelmann, Anna Koerting, Guofeng Ren, Tareq Abou-Khamis, Lloyd H. Michael, et al. 2005. CCL2/monocyte chemoattractant protein-1 regulates inflammatory responses critical to healing myocardial infarcts. Circulation Research 96 (8): 881–889.PubMedCrossRef
71.
go back to reference Wan, Elaine, Xin Yi Yeap, Shirley Dehn, Rachael Terry, Margaret Novak, Shuang Zhang, Shinichi Iwata, Xiaoqiang Han, Shunichi Homma, Konstantinos Drosatos, Jon Lomasney, David M. Engman, Stephen D. Miller, Douglas E. Vaughan, John P. Morrow, Raj Kishore, and Edward B. Thorp. 2013. Enhanced efferocytosis of apoptotic cardiomyocytes through myeloid-epithelial-reproductive tyrosine kinase links acute inflammation resolution to cardiac repair after infarction. Circulation Research 113 (8): 1004–1012.PubMedCrossRef Wan, Elaine, Xin Yi Yeap, Shirley Dehn, Rachael Terry, Margaret Novak, Shuang Zhang, Shinichi Iwata, Xiaoqiang Han, Shunichi Homma, Konstantinos Drosatos, Jon Lomasney, David M. Engman, Stephen D. Miller, Douglas E. Vaughan, John P. Morrow, Raj Kishore, and Edward B. Thorp. 2013. Enhanced efferocytosis of apoptotic cardiomyocytes through myeloid-epithelial-reproductive tyrosine kinase links acute inflammation resolution to cardiac repair after infarction. Circulation Research 113 (8): 1004–1012.PubMedCrossRef
72.
go back to reference Duffield, Jeremy S., Stuart J. Forbes, Christothea M. Constandinou, Spike Clay, Marina Partolina, Srilatha Vuthoori, Shengji Wu, Richard Lang, and John P. Iredale. 2005. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. Journal of Clinical Investigation 115: 56–65.PubMedCentralCrossRefPubMed Duffield, Jeremy S., Stuart J. Forbes, Christothea M. Constandinou, Spike Clay, Marina Partolina, Srilatha Vuthoori, Shengji Wu, Richard Lang, and John P. Iredale. 2005. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. Journal of Clinical Investigation 115: 56–65.PubMedCentralCrossRefPubMed
73.
go back to reference Fadok, Valerie A., Donna L. Bratton, Anatole Konowal, Peter W. Freed, Jay Y. Westcott, and Peter M. Henson. 1998. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. Journal of Clinical Investigation 101 (4): 890–898.PubMedCentralCrossRefPubMed Fadok, Valerie A., Donna L. Bratton, Anatole Konowal, Peter W. Freed, Jay Y. Westcott, and Peter M. Henson. 1998. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. Journal of Clinical Investigation 101 (4): 890–898.PubMedCentralCrossRefPubMed
74.
go back to reference Shiraishi, Manabu, Yasunori Shintani, Yusuke Shintani, Hidekazu Ishida, Rie Saba, Atsushi Yamaguchi, Hideo Adachi, Kenta Yashiro, and Ken Suzuki. 2016. Alternatively activated macrophages determine repair of the infarcted adult murine heart. Journal of Clinical Investigation 126 (6): 2151–2166.CrossRefPubMedPubMedCentral Shiraishi, Manabu, Yasunori Shintani, Yusuke Shintani, Hidekazu Ishida, Rie Saba, Atsushi Yamaguchi, Hideo Adachi, Kenta Yashiro, and Ken Suzuki. 2016. Alternatively activated macrophages determine repair of the infarcted adult murine heart. Journal of Clinical Investigation 126 (6): 2151–2166.CrossRefPubMedPubMedCentral
75.
go back to reference Galuppo, Paolo, Sabine Vettorazzi, Julian Hövelmann, Claus-Jürgen Scholz, Jan Peter Tuckermann, Johann Bauersachs, and Daniela Fraccarollo. 2017. The glucocorticoid receptor in monocyte-derived macrophages is critical for cardiac infarct repair and remodeling. FASEB Journal 31 (11): 5122–5132.PubMedPubMedCentralCrossRef Galuppo, Paolo, Sabine Vettorazzi, Julian Hövelmann, Claus-Jürgen Scholz, Jan Peter Tuckermann, Johann Bauersachs, and Daniela Fraccarollo. 2017. The glucocorticoid receptor in monocyte-derived macrophages is critical for cardiac infarct repair and remodeling. FASEB Journal 31 (11): 5122–5132.PubMedPubMedCentralCrossRef
76.
go back to reference Vincent, Anne, Aurélie Covinhes, Christian Barrère, Laura Gallot, Soulit Thoumala, Christophe Piot, Catherine Heurteaux, Michel Lazdunski, Joël Nargeot, and Stéphanie Barrère-Lemaire. 2017. Acute and long-term cardioprotective effects of the traditional Chinese medicine MLC901 against myocardial ischemia-reperfusion injury in mice. Scientific Reports 7 (1): 14701.PubMedPubMedCentralCrossRef Vincent, Anne, Aurélie Covinhes, Christian Barrère, Laura Gallot, Soulit Thoumala, Christophe Piot, Catherine Heurteaux, Michel Lazdunski, Joël Nargeot, and Stéphanie Barrère-Lemaire. 2017. Acute and long-term cardioprotective effects of the traditional Chinese medicine MLC901 against myocardial ischemia-reperfusion injury in mice. Scientific Reports 7 (1): 14701.PubMedPubMedCentralCrossRef
77.
go back to reference Pælestik, Kim B., Nichlas R. Jespersen, Rebekka V. Jensen, Jacob Johnsen, Hans Erik Bøtker, and Steen B. Kristiansen. 2017. Effects of hypoglycemia on myocardial susceptibility to ischemia-reperfusion injury and preconditioning in hearts from rats with and without type 2 diabetes. Cardiovascular Diabetology 16 (1): 148.PubMedPubMedCentralCrossRef Pælestik, Kim B., Nichlas R. Jespersen, Rebekka V. Jensen, Jacob Johnsen, Hans Erik Bøtker, and Steen B. Kristiansen. 2017. Effects of hypoglycemia on myocardial susceptibility to ischemia-reperfusion injury and preconditioning in hearts from rats with and without type 2 diabetes. Cardiovascular Diabetology 16 (1): 148.PubMedPubMedCentralCrossRef
78.
go back to reference Vagnozzi, Ronald J., Marjorie Maillet, Michelle A. Sargent, Hadi Khalil, Anne Katrine Z. Johansen, Jennifer A. Schwanekamp, Allen J. York, et al. 2020. An acute immune response underlies the benefit of cardiac stem cell therapy. Nature 577 (7790): 405–409.PubMedCrossRef Vagnozzi, Ronald J., Marjorie Maillet, Michelle A. Sargent, Hadi Khalil, Anne Katrine Z. Johansen, Jennifer A. Schwanekamp, Allen J. York, et al. 2020. An acute immune response underlies the benefit of cardiac stem cell therapy. Nature 577 (7790): 405–409.PubMedCrossRef
79.
go back to reference Steffens, Sabine, Fabrizio Montecucco, and François Mach. 2009. The inflammatory response as a target to reduce myocardial ischaemia and reperfusion injury. Thrombosis And Haemostasis 102 (2): 240–247.PubMedCrossRef Steffens, Sabine, Fabrizio Montecucco, and François Mach. 2009. The inflammatory response as a target to reduce myocardial ischaemia and reperfusion injury. Thrombosis And Haemostasis 102 (2): 240–247.PubMedCrossRef
80.
go back to reference Formigli, Lucia, Lidia Ibba Manneschi, Chiara Nediani, Elena Marcelli, Geri Fratini, Sandra Zecchi Orlandini, and Avio M. Perna. 2001. Are macrophages involved in early myocardial reperfusion injury? Annals of Thoracic Surgery 71 (5): 1596–1602.CrossRefPubMed Formigli, Lucia, Lidia Ibba Manneschi, Chiara Nediani, Elena Marcelli, Geri Fratini, Sandra Zecchi Orlandini, and Avio M. Perna. 2001. Are macrophages involved in early myocardial reperfusion injury? Annals of Thoracic Surgery 71 (5): 1596–1602.CrossRefPubMed
81.
go back to reference Fan, Qin, Rong Tao, Hang Zhang, Hongyang Xie, Lin Lu, Ting Wang, Su Min, et al. 2019. Dectin-1 contributes to myocardial ischemia/reperfusion injury by regulating macrophage polarization and neutrophil infiltration. Circulation 139 (5): 663–678.PubMedCrossRef Fan, Qin, Rong Tao, Hang Zhang, Hongyang Xie, Lin Lu, Ting Wang, Su Min, et al. 2019. Dectin-1 contributes to myocardial ischemia/reperfusion injury by regulating macrophage polarization and neutrophil infiltration. Circulation 139 (5): 663–678.PubMedCrossRef
82.
go back to reference Zhang, Xiuling, Xianxian Cao, Mengqiu Dang, Hongxia Wang, Buxing Chen, Du Fenghe, Huihua Li, Xiangjun Zeng, and Caixia Guo. 2019. Soluble receptor for advanced glycation end-products enhanced the production of IFN-γ through the NF-κB pathway in macrophages recruited by ischemia/reperfusion. International Journal of Molecular Medicine 43 (6): 2507–2515.PubMed Zhang, Xiuling, Xianxian Cao, Mengqiu Dang, Hongxia Wang, Buxing Chen, Du Fenghe, Huihua Li, Xiangjun Zeng, and Caixia Guo. 2019. Soluble receptor for advanced glycation end-products enhanced the production of IFN-γ through the NF-κB pathway in macrophages recruited by ischemia/reperfusion. International Journal of Molecular Medicine 43 (6): 2507–2515.PubMed
83.
go back to reference Chang, Chao, Qingwei Ji, Bangwei Wu, Kunwu Yu, Qiutang Zeng, Shuanli Xin, Jixiang Liu, and Yujie Zhou. 2015. Chemerin15-ameliorated cardiac ischemia-reperfusion injury is associated with the induction of alternatively activated macrophages. Mediators of Inflammation 2015: 563951.PubMedPubMedCentralCrossRef Chang, Chao, Qingwei Ji, Bangwei Wu, Kunwu Yu, Qiutang Zeng, Shuanli Xin, Jixiang Liu, and Yujie Zhou. 2015. Chemerin15-ameliorated cardiac ischemia-reperfusion injury is associated with the induction of alternatively activated macrophages. Mediators of Inflammation 2015: 563951.PubMedPubMedCentralCrossRef
84.
go back to reference Yue, Yuan, Suiqing Huang, Lexun Wang, Zixuan Wu, Mengya Liang, Huayang Li, Linhua Lv, Wei Li, and Wu. Zhongkai. 2020. M2b macrophages regulate cardiac fibroblast activation and alleviate cardiac fibrosis after reperfusion injury. Circulation Journal 84 (4): 626–635.PubMedCrossRef Yue, Yuan, Suiqing Huang, Lexun Wang, Zixuan Wu, Mengya Liang, Huayang Li, Linhua Lv, Wei Li, and Wu. Zhongkai. 2020. M2b macrophages regulate cardiac fibroblast activation and alleviate cardiac fibrosis after reperfusion injury. Circulation Journal 84 (4): 626–635.PubMedCrossRef
85.
go back to reference Yue, Yuan, Suiqing Huang, Huayang Li, Wei Li, Jian Hou, Li Luo, Quan Liu, Cuiping Wang, Song Yang, Linhua Lv, Jinghua Shao, and Zhongkai Wu. 2020. M2b macrophages protect against myocardial remodeling after ischemia/reperfusion injury by regulating kinase activation of platelet-derived growth factor receptor of cardiac fibroblast. Annals of Translational Medicine 8 (21): 1409.PubMedPubMedCentralCrossRef Yue, Yuan, Suiqing Huang, Huayang Li, Wei Li, Jian Hou, Li Luo, Quan Liu, Cuiping Wang, Song Yang, Linhua Lv, Jinghua Shao, and Zhongkai Wu. 2020. M2b macrophages protect against myocardial remodeling after ischemia/reperfusion injury by regulating kinase activation of platelet-derived growth factor receptor of cardiac fibroblast. Annals of Translational Medicine 8 (21): 1409.PubMedPubMedCentralCrossRef
86.
go back to reference Smith, Rachel Ruckdeschel, Lucio Barile, Hee Cheol Cho, Michelle K. Leppo, Joshua M. Hare, Elisa Messina, Alessandro Giacomello, M. Roselle Abraham, and Eduardo Marbán. 2007. Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 115: 896–908.PubMedCrossRef Smith, Rachel Ruckdeschel, Lucio Barile, Hee Cheol Cho, Michelle K. Leppo, Joshua M. Hare, Elisa Messina, Alessandro Giacomello, M. Roselle Abraham, and Eduardo Marbán. 2007. Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 115: 896–908.PubMedCrossRef
87.
go back to reference Cheng, Ke, Konstantinos Malliaras, Rachel Ruckdeschel Smith, Deliang Shen, Baiming Sun, Agnieszka Blusztajn, Yucai Xie, Ahmed Ibrahim, Mohammad Amin Aminzadeh, Weixin Liu, Tao-Sheng Li, Michele A. de Robertis, Linda Marbán, Lawrence S.C. Czer, Alfredo Trento, and Eduardo Marbán. 2014. Human cardiosphere-derived cells from advanced heart failure patients exhibit augmented functional potency in myocardial repair. Jacc-Heart Failure 2: 49–61.PubMedPubMedCentralCrossRef Cheng, Ke, Konstantinos Malliaras, Rachel Ruckdeschel Smith, Deliang Shen, Baiming Sun, Agnieszka Blusztajn, Yucai Xie, Ahmed Ibrahim, Mohammad Amin Aminzadeh, Weixin Liu, Tao-Sheng Li, Michele A. de Robertis, Linda Marbán, Lawrence S.C. Czer, Alfredo Trento, and Eduardo Marbán. 2014. Human cardiosphere-derived cells from advanced heart failure patients exhibit augmented functional potency in myocardial repair. Jacc-Heart Failure 2: 49–61.PubMedPubMedCentralCrossRef
88.
go back to reference Tang, Junnan, Jinqiang Wang, Ke Huang, Yanqi Ye, Su Teng, Li Qiao, Michael Taylor Hensley, et al. 2018. Cardiac cell-integrated microneedle patch for treating myocardial infarction. Science Advances. Science Advance 4 (11): eaat9365. Tang, Junnan, Jinqiang Wang, Ke Huang, Yanqi Ye, Su Teng, Li Qiao, Michael Taylor Hensley, et al. 2018. Cardiac cell-integrated microneedle patch for treating myocardial infarction. Science Advances. Science Advance 4 (11): eaat9365.
89.
go back to reference Hasan, Al Shaimaa, Lan Luo, Chen Yan, Tian-Xia Zhang, Yoshishige Urata, Shinji Goto, Safwat A. Mangoura, Mahmoud H. Abdel-Raheem, Shouhua Zhang, and Tao-Sheng Li. 2016. Cardiosphere-derived cells facilitate heart repair by modulating M1/M2 macrophage polarization and neutrophil recruitment. PLoS One 11 (10): e0165255.PubMedPubMedCentralCrossRef Hasan, Al Shaimaa, Lan Luo, Chen Yan, Tian-Xia Zhang, Yoshishige Urata, Shinji Goto, Safwat A. Mangoura, Mahmoud H. Abdel-Raheem, Shouhua Zhang, and Tao-Sheng Li. 2016. Cardiosphere-derived cells facilitate heart repair by modulating M1/M2 macrophage polarization and neutrophil recruitment. PLoS One 11 (10): e0165255.PubMedPubMedCentralCrossRef
90.
go back to reference Kanazawa, Hideaki, Eleni Tseliou, James F. Dawkins, Geoffrey De Couto, Romain Gallet, Konstantinos Malliaras, Kristine Yee, et al. 2016. Durable benefits of cellular postconditioning: long-term effects of allogeneic cardiosphere-derived cells infused after reperfusion in pigs with acute myocardial infarction. Journal of the American Heart Association 5 (2): e002796.PubMedPubMedCentralCrossRef Kanazawa, Hideaki, Eleni Tseliou, James F. Dawkins, Geoffrey De Couto, Romain Gallet, Konstantinos Malliaras, Kristine Yee, et al. 2016. Durable benefits of cellular postconditioning: long-term effects of allogeneic cardiosphere-derived cells infused after reperfusion in pigs with acute myocardial infarction. Journal of the American Heart Association 5 (2): e002796.PubMedPubMedCentralCrossRef
91.
go back to reference Makkar, Raj R., Rachel R. Smith, Ke Cheng, Konstantinos Malliaras, Louise Ej Thomson, Daniel Berman, Lawrence Sc Czer, et al. 2012. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet 379 (9819): 895–904.PubMedPubMedCentralCrossRef Makkar, Raj R., Rachel R. Smith, Ke Cheng, Konstantinos Malliaras, Louise Ej Thomson, Daniel Berman, Lawrence Sc Czer, et al. 2012. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet 379 (9819): 895–904.PubMedPubMedCentralCrossRef
92.
go back to reference Wang, Jinxi, Meilan Liu, Qiang Wu, Qiang Li, Ling Gao, Yun Jiang, Boxiong Deng, Wei Huang, Wei Bi, Zhongyan Chen, Y. Eugene Chin, Christian Paul, Yigang Wang, and Huang-Tian Yang. 2019. Human embryonic stem cell-derived cardiovascular progenitors repair infarcted hearts through modulation of macrophages via activation of signal transducer and activator of transcription 6. Antioxidants & Redox Signaling 31 (5): 369–386.CrossRef Wang, Jinxi, Meilan Liu, Qiang Wu, Qiang Li, Ling Gao, Yun Jiang, Boxiong Deng, Wei Huang, Wei Bi, Zhongyan Chen, Y. Eugene Chin, Christian Paul, Yigang Wang, and Huang-Tian Yang. 2019. Human embryonic stem cell-derived cardiovascular progenitors repair infarcted hearts through modulation of macrophages via activation of signal transducer and activator of transcription 6. Antioxidants & Redox Signaling 31 (5): 369–386.CrossRef
93.
go back to reference Cho, Dong-Im, Mi Ra Kim, Hye-yun Jeong, Hae Chang Jeong, Myung Ho Jeong, Sung Ho Yoon, Yong Sook Kim, and Youngkeun Ahn. 2014. Mesenchymal stem cells reciprocally regulate the M1/M2 balance in mouse bone marrow-derived macrophages. Experimental And Molecular Medicine 46 (1): e70.PubMedPubMedCentralCrossRef Cho, Dong-Im, Mi Ra Kim, Hye-yun Jeong, Hae Chang Jeong, Myung Ho Jeong, Sung Ho Yoon, Yong Sook Kim, and Youngkeun Ahn. 2014. Mesenchymal stem cells reciprocally regulate the M1/M2 balance in mouse bone marrow-derived macrophages. Experimental And Molecular Medicine 46 (1): e70.PubMedPubMedCentralCrossRef
94.
go back to reference Dayan, Victor, Gustavo Yannarelli, Filio Billia, Paola Filomeno, Xing-Hua Wang, John E. Davies, and Armand Keatingl. 2011. Mesenchymal stromal cells mediate a switch to alternatively activated monocytes/macrophages after acute myocardial infarction. Basic Research In Cardiology 106 (6): 1299–1310.PubMedCrossRef Dayan, Victor, Gustavo Yannarelli, Filio Billia, Paola Filomeno, Xing-Hua Wang, John E. Davies, and Armand Keatingl. 2011. Mesenchymal stromal cells mediate a switch to alternatively activated monocytes/macrophages after acute myocardial infarction. Basic Research In Cardiology 106 (6): 1299–1310.PubMedCrossRef
95.
go back to reference Ben-Mordechai, Tamar, Radka Holbova, Natalie Landa-Rouben, Tamar Harel-Adar, Micha S. Feinberg, Ihab Abd Elrahman, Galia Blum, et al. 2013. Macrophage subpopulations are essential for infarct repair with and without stem cell therapy. Journal of the American College of Cardiology 62 (20): 1890–1901.PubMedCrossRef Ben-Mordechai, Tamar, Radka Holbova, Natalie Landa-Rouben, Tamar Harel-Adar, Micha S. Feinberg, Ihab Abd Elrahman, Galia Blum, et al. 2013. Macrophage subpopulations are essential for infarct repair with and without stem cell therapy. Journal of the American College of Cardiology 62 (20): 1890–1901.PubMedCrossRef
96.
go back to reference Maas, Sybren L.N., Xandra O. Breakefield, and Alissa M. Weaver. 2017. Extracellular vesicles: unique intercellular delivery vehicles. Trends in Cell Biology 27 (3): 172–188.PubMedCrossRef Maas, Sybren L.N., Xandra O. Breakefield, and Alissa M. Weaver. 2017. Extracellular vesicles: unique intercellular delivery vehicles. Trends in Cell Biology 27 (3): 172–188.PubMedCrossRef
97.
go back to reference Qiao, Li, Shiqi Hu, Suyun Liu, Hui Zhang, Hong Ma, Ke Huang, Zhenhua Li, et al. 2019. MicroRNA-21-5p dysregulation in exosomes derived from heart failure patients impairs regenerative potential. Ca-A Cancer Journal For Clinicians 129 (6): 2237–2250. Qiao, Li, Shiqi Hu, Suyun Liu, Hui Zhang, Hong Ma, Ke Huang, Zhenhua Li, et al. 2019. MicroRNA-21-5p dysregulation in exosomes derived from heart failure patients impairs regenerative potential. Ca-A Cancer Journal For Clinicians 129 (6): 2237–2250.
98.
go back to reference Mol, Emma A., Zhiyong Lei, Marieke T. Roefs, Maarten H. Bakker, Marie-José Goumans, Pieter A. Doevendans, Patricia Y.W. Dankers, et al. 2019. Injectable supramolecular ureidopyrimidinone hydrogels provide sustained release of extracellular vesicle therapeutics. Advanced Healthcare Materialsr 8 (20): e1900847.CrossRef Mol, Emma A., Zhiyong Lei, Marieke T. Roefs, Maarten H. Bakker, Marie-José Goumans, Pieter A. Doevendans, Patricia Y.W. Dankers, et al. 2019. Injectable supramolecular ureidopyrimidinone hydrogels provide sustained release of extracellular vesicle therapeutics. Advanced Healthcare Materialsr 8 (20): e1900847.CrossRef
100.
go back to reference Zhang, Jianchao, Xiaolin Cui, Jiacheng Guo, Chang Cao, Zenglei Zhang, Bo Wang, Li Zhang, D. Shen, K. Lim, T. Woodfield, J. Tang, and J. Zhang. 2020. Small but significant: insights and new perspectives of exosomes in cardiovascular disease. Journal of Cellular And Molecular Medicine 24 (15): 8291–8303.PubMedPubMedCentralCrossRef Zhang, Jianchao, Xiaolin Cui, Jiacheng Guo, Chang Cao, Zenglei Zhang, Bo Wang, Li Zhang, D. Shen, K. Lim, T. Woodfield, J. Tang, and J. Zhang. 2020. Small but significant: insights and new perspectives of exosomes in cardiovascular disease. Journal of Cellular And Molecular Medicine 24 (15): 8291–8303.PubMedPubMedCentralCrossRef
101.
go back to reference Tang, Jun-Nan, Jhon Cores, Ke Huang, Xiao-Lin Cui, Lan Luo, Jin-Ying Zhang, Tao-Sheng Li, Li Qian, and Ke Cheng. 2018. Concise review: is cardiac cell therapy dead? Embarrassing trial outcomes and new directions for the future. Stem Cells Translational Medicine 7 (4): 354–359.PubMedPubMedCentralCrossRef Tang, Jun-Nan, Jhon Cores, Ke Huang, Xiao-Lin Cui, Lan Luo, Jin-Ying Zhang, Tao-Sheng Li, Li Qian, and Ke Cheng. 2018. Concise review: is cardiac cell therapy dead? Embarrassing trial outcomes and new directions for the future. Stem Cells Translational Medicine 7 (4): 354–359.PubMedPubMedCentralCrossRef
102.
go back to reference Zhao, Jinxuan, Xueling Li, Jiaxin Hu, Fu Chen, Shuaihua Qiao, Xuan Sun, Ling Gao, Jun Xie, and Biao Xu. 2019. Mesenchymal stromal cell-derived exosomes attenuate myocardial ischaemia-reperfusion injury through miR-182-regulated macrophage polarization. Cardiovascular Research 115 (7): 1205–1216.PubMedPubMedCentralCrossRef Zhao, Jinxuan, Xueling Li, Jiaxin Hu, Fu Chen, Shuaihua Qiao, Xuan Sun, Ling Gao, Jun Xie, and Biao Xu. 2019. Mesenchymal stromal cell-derived exosomes attenuate myocardial ischaemia-reperfusion injury through miR-182-regulated macrophage polarization. Cardiovascular Research 115 (7): 1205–1216.PubMedPubMedCentralCrossRef
103.
go back to reference Xu, Ruqin, Fangcheng Zhang, Renjie Chai, Wenyi Zhou, Ming Hu, Bin Liu, Xuke Chen, Mingke Liu, Qiong Xu, Ningning Liu, and Shiming Liu. 2019. Exosomes derived from pro-inflammatory bone marrow-derived mesenchymal stem cells reduce inflammation and myocardial injury via mediating macrophage polarization. Journal of Cellular And Molecular Medicine 23 (11): 7617–7631.PubMedPubMedCentralCrossRef Xu, Ruqin, Fangcheng Zhang, Renjie Chai, Wenyi Zhou, Ming Hu, Bin Liu, Xuke Chen, Mingke Liu, Qiong Xu, Ningning Liu, and Shiming Liu. 2019. Exosomes derived from pro-inflammatory bone marrow-derived mesenchymal stem cells reduce inflammation and myocardial injury via mediating macrophage polarization. Journal of Cellular And Molecular Medicine 23 (11): 7617–7631.PubMedPubMedCentralCrossRef
104.
go back to reference Wang, Jinli, Christine J. Lee, Michael B. Deci, Natalie Jasiewicz, Anjali Verma, John M. Canty, and Juliane Nguyen. 2020. MiR-101a loaded extracellular nanovesicles as bioactive carriers for cardiac repair. Nanomedicine 27: 102201.PubMedCrossRef Wang, Jinli, Christine J. Lee, Michael B. Deci, Natalie Jasiewicz, Anjali Verma, John M. Canty, and Juliane Nguyen. 2020. MiR-101a loaded extracellular nanovesicles as bioactive carriers for cardiac repair. Nanomedicine 27: 102201.PubMedCrossRef
105.
go back to reference de Couto, Geoffrey, Romain Gallet, Linda Cambier, Ervin Jaghatspanyan, Nupur Makkar, James Frederick Dawkins, Benjamin P. Berman, et al. Exosomal microRNA transfer into macrophages mediates cellular postconditioning. Circulation 136: 200–214. de Couto, Geoffrey, Romain Gallet, Linda Cambier, Ervin Jaghatspanyan, Nupur Makkar, James Frederick Dawkins, Benjamin P. Berman, et al. Exosomal microRNA transfer into macrophages mediates cellular postconditioning. Circulation 136: 200–214.
106.
go back to reference de Couto, Geoffrey, Weixin Liu, Eleni Tseliou, Baiming Sun, Nupur Makkar, Hideaki Kanazawa, Moshe Arditi, and Eduardo Marbán. 2015. Macrophages mediate cardioprotective cellular postconditioning in acute myocardial infarction. Journal of Clinical Investigation 125: 3147–3162.CrossRefPubMedPubMedCentral de Couto, Geoffrey, Weixin Liu, Eleni Tseliou, Baiming Sun, Nupur Makkar, Hideaki Kanazawa, Moshe Arditi, and Eduardo Marbán. 2015. Macrophages mediate cardioprotective cellular postconditioning in acute myocardial infarction. Journal of Clinical Investigation 125: 3147–3162.CrossRefPubMedPubMedCentral
107.
go back to reference de Couto, Geoffrey, Ervin Jaghatspanyan, Matthew DeBerge, Weixin Liu, Kristin Luther, Yizhou Wang, Jie Tang, Edward B. Thorp, and Eduardo Marbán. 2019. Mechanism of enhanced MerTK-dependent macrophage efferocytosis by extracellular vesicles. Arteriosclerosis Thrombosis And Vascular Biology 39 (10): 2082–2096.CrossRefPubMed de Couto, Geoffrey, Ervin Jaghatspanyan, Matthew DeBerge, Weixin Liu, Kristin Luther, Yizhou Wang, Jie Tang, Edward B. Thorp, and Eduardo Marbán. 2019. Mechanism of enhanced MerTK-dependent macrophage efferocytosis by extracellular vesicles. Arteriosclerosis Thrombosis And Vascular Biology 39 (10): 2082–2096.CrossRefPubMed
108.
go back to reference Mentkowski, Kyle I., Asma Mursleen, Jonathan D. Snitzer, Lindsey M. Euscher, and Jennifer K. Lang. 2020. CDC-derived extracellular vesicles reprogram inflammatory macrophages to an arginase 1-dependent proangiogenic phenotype. American Journal of Physiology-Heart And Circulatory Physiology 318 (6): H1447–H1460.PubMedPubMedCentralCrossRef Mentkowski, Kyle I., Asma Mursleen, Jonathan D. Snitzer, Lindsey M. Euscher, and Jennifer K. Lang. 2020. CDC-derived extracellular vesicles reprogram inflammatory macrophages to an arginase 1-dependent proangiogenic phenotype. American Journal of Physiology-Heart And Circulatory Physiology 318 (6): H1447–H1460.PubMedPubMedCentralCrossRef
109.
go back to reference Cambier, Linda, Geoffrey de Couto, Ahmed Ibrahim, and Antonio K Echavez, Jackelyn Valle, Weixin Liu, Michelle Kreke, et al. 2017. Y RNA fragment in extracellular vesicles confers cardioprotection via modulation of IL-10 expression and secretion. Embo Molecular Medicine 9 (3): 337–352.PubMedPubMedCentralCrossRef Cambier, Linda, Geoffrey de Couto, Ahmed Ibrahim, and Antonio K Echavez, Jackelyn Valle, Weixin Liu, Michelle Kreke, et al. 2017. Y RNA fragment in extracellular vesicles confers cardioprotection via modulation of IL-10 expression and secretion. Embo Molecular Medicine 9 (3): 337–352.PubMedPubMedCentralCrossRef
110.
go back to reference Nguyen, My-Anh, Denuja Karunakaran, Michèle Geoffrion, and Henry S Cheng, Kristofferson Tandoc, Ljubica Perisic Matic, Ulf Hedin, et al. 2018. Extracellular vesicles secreted by atherogenic macrophages transfer microRNA to inhibit cell migration. Arteriosclerosis Thrombosis And Vascular Biology 38 (1): 49–63.CrossRefPubMed Nguyen, My-Anh, Denuja Karunakaran, Michèle Geoffrion, and Henry S Cheng, Kristofferson Tandoc, Ljubica Perisic Matic, Ulf Hedin, et al. 2018. Extracellular vesicles secreted by atherogenic macrophages transfer microRNA to inhibit cell migration. Arteriosclerosis Thrombosis And Vascular Biology 38 (1): 49–63.CrossRefPubMed
111.
go back to reference Wang, Chunxiao, Congcong Zhang, Luxin Liu, A. Xi, Boya Chen, Yulin Li, and Du. Jie. 2017. Macrophage-derived mir-155-containing exosomes suppress fibroblast proliferation and promote fibroblast inflammation during cardiac injury. Molecular Therapy-Nucleic Acids 25 (1): 192–204.CrossRef Wang, Chunxiao, Congcong Zhang, Luxin Liu, A. Xi, Boya Chen, Yulin Li, and Du. Jie. 2017. Macrophage-derived mir-155-containing exosomes suppress fibroblast proliferation and promote fibroblast inflammation during cardiac injury. Molecular Therapy-Nucleic Acids 25 (1): 192–204.CrossRef
112.
go back to reference Dai, Yuxiang, Wang Shen, Shufu Chang, Daoyuan Ren, Shalaimaiti Shali, Chenguang Li, Hongbo Yang, et al. 2020. M2 macrophage-derived exosomes carry microRNA-148a to alleviate myocardial ischemia/reperfusion injury via inhibiting TXNIP and the TLR4/NF-κB/NLRP3 inflammasome signaling pathway. Journal of Molecular And Cellular Cardiology 142: 65–79.PubMedCrossRef Dai, Yuxiang, Wang Shen, Shufu Chang, Daoyuan Ren, Shalaimaiti Shali, Chenguang Li, Hongbo Yang, et al. 2020. M2 macrophage-derived exosomes carry microRNA-148a to alleviate myocardial ischemia/reperfusion injury via inhibiting TXNIP and the TLR4/NF-κB/NLRP3 inflammasome signaling pathway. Journal of Molecular And Cellular Cardiology 142: 65–79.PubMedCrossRef
113.
go back to reference Wu, Guanghao, Jinfeng Zhang, Qianru Zhao, Wanru Zhuang, Jingjing Ding, Chi Zhang, Haijun Gao, Dai-Wen Pang, Kanyi Pu, and Hai-Yan Xie. 2020. Molecularly engineered macrophage-derived exosomes with inflammation tropism and intrinsic heme biosynthesis for atherosclerosis treatment. Angewandte Chemie International Edition 59 (10): 4068–4074.PubMedCrossRef Wu, Guanghao, Jinfeng Zhang, Qianru Zhao, Wanru Zhuang, Jingjing Ding, Chi Zhang, Haijun Gao, Dai-Wen Pang, Kanyi Pu, and Hai-Yan Xie. 2020. Molecularly engineered macrophage-derived exosomes with inflammation tropism and intrinsic heme biosynthesis for atherosclerosis treatment. Angewandte Chemie International Edition 59 (10): 4068–4074.PubMedCrossRef
114.
go back to reference Pironti, Gianluigi, Ryan T. Strachan, Dennis Abraham, Samuel Mon-Wei Yu, Minyong Chen, Wei Chen, Kenji Hanada, et al. 2015. Circulating exosomes induced by cardiac pressure overload contain functional angiotensin II type 1 receptors. Circulation 131 (24): 2120–2130.PubMedPubMedCentralCrossRef Pironti, Gianluigi, Ryan T. Strachan, Dennis Abraham, Samuel Mon-Wei Yu, Minyong Chen, Wei Chen, Kenji Hanada, et al. 2015. Circulating exosomes induced by cardiac pressure overload contain functional angiotensin II type 1 receptors. Circulation 131 (24): 2120–2130.PubMedPubMedCentralCrossRef
115.
go back to reference Antes, Travis J., Ryan C. Middleton, Kristin M. Luther, Takeshi Ijichi, Kiel A. Peck, Weixin Jane Liu, Jackie Valle, et al. 2018. Targeting extracellular vesicles to injured tissue using membrane cloaking and surface display. Journal of Nanobiotechnology 16 (1): 61.PubMedPubMedCentralCrossRef Antes, Travis J., Ryan C. Middleton, Kristin M. Luther, Takeshi Ijichi, Kiel A. Peck, Weixin Jane Liu, Jackie Valle, et al. 2018. Targeting extracellular vesicles to injured tissue using membrane cloaking and surface display. Journal of Nanobiotechnology 16 (1): 61.PubMedPubMedCentralCrossRef
116.
go back to reference Wan, Zhuo, Lianbi Zhao, Fan Lu, Xiaotong Gao, Yan Dong, Yingxin Zhao, Mengying Wei, Guodong Yang, Changyang Xing, and Li Liu. 2020. Mononuclear phagocyte system blockade improves therapeutic exosome delivery to the myocardium. Theranostics 10 (1): 218–230.PubMedPubMedCentralCrossRef Wan, Zhuo, Lianbi Zhao, Fan Lu, Xiaotong Gao, Yan Dong, Yingxin Zhao, Mengying Wei, Guodong Yang, Changyang Xing, and Li Liu. 2020. Mononuclear phagocyte system blockade improves therapeutic exosome delivery to the myocardium. Theranostics 10 (1): 218–230.PubMedPubMedCentralCrossRef
117.
go back to reference Tang, Junnan, Su Teng, Ke Huang, Phuong-Uyen Dinh, Zegen Wang, Adam Vandergriff, Michael T. Hensley, et al. 2018. Targeted repair of heart injury by stem cells fused with platelet nanovesicles. Nature Biomedical Engineering 2: 17–26.PubMedPubMedCentralCrossRef Tang, Junnan, Su Teng, Ke Huang, Phuong-Uyen Dinh, Zegen Wang, Adam Vandergriff, Michael T. Hensley, et al. 2018. Targeted repair of heart injury by stem cells fused with platelet nanovesicles. Nature Biomedical Engineering 2: 17–26.PubMedPubMedCentralCrossRef
118.
go back to reference Zhang, Ning, Yanan Song, Zheyong Huang, Jing Chen, Haipeng Tan, Hongbo Yang, Mengkang Fan, Qiyu Li, Qiaozi Wang, Jinfeng Gao, Zhiqing Pang, Juying Qian, and Junbo Ge. 2020. Monocyte mimics improve mesenchymal stem cell-derived extracellular vesicle homing in a mouse MI/RI model. Biomaterials 255: 120168.PubMedCrossRef Zhang, Ning, Yanan Song, Zheyong Huang, Jing Chen, Haipeng Tan, Hongbo Yang, Mengkang Fan, Qiyu Li, Qiaozi Wang, Jinfeng Gao, Zhiqing Pang, Juying Qian, and Junbo Ge. 2020. Monocyte mimics improve mesenchymal stem cell-derived extracellular vesicle homing in a mouse MI/RI model. Biomaterials 255: 120168.PubMedCrossRef
119.
go back to reference Lv, Kaiqi, Qingju Li, Ling Zhang, Yingchao Wang, Zhiwei Zhong, Jing Zhao, Xiaoxiao Lin, Jingyi Wang, Keyang Zhu, Changchen Xiao, Changle Ke, Shuhan Zhong, Xianpeng Wu, Jinghai Chen, Hong Yu, Wei Zhu, Xiang Li, Ben Wang, Ruikang Tang, Jian'an Wang, Jinyu Huang, and Xinyang Hu. 2019. Incorporation of small extracellular vesicles in sodium alginate hydrogel as a novel therapeutic strategy for myocardial infarction. Theranostics 9 (24): 7403–7416.PubMedPubMedCentralCrossRef Lv, Kaiqi, Qingju Li, Ling Zhang, Yingchao Wang, Zhiwei Zhong, Jing Zhao, Xiaoxiao Lin, Jingyi Wang, Keyang Zhu, Changchen Xiao, Changle Ke, Shuhan Zhong, Xianpeng Wu, Jinghai Chen, Hong Yu, Wei Zhu, Xiang Li, Ben Wang, Ruikang Tang, Jian'an Wang, Jinyu Huang, and Xinyang Hu. 2019. Incorporation of small extracellular vesicles in sodium alginate hydrogel as a novel therapeutic strategy for myocardial infarction. Theranostics 9 (24): 7403–7416.PubMedPubMedCentralCrossRef
120.
go back to reference Chen, Wenjie, Ewa M. Goldys, and Wei Deng. 2020. Light-induced liposomes for cancer therapeutics. Progress In Lipid Research 79: 101052.PubMedCrossRef Chen, Wenjie, Ewa M. Goldys, and Wei Deng. 2020. Light-induced liposomes for cancer therapeutics. Progress In Lipid Research 79: 101052.PubMedCrossRef
121.
go back to reference Bulbake, Upendra, Sindhu Doppalapudi, Nagavendra Kommineni, and Wahid Khan. 2017. Liposomal formulations in clinical use: an updated review. Pharmaceutics 9 (2): 12.PubMedCentralCrossRef Bulbake, Upendra, Sindhu Doppalapudi, Nagavendra Kommineni, and Wahid Khan. 2017. Liposomal formulations in clinical use: an updated review. Pharmaceutics 9 (2): 12.PubMedCentralCrossRef
122.
go back to reference Wang, Yuwei, and David W. Grainger. 2019. Lyophilized liposome-based parenteral drug development: reviewing complex product design strategies and current regulatory environments. Advanced Drug Delivery Reviews 151-152: 56–71.PubMedCrossRef Wang, Yuwei, and David W. Grainger. 2019. Lyophilized liposome-based parenteral drug development: reviewing complex product design strategies and current regulatory environments. Advanced Drug Delivery Reviews 151-152: 56–71.PubMedCrossRef
123.
go back to reference Torchilin, Vladimir P. 2005. Recent advances with liposomes as pharmaceutical carriers. Nature Reviews Drug Discovery 4 (2): 145–160.PubMedCrossRef Torchilin, Vladimir P. 2005. Recent advances with liposomes as pharmaceutical carriers. Nature Reviews Drug Discovery 4 (2): 145–160.PubMedCrossRef
124.
go back to reference Gabizon, Alberto, Hilary Shmeeda, and Yechezkel Barenholz. 2003. Pharmacokinetics of pegylated liposomal doxorubicin: review of animal and human studies. Clinical Pharmacokinetics 42 (5): 419–436.PubMedCrossRef Gabizon, Alberto, Hilary Shmeeda, and Yechezkel Barenholz. 2003. Pharmacokinetics of pegylated liposomal doxorubicin: review of animal and human studies. Clinical Pharmacokinetics 42 (5): 419–436.PubMedCrossRef
125.
go back to reference Harel-Adar, Tamar, Tamar Ben Mordechai, Yoram Amsalem, Micha S. Feinberg, Jonathan Leor, and Smadar Cohen. 2011. Modulation of cardiac macrophages by phosphatidylserine-presenting liposomes improves infarct repair. Proceedings of The National Academy of Sciences of The United States of America 108 (5): 1827–1832.PubMedPubMedCentralCrossRef Harel-Adar, Tamar, Tamar Ben Mordechai, Yoram Amsalem, Micha S. Feinberg, Jonathan Leor, and Smadar Cohen. 2011. Modulation of cardiac macrophages by phosphatidylserine-presenting liposomes improves infarct repair. Proceedings of The National Academy of Sciences of The United States of America 108 (5): 1827–1832.PubMedPubMedCentralCrossRef
126.
go back to reference Ruvinov, Emil, Tamar Harel-Adar, and Smadar Cohen. 2011. Bioengineering the infarcted heart by applying bio-inspired materials. Journal of Cardiovascular Translational Research 4 (5): 559–574.PubMedCrossRef Ruvinov, Emil, Tamar Harel-Adar, and Smadar Cohen. 2011. Bioengineering the infarcted heart by applying bio-inspired materials. Journal of Cardiovascular Translational Research 4 (5): 559–574.PubMedCrossRef
127.
go back to reference Aizik, Gil, Etty Grad, and Gershon Golomb. 2018. Monocyte-mediated drug delivery systems for the treatment of cardiovascular diseases. Drug Delivery And Translational Research 8 (4): 868–882.PubMedCrossRef Aizik, Gil, Etty Grad, and Gershon Golomb. 2018. Monocyte-mediated drug delivery systems for the treatment of cardiovascular diseases. Drug Delivery And Translational Research 8 (4): 868–882.PubMedCrossRef
128.
go back to reference Elazar, Victoria, Hassan Adwan, Tobias Bäuerle, Keren Rohekar, Gershon Golomb, and Martin R. Berger. 2010. Sustained delivery and efficacy of polymeric nanoparticles containing osteopontin and bone sialoprotein antisenses in rats with breast cancer bone metastasis. International Journal of Cancer 126 (7): 1749–1760.PubMed Elazar, Victoria, Hassan Adwan, Tobias Bäuerle, Keren Rohekar, Gershon Golomb, and Martin R. Berger. 2010. Sustained delivery and efficacy of polymeric nanoparticles containing osteopontin and bone sialoprotein antisenses in rats with breast cancer bone metastasis. International Journal of Cancer 126 (7): 1749–1760.PubMed
129.
go back to reference Somasuntharam, Inthirai, Archana V. Boopathy, Raffay S. Khan, Mario D. Martinez, Milton E. Brown, Niren Murthy, and Michael E. Davis. 2013. Delivery of Nox2-NADPH oxidase siRNA with polyketal nanoparticles for improving cardiac function following myocardial infarction. Biomaterials 34 (31): 7790–7798.PubMedPubMedCentralCrossRef Somasuntharam, Inthirai, Archana V. Boopathy, Raffay S. Khan, Mario D. Martinez, Milton E. Brown, Niren Murthy, and Michael E. Davis. 2013. Delivery of Nox2-NADPH oxidase siRNA with polyketal nanoparticles for improving cardiac function following myocardial infarction. Biomaterials 34 (31): 7790–7798.PubMedPubMedCentralCrossRef
130.
go back to reference Leuschner, Florian, Partha Dutta, Rostic Gorbatov, Tatiana I. Novobrantseva, Jessica S. Donahoe, Gabriel Courties, Kang Mi Lee, et al. 2011. Therapeutic siRNA silencing in inflammatory monocytes in mice. Nature Biotechnology 29 (11): 1005–1010.PubMedPubMedCentralCrossRef Leuschner, Florian, Partha Dutta, Rostic Gorbatov, Tatiana I. Novobrantseva, Jessica S. Donahoe, Gabriel Courties, Kang Mi Lee, et al. 2011. Therapeutic siRNA silencing in inflammatory monocytes in mice. Nature Biotechnology 29 (11): 1005–1010.PubMedPubMedCentralCrossRef
131.
go back to reference Matoba, Tetsuya, Jun-Ichiro Koga, Kaku Nakano, Kensuke Egashira, and Hiroyuki Tsutsui. 2017. Nanoparticle-mediated drug delivery system for atherosclerotic cardiovascular disease. Journal of Cardiology 70 (3): 206–211.PubMedCrossRef Matoba, Tetsuya, Jun-Ichiro Koga, Kaku Nakano, Kensuke Egashira, and Hiroyuki Tsutsui. 2017. Nanoparticle-mediated drug delivery system for atherosclerotic cardiovascular disease. Journal of Cardiology 70 (3): 206–211.PubMedCrossRef
132.
go back to reference Nakashiro, Soichi, Tetsuya Matoba, Ryuta Umezu, Jun-Ichiro Koga, Masaki Tokutome, Shunsuke Katsuki, Kaku Nakano, Kenji Sunagawa, and Kensuke Egashira. 2016. Pioglitazone-incorporated nanoparticles prevent plaque destabilization and rupture by regulating monocyte/macrophage differentiation in ApoE(−/−) mice. Arteriosclerosis Thrombosis And Vascular Biology 36 (3): 491–500.CrossRefPubMed Nakashiro, Soichi, Tetsuya Matoba, Ryuta Umezu, Jun-Ichiro Koga, Masaki Tokutome, Shunsuke Katsuki, Kaku Nakano, Kenji Sunagawa, and Kensuke Egashira. 2016. Pioglitazone-incorporated nanoparticles prevent plaque destabilization and rupture by regulating monocyte/macrophage differentiation in ApoE(−/−) mice. Arteriosclerosis Thrombosis And Vascular Biology 36 (3): 491–500.CrossRefPubMed
133.
go back to reference Duan, Sheng Zhong, Michael G. Usher, and Richard M. Mortensen. 2008. Peroxisome proliferator-activated receptor-gamma-mediated effects in the vasculature. Circulation Research 102 (3): 283–294.PubMedCrossRef Duan, Sheng Zhong, Michael G. Usher, and Richard M. Mortensen. 2008. Peroxisome proliferator-activated receptor-gamma-mediated effects in the vasculature. Circulation Research 102 (3): 283–294.PubMedCrossRef
134.
go back to reference Chen, Jingli, Jun Yang, Ruiyuan Liu, Chenmeng Qiao, Zhiguo Lu, Yuanjie Shi, Zhanming Fan, Zhenzhong Zhang, and Xin Zhang. 2017. Dual-targeting theranostic system with mimicking apoptosis to promote myocardial infarction repair via modulation of macrophages. Theranostics 7 (17): 4149–4167.PubMedPubMedCentralCrossRef Chen, Jingli, Jun Yang, Ruiyuan Liu, Chenmeng Qiao, Zhiguo Lu, Yuanjie Shi, Zhanming Fan, Zhenzhong Zhang, and Xin Zhang. 2017. Dual-targeting theranostic system with mimicking apoptosis to promote myocardial infarction repair via modulation of macrophages. Theranostics 7 (17): 4149–4167.PubMedPubMedCentralCrossRef
Metadata
Title
New Insights and Novel Therapeutic Potentials for Macrophages in Myocardial Infarction
Authors
Zenglei Zhang
Junnan Tang
Xiaolin Cui
Bo Qin
Jianchao Zhang
Li Zhang
Hui Zhang
Gangqiong Liu
Wei Wang
Jinying Zhang
Publication date
01-10-2021
Publisher
Springer US
Published in
Inflammation / Issue 5/2021
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-021-01467-2

Other articles of this Issue 5/2021

Inflammation 5/2021 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.